UF HPC Training

Working with NGS data in Galaxy

- June 20, 2012
- 1. Log into UF HPC's Galaxy instance: http://galaxy.hpc.ufl.edu/
- 2. Get some data:
 - a. Shared Data: Data Libraries: Training datasets: wine_yeast.100K.fq
- 3. NGS: QC and manipulation: **FASTQ Groomer**
 - a. Input FASTQ quality scores type: Sanger
- 4. NGS: QC and manipulation:Fastqc: **Fastqc QC**
 - a. Use the defaults or add a title for easier reference later
 - b. Notice poor quality at ends of reads
- 5. NGS:QC and manipulation:**FASTQ Quality Timmer**
 - a. Window size: 4
 - b. Quality score: 30
 - c. Rerun Fastqc QC on trimmed dataset
- 6. NGS: Assembly: **velveth**
 - a. Hash Length: 29
 - b. Click Add new Input Files
 - i. File format: fastq
 - ii. Dataset: Select your reads file
- 7. NGS: Assembly: **velvetg**
 - a. Velvet Dataset: select the velveth output
- 8. NGS: Assembly: **velvetg**
 - a. Velvet Dataset: select the velveth output
 - b. Set minimum contig length: yes
 - i. Minimum contig length: 500
- 9. NGS: Mapping: Map with Bowtie for Illumina
 - a. Will you select a reference genome from your history or use a built-in index?:
 - b. Select S. cerevisiae (CGD) 2011
- 10. NGS:SAM tools:SAM-BAM
 - a. Convert your SAM file to BAM using the defaults
- 11. Click on the View in Trackster icon in the BAM results window
- 12. Select a chromosome and see where reads mapped
- 13. *Changing datasets*, let's look at a visualization I've made and published
 - a. Shared Data: Published Visualizations : Cufflinks demo
 - b. Explore options