
SPARK	ON	HIPERGATOR	

Ying Zhang
yingz@ufl.edu

November 6th, 2018

RESEARCH	COMPUTING	STAFF	

•  Dr. Matt Gizendanner
•  Bioinformatics Specialist

•  Dr. Justin Richardson
•  Research Facilitator

AGENDA	

•  Introduction
•  Apache Spark
•  Research Computing and HiPerGator

•  Spark on HiPerGator

•  Hands-on Exercises

•  All slides are available at:

 https://help.rc.ufl.edu/doc/Spark_Workshop

AGENDA	

•  Introduction
•  Apache Spark
•  Research Computing and HiPerGator

•  Spark on HiPerGator

•  Hands-on Exercises

APACHE	SPARK	

•  A brief history

2002

2002
MapReduce @ Google

2004
MapReduce paper

2004 2006 2008 2010 2012 2014

2014
Apache Spark top-level

2010
Spark paper

2008
Hadoop Summit

2006
Hadoop @ Yahoo!

MAP-REDUCE	

•  Data-parallel model
•  One operation, run it on all of the data

•  A simple programming model that applies to many
large-scale computing problems

•  Typical problem
•  Read a lot of data
•  Map: extract desired information from each record
•  Shuffle/sort
•  Reduce: aggregate, summarize, filter, or transform
•  Write the results

MAP-REDUCE	

•  Word count example:
 “Deer, Bear, River, Car, Car, River, Dear, Car, Beer”

•  Map function:
•  key/value pairs: 9 pairs

“Deer”, “1”
“Bear”, “1”
“River”, “1”
“Car”, “1”
“Car”, “1”

“River”, “1”
“Deer”, “1”
“Car”, “1”
“Bear”, “1”

MAP-REDUCE	
•  Word count example:
 “Dear, Bear, River, Car, Car, River, Dear, Car, Bear”

•  Shuffle/sort: gathers all pairs with the same key value
•  Reduce function combines the values for a key

Source: https://www.edureka.co/blog/mapreduce-tutorial/

MAP-REDUCE	

•  Major limitations:
•  Difficulty to program directly
•  Performance bottlenecks

•  Higher level frameworks, e.g. Hive, Pregel, Dremel,
etc.

HADOOP	&	SPARK	

•  Hadoop
•  Started in 2006 at Yahoo
•  HDFS: Hadoop File System
•  YARN: a scheduler coordinates application runs
•  Built in JAVA, support Python and others

•  Spark
•  Started in 2008 at AMPLab at UC Berkeley
•  Resilient Distributed Dataset (RDD), in memory process
•  Run in standalone mode or with Hadoop cluster
•  Directed Acyclic Graph (DAG), visualize the order of

operations and relationships of operations
•  Written in Scala, support Java, Python and R

SPARK	

•  Handles batch, interactive, and real-time within a
single framework

•  Written in SCALA

•  Integration with Java, Python, and R

•  Programming at a higher level of abstraction

•  More general and beyond map/reduce

HADOOP	VS.	SPARK	

SPARK	PROGRAMMABILITY	

WordCount in 50+ lines of Java

WordCount in 3 lines of Spark Scala

SPARK	PERFORMANCE	

Sort 100TB of data with 1 Trillion records

Hadoop MR Record Spark Record

Data Size 102.5TB 100TB

Elapsed Time 72 minutes 23 minutes

Number of Nodes 2100 206

Number of Cores 50400 physical 6592 virtualized

Sort Rate 1.42 TB/min 4.27 TB/min

Sort rate/node 0.67 GB/min 20.7 GB/min

Source: Daytona GraySort Competition 2014, https://databricks.com

SPARK	ECOSYSTEM	

SPARK	SQL	AND	DATAFRAMES	

•  SparkSQL
•  Allows SQL-like commands on distributed data sets

•  Spark DataFrames
•  Developed in Spark 2.0
•  Organizes data into named columns (i.e. RDD with schema)

•  SparkSQL allows querying DataFrames

•  Support Python, Scala, Java, and R

spark.sql("SELECT * FROM people");

SPARK	STREAMING	

•  What is it?
•  Receive data streams from input source
•  Break the data streams into small batches as RDDs (Dstream)
•  Process the batches using RDD operations in parallel
•  Output to databases/dashboards
•  Fault tolerant, second-scale latency
•  Support Scala, Java, and Python

SPARK	MLLIB	

•  Provide machine learning primitives
•  Shipped with Spark since version 0.8

•  Algorithms
•  Classification: Multilayer Perceptron Classifier, PC, linear

SVM, Naïve Bayes
•  Regression: generalized linear regression (GLM)
•  Collaborative filtering: alternating least squares (ALS)
•  Clustering: k-means
•  Decomposition: single value decomposition (SVD), and

principal component analysis (PCA)

•  Support Java, Scala, and Python

SPARK	GRAPHX	

•  Graph analytics
•  Examples: social networks,
 page rank, fraud detection, etc.
•  Graph data modeling
•  Graph data processing

•  GraphX
•  API for graphs and graph-parallel computation
•  A growing library of graph algorithms
•  Performance comparable to the fastest specialized graph

processing systems

SPARK	ARCHITECTURE	OVERVIEW	

•  A master/slave paradigm
•  Master Daemon - driver process

•  Schedule the job executions
•  Negotiate with the cluster manager for resources
•  Translate RDD’s into the execution graph (DAG)
•  Translate the user code into actual spark jobs (tasks)

•  Slave Daemon - worker process
•  Distributed agents to execute jobs (tasks)
•  Perform all the data processing

SPARK	ARCHITECTURE	OVERVIEW	

•  Cluster manager (master):
resource manager (standalone
manager)

•  Worker node: any node
running application.

•  Application: user program built
on Spark. Driver program +
executors

•  Driver program: process
running the main() function of
the application

•  Executor: process launched for
an application on a worker
node. it runs tasks.

•  Task: a unit of work that will be
sent to one executor

Spark cluster

RDD:	RESILIENT	DISTRIBUTED	DATASETS	

•  “A fault-tolerant abstraction for in-memory cluster
computing”

•  Collection of data items that can be operated on in
parallel

•  Transformations
•  Actions

•  Fault tolerance: track the series of transformations
used to build them (lineage)

RDD:	HOW	DOES	IT	WORK?	

textFile = sc.textFile(”SomeFile.txt”)

RDD

RDD:	HOW	DOES	IT	WORK?	

RDD RDD RDD RDD

Transformations

textFile = sc.textFile(”SomeFile.txt”)

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

RDD:	HOW	DOES	IT	WORK?	

RDD RDD RDD RDD

Transformations

Action Value

linesWithSpark.count() 74

linesWithSpark.first()
Apache Spark

textFile = sc.textFile(”SomeFile.txt”)

linesWithSpark = textFile.filter(lambda line: "Spark” in line)

AGENDA	

•  Introduction
•  Apache Spark
•  Research Computing and HiPerGator

•  Spark on HiPerGator

•  Hands-on Exercises

HIPERGATOR	

HIPERGATOR	LOGISTICS	

•  Hardware
•  Over 50,000 computing cores
•  3 PB of data storage
•  180 TB of memory
•  GPU partition
•  Big memory partition

•  Software
•  Over 1000 software applications installed
•  Covering wide range of research disciplines

HIPERGATOR	ACCOUNTS	

•  Apply for a user account at: http://rc.ufl.edu

•  Need faculty sponsor
•  GatorLink ID

HIPERGATOR	ENVIRONMENT	

•  A Linux-based system
•  Interactive session for development and testing

•  Production runs handled by job scheduler – SLURM

USING	HIPERGATOR	
•  https://help.rc.ufl.edu

CLUSTER	BASICS	

Login node
(Head node)

User
interaction

The image cannot
be displayed. Your
computer may not
have enough
memory to open the
image, or the image
may have been
corrupted. Restart
your computer, and
then open the file
again. If the red x
still appears, you
may have to delete
the image and then
insert it again.

Tell the
scheduler what
you want to do

Scheduler

The image cannot be
displayed. Your
computer may not have
enough memory to open
the image, or the image
may have been
corrupted. Restart your
computer, and then

Your job
runs on the

cluster

Compute
resources

Source: Matt Gitzendanner, “Intro to Research Computing and HiPerGator”

SPARK	ON	HIPERGATOR	

•  Version 2.1.0 and 2.2.0
•  Programming in Scala, Java, Python, or R
•  Running standalone Spark jobs via SLURM
•  Use spark module

 module load spark/2.1.0
 or

module load spark/2.2.0

•  Use programming modules
 module load scala

 or

module load python (or java, or R)

CONNECTING	TO	HIPERGATOR	

•  https://help.rc.ufl.edu/doc/Getting_Started

BREAK!	

AGENDA	

•  Introduction
•  Apache Spark
•  Research Computing and HiPerGator

•  Spark on HiPerGator

•  Hands-on Exercises

SPARK	MODULE	IN	HIPERGATOR	

“NO”	SPARK	CLUSTER	IN	HIPERGATOR	

•  SLURM (resource
allocation, job
scheduler,
workload
management) on
HiPerGator

•  Submit a SLURM
job for Spark
cluster

Master Worker

Worker
Worker

Worker

Client

SET	UP	YOUR	OWN	SPARK	CLUSTER	

•  Set SLURM parameters for Spark Cluster
•  How many nodes? How many CPUs per node? How long ?
•  Amount of memory? Output/error files?

SET	UP	YOUR	OWN	SPARK	CLUSTER	

•  Load spark module

•  Set Spark parameters for Spark Cluster
•  What is the working directory?
•  What is the port for communication between components?
•  What is the directory for logfiles?
• …

SET	UP	YOUR	OWN	SPARK	CLUSTER	

•  Set Spark Master and Workers
•  Spark Master is a daemon for cluster management

•  The master waits for workers to connect with
•  Spark worker is a daemon for a node management

•  The workers need to register to the master

START	SPARK	CLUSTER	ON	HIPERGATOR	

•  Submit the SLURM job script to SLURM
•  Submit the job using “sbatch”

•  The job script, spark-local-cluster.sh is provided in
 /ufrc/spark_workshop/share

•  Check your job status using squeue commend

DIY1:	1-NODE	SPARK	CLUSTER	

•  Step 1: Login to HiPerGator

 https://help.rc.ufl.edu/doc/Getting_Started

•  Step 2: Copy the files in /ufrc/spark_workshop/share/ to your
directory and edit it

•  Step 3: Submit the job script to HiPerGator using sbatch

•  Step 4: Check the status of your job using squeue

DIY2:	SPARK	CLUSTER	MONITORING	
•  Spark provides a web-interface to monitor its resource

usage and job histories

DIY2:	SPARK	CLUSTER	MONITORING	

•  Get the IP address for the web interface of the
master node

•  Open a new terminal on your laptop. In the new
terminal, type

•  On your laptop, open a browser, and type the
following web address

 localhost:10001

DIY2:	SPARK	CLUSTER	MONITORING	

BREAK!	

SPARK	INTERACTIVE	SHELLS	-	SCALA	
•  To use Scala, load spark module

SPARK	INTERACTIVE	SHELLS	-	SCALA	
•  Spark interactive shell in Scala

•  $> spark-shell --master $SPARK_MASTER

$> SPARK_MASTER=$(grep "Starting Spark master" *.err | cut -d " " -f 9)
$> spark-shell --master $SPARK_MASTER

<<omitted>>
Spark session available as 'spark'.
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /___/ .__/_,_/_/ /_/_\ version 2.2.0
 /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_31)
Type in expressions to have them evaluated.
Type :help for more information.
scala>

DIY3:	PI	ESTIMATION	VIA		INTERACTIVE	
SHELL	-	PYTHON	

•  Estimate Pi (π) by "throwing darts" at a circle. Points
in the unit square ((0, 0) to (1,1)) are randomly
picked and observed how many fall in the unit circle.
The fraction should be π / 4, so this is used to get
the estimation.

DIY3:	PI	ESTIMATION	VIA		INTERACTIVE	
SHELL	-	PYTHON	

SPARK	INTERACTIVE	SHELLS	-	PYTHON	

•  Spark interactive shell in Python
•  $> pyspark --master $SPARK_MASTER

$> SPARK_MASTER=$(grep "Starting Spark master" *.err | cut -d " " -f 9)
$> pyspark --master $SPARK_MASTER

<<omitted>>
Welcome to
 ____ __
 / __/__ ___ _____/ /__
 _\ \/ _ \/ _ `/ __/ '_/
 /__ / .__/_,_/_/ /_/_\ version 2.2.0
 /_/

Using Python version 2.7.6 (default, Feb 5 2014 11:52:59)
SparkSession available as 'spark'.
>>>

DIY3:	PI	ESTIMATION	VIA		INTERACTIVE	
SHELL	IN	PYTHON	
•  Start Spark interactive shell in Python (pyspark)

DIY4:	PI	ESTIMATION	FROM	FILE	
WITH	PYSPARK	

•  As of Spark 2.0, Python scripts can not be loaded directly
to Spark interactive shell.

•  Execute Python script via pyspark command line:
•  Set “PYTHONSTARTUP”, a python environmental variable.

$> PYTHONSTARTUP=diy4.py pyspark --master $SPARK_MASTER

DIY4:	PI	ESTIMATION	FROM	FILE	
WITH	PYSPARK	

DIY4:	PI	ESTIMATION	FROM	FILE	
WITH	PYSPARK	

<< …… Omitted lines ……. >>

SUBMIT	SPARK	JOBS	VIA	SPARK-SUBMIT	
•  A script which provides unified interface for Spark jobs

•  --class: The entry point for your application (e.g. org.apache.spark.examples.SparkPi)
•  --master: The master URL for the cluster (e.g. spark://123.45.67.890:7077)
•  --deploy-mode: Whether to deploy your driver on the worker nodes (cluster) or locally

as an external client (client) (default: client)
•  --conf: Arbitrary Spark configuration property in key=value format. For values that

contain spaces wrap “key=value” in quotes (as shown).
•  <application-jar>: Path to a bundled jar including your application and all

dependencies. The URL must be globally visible inside of your cluster, for instance, an
hdfs:// path or a file:// path that is present on all nodes.

•  <application-arguments>: Arguments passed to the main method of your main class, if
any

•  For further details about spark-submit, refer to
https://spark.apache.org/docs/2.2.0/submitting-applications.html.

./bin/spark-submit \
 --class <main-class> --master <master-url> \
 --deploy-mode <deploy-mode> --conf <key>=<value> \
 ... # other options <application-jar> [application-arguments]

DIY5:	PI	ESTIMATION	USING	
SPARK-SUBMIT	

DIY6:	WORDCOUNT	USING	SPARK-
SUBMIT	

SPARK	JOB	HISTORY	

ADVANCED	TOPICS	

•  Deep learning with TensorFlow on Apache Spark
•  https://databricks.com/blog/2016/01/25/deep-learning-with-

apache-spark-and-tensorflow.html

•  Genome analysis with ADAM and Apache Spark
•  https://github.com/bigdatagenomics/adam

•  GPU acceleration on Apache Spark
•  http://www.spark.tc/gpu-acceleration-on-apache-spark-2/

•  RDMA (remote direct memory access)-based
Apache Spark

•  http://hibd.cse.ohio-state.edu/#spark

•  Etc.

