UF HPC Training
NGS Mapping and Assembly
October 16, 2014
Log into UF HPC’s Galaxy instance: http://galaxy.rc.ufl.edu/
2. Get some data:
a. Shared Data: Data Libraries: Training datasets: wine_yeast.100K.fq
3. NGS: QC and manipulation: FASTQ Groomer
a. Input FASTQ quality scores type: Sanger
4. NGS: QC and manipulation:FastQC: FastQC:Read QC
a. Use the defaults or add a title for easier reference later
b. Notice poor quality at ends of reads
5. NGS:QC and manipulation:FASTQ Quality Trimmer
a. Window size: 5
b. Quality score: 20
c. Rerun FastQC on trimmed dataset
6. NGS: Mapping: Map with Bowtie for [llumina
a. Use a built-in index:
b. Select: S. cerevisiae (CGD) 2011
7. NGS:SAM Tools:SAM-BAM
a. Convert your SAM file to BAM using the defaults
Click on the View in Trackster icon in the BAM results window
9. Select a chromosome and see where reads mapped

=

@

From the command line:

1. Login to HiPerGator: ssh <user>@gator.rc.ufl.edu
2. Go to your scratch space, make a directory called bowtie_test and cd into it
a. cd /scratch/1fs/$USER
b. mkdir bowtie test
c. cd bowtie test
3. Copy/scratch/Ifs/bio/training/2014-10-16/bowtie.pbs to bowtie_test
a.cp /scratch/lfs/bio/training/2014-10-16/bowtie.pbs
4. Edit the bowtie.pbs file to have your e-mail
a. nano bowtie.pbs
5. Submit the Bowtie run
a. gsub bowtie.pbs

6. Now let’s look at Velvet: make a directory called velvet_test and cd into it
a. cd .. (movesyou up one directory)
b. mkdir velvet test
c. cd velvet test
7. Copy /scratch/lfs/bio/training/2014-10-16/velet.pbs to velvet_test
a.cp /scratch/lfs/bio/training/2014-10-16/velvet.pbs
8. Edit the velvet.pbs file to have your e-mail.
a. nano velvet.pbs

9. Submit the velvet run
a. gsub velvet.pbs
10. Compare the resulting contig files

Contents of velvet.pbs:

#!/bin/bash Here are the PBS directives, the information for the

scheduler:
#PBS -N velvet

#PBS -M <your e-mail>
#PBS -m abe

In addition to CPUs, RAM and walltime, this has

#PBS -0 velvet.test.out information for log files, and e-mail notification.

#PBS -e velvet.test.err

#PBS -1 nodes=1:ppn=4 PBS directive lines start with #PBS and should be at the
#PBS -1 pmem=900mb top of the file

#PBS -1 walltime=00:05:00

* Remember to run out of scratch space—the command, cd

cd $PBS_O_WORKDIR $PBS_O_WORKDIR, changes from home to where you typed
nodule load velvet gsub. This should be part of most scripts you make.

Make and output Note loading of the module for the application we are running,
directory for Velvet use the module system to save headaches!

mkdir test_run

#Run Velvet with kmer of 21

velveth test_run/ 21 -fastgq -short \
/scratch/lfs/bio/training/2014-10-16/wine yeast.100k.£fq

velvetg test_run/ -min_contig_lgth 500

#Get things ready to use threaded (OMP) version of Velvet
#Set OMP_THREAD LIMIT--should be the same as ppn above
export OMP_THREAD LIMIT=$PBS_ NUM PPN

#Set OMP_NUM THREADS--should be 1 lower than ppn
NUM_THREADS=$((PBS_NUM PPN-1))
export OMP_NUM_ THREADS=$NUM THREADS

Run velvet once
using kmer of 21

Note that for the
threaded version of

Velvet, you need to set

some environment
variables

echo Limiting Velvet to $PBS_NUM PPN threads total with $NUM_THREADS slave

threads.

Rerun Velvet using a kmer of 51, and the threaded version

Note there isn't a flag to tell Velvet how many threads to use
It will use all the cores on a node unless you tell it not to with

$OMP_THREAD LIMIT and $OMP_NUM THREADS

mkdir test_run_kmer51

velveth_max99_OMP test_run_kmer51/ 51 -fastqg -short \
/scratch/lfs/bio/training/2014-10-16/wine_ yeast.100k.fq

velvetg max99_OMP test_run_kmer51/ -min_contig lgth 500

Run velvet again,
this time using
multiple CPUs,
and kmer of 51

Note that this script runs Velvet twice as an example. You would not typically want to do
this...Either run on a single core, like the first time through, and adjust resource requests to
nodes=1:ppn=1, or run on multiple cores, and set OMP_THREAD_LIMIT and OMP_NUM_THREADS as

in the example.

