
IBM® Netezza® Analytics

Release 3.0.1.0

In-Database Analytics

Developer's Guide
Revised: March 31, 2014

Part Number 00X6331-01 Rev. 2

Note: Before using this information and the product that it supports, read the information in APPENDIX A on page 325.

© Copyright IBM Corporation 2011, 2014.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

Contents

Preface
Audience for This Guide...xv
Purpose of This Guide..xv
Symbols and Conventions..xv
If You Need Help...xvi
Comments on the Documentation...xvi

1 Introduction to IBM Netezza In-Database Analytics
Overview ...17
List of Algorithms ..18
Terminology and Notation...20
Using This Guide ..20

2 Algorithmic Tasks
Overview..23
Data Exploration ..24
Data Transformation ...24

Discretization ..24
Standardization and Normalization ..24
Data Imputation..25

Model Diagnostics ...25
Model Quality Indicators...25
Model Evaluation Procedures...25

Predictive Modeling...26
Algorithmic Classification ...26
Regression...29
Clustering ..30
Association Rule Mining ...32

3 Working with Data Sets
Sample Data Sets...35

CensusIncome...35

iii

WineQuality...36
Retail..36

4 Using Netezza Analytic Procedures
Call Interface ...37
Column Properties...40

Using a Column Properties Table..42
COLUMN_PROPERTIES Procedure...42
COLUMN_PROPERTIES_CHECK Procedure ...43
SET_COLUMN_PROPERTIES Procedure ..43
GET_COLUMN_LIST Procedure...44
Algorithms Supporting Column Properties...44

Missing Value Support ...44
Working With Models..45

5 Metadata Management
Introduction...47

Structure..47
Preparing the Database...48

Metadata Management Tools..48
Model Property Objects..48
Model Management Objects..48
Model Security Objects...49
Metadata Administration Objects...49
Usage Scenarios...49

Model Naming Conventions..49
Model Name Length..49
Model Name Uniqueness..50
System Case...50

Model Component Naming Conventions..50
General Component Naming Conventions..50
Model Naming Conventions..51

Model Property Objects...52
V_NZA_MODELS View...52
V_NZA_COMPONENTS View...55
V_NZA_PARAMS View...56
V_NZA_COLPROPS View..57
NZA..LIST_MODELS Procedure..58
NZA..LIST_COMPONENTS Procedure..58
NZA..LIST_PARAMS Procedure..59
NZA..LIST_COLPROPS Procedure...59

Model Management Objects...59
NZA..MODEL_EXISTS Procedure..59

iv

NZA..DROP_MODEL Procedure...60
NZA..DROP_ALL_MODELS Procedure...60
NZA..ALTER_MODEL Procedure..60
NZA..COPY_MODEL Procedure..60
NZA..PRINT_MODEL Procedure...61
NZA..PMML_MODEL Procedure..61
NZA..EXPORT_PMML Procedure...62

Security and Administration..63
Security..63
Administration...65
NZA..MIGRATE_MODEL Procedure...66
NZA..REGISTER_MODEL Procedure...66

Model Security Objects..67
NZA..GRANT_MODEL Procedure...67
NZA..REVOKE_MODEL Procedure...68
NZA..LIST_PRIVILEGES Procedure..68

Metadata Administration Objects..68
NZA..INITIALIZE Procedure..68
METADATA_VERSION Procedure...68
NZA..IS_INITIALIZED Procedure...69
NZA..CLEANUP() Procedure...69

6 Data Exploration
Background ...71

Moments ..71
Quantiles ..72
Frequency Table ..73
Histogram ...74
Pearson’s Correlation ...74
Spearman’s Correlation ..74
Covariance ..75
Mutual Information ..75
Conditional Entropy...76
Chi-Square Test ...76
t-Test ...77
Mann-Whitney-Wilcoxon Test ..79
Wilcoxon Test ..80
Canonical Correlation ...80
One-Way ANOVA ..81
Multivariate Analysis of Variance (MANOVA) ..81
Principal Component Analysis...86

Available Functionality ..87
Examples of Algorithm Functionality...88

v

Moments Example...89
Quantiles Example...91
Outlier Detection Example..92
Frequency Table Example..93
Histogram Example..94
Pearson’s Correlation Example..95
Spearman’s Correlation Example..95
Covariance Example..96
Mutual Information Example..97
Conditional Entropy Example..97
Chi-Square Test Example...97
t-Test Example...98
Mann-Whitney-Wilcoxon Test Example..100
Canonical Correlation Example...100
One-Way ANOVA Example..101
Manova Example...102
Principal Component Analysis Example..103

7 Tree-Shaped Bayesian Networks
Background ...105
Applications ...106
Available Functionality ..107
Examples ...108

8 Discretization
Background ...113
Applications ...114
Available Functionality ..115

9 Standardization and Normalization
Background ...119
Applications ...120
Available Functionality ..121
Examples ...121

10 Data Imputation
Background ...125
Applications ...126
Available Functionality ..126
Examples ...126

11 Model Diagnostics
Background ...129

vi

Misclassification Error ..129
Confusion Matrix ..130
Mean Absolute Error ..132
Mean Square Error ...132
Relative Absolute Error ...132
Relative Square Error ..133
Percentage Split ..133
Cross-Validation ..133
Available Functionality ...134

Examples ...134

12 Random Sampling
Available Functionality ..139
Example..140

13 Naive Bayes
Background ...141

Missing Value Support...142
Applications ...142
Available Functionality ..143
Examples ...143

14 Decision Trees
Background..147

Growing ..147
Pruning ...149
Prediction ...150
Missing Value Support...150

Applications ...151
Available Functionality ..151
Examples ...152
Output Table Data Formats..158

15 Nearest Neighbors
Background ...165
Applications ...168
Available Functionality ..168
Examples ...168

16 Linear Regression
Background ...173
Applications..175
Available Functionality...175

vii

Examples..175
Output Table Data Formats..177

17 Regression Trees
Background ...181

Growing ..181
Pruning ...182
Prediction ...182
Missing Value Support...183

Applications ...183
Available Functionality ..183
Examples..184
Output Table Data Formats..188

18 K-Means Clustering
Background ...195
Applications ...197
Available Functionality ..197
Examples ...198
Output Table Data Formats..201

19 Divisive Clustering
Background ...209
Applications ...210
Available Functionality ..210
Examples ...211

20 TwoStep Clustering
Background ...213
Applications ...214
Available Functionality ..214
Examples ...215
Output Table Data Formats..216

21 Association Rules
Background ...219
Applications ...220
Available Functionality ..220
Examples ...220
Output Table Data Formats..221

22 Time Series Forecasting

viii

Background..225
Time Series Types...225
Time Series Algorithms..226

Data Requirements..226
Interpolation..227
Exponential Smoothing...229
ARIMA..230
Seasonal Trend Decomposition ..231
Spectral Analysis..232

Building a Time Series Model...232
TIMESERIES Procedure..233

Input Table Data Format..233
Output Table Data Formats..235
Printing a Time Series Model...243

PRINT_TIMESERIES Procedure..244
Events and Error Conditions...246

23 Generalized Linear Models
Background..249
Using Generalized Linear Models..249
GLM Algorithms...250

Iteratively Reweighted Least Square Algorithm..250
Parallel Stochastic Gradient Descent Algorithm..251

Distribution Types..251
Bernoulli Distribution..251
Binomial Distribution..251
Poisson Distribution..251
Negative Binomial Distribution...252
Gaussian Distribution..252
Wald Distribution..252
Gamma Distribution..252

Link Functions..252
Identity Link Function..252
Inverse Link Function...253
Log Link Function...253
Logit Link Function..253
Probit Link Function..253
Gaussit Link Function..253
Cauchit Link Function..253
Log-log Link Function..253
Complementary Log-log Link Function..253
Log-complement Link Function...253
Odds Power Link Function...254

ix

Power Link Function..254
Negbin Link Function...254

Input Data Format..254
Rules for removing predictor dimensions for nominal attributes in GLM....................................254

Building a GLM Model..255
GLM Procedure..255
PRINT_GLM Procedure..255
PREDICT_GLM Procedure..255

Transformation Principles ...255
Examples..257
Output Table Data Formats..259

24 Model Deployment
Background..265

Permissions and Access...266
Applications..266

Sample Deployment Scenario...266
Available Functionality...267

NZA..EXPORT_MODEL...267
NZA..IMPORT_MODEL...268
NZA..LIST_MODELS..268
Shell Script...269
Export, Import, List, and Copy Option Details...270

Examples..272
Stored Procedure Examples..272
Shell Script Examples...273

25 PMML Support
Overview..275

PMML General Information..275
Data Dictionary..277
Transformation Dictionary and Local Transformations...278
Mining Models..278
Clustering Model...279
Mining Schema and Mining Field..279
Output Fields...280
Model Statistics...280
Model Explanation..280
Model Verification...280

K-means Clustering..280
Clustering Model...281
Mining Schema and Mining Field..281
Output Fields...282

x

Model Statistics...282
Model Explanation..284
Local Transformations...284
Comparison Measure..284
Clustering Field..285
Cluster...285

26 Utility Functions – Probability Distributions
Introduction...287
Using Probability Distribution Functions...287
Functions Related with each Distribution..288
Distributions and their Parameters..288

BERN - Bernoulli Distribution (discrete)..288
BETA - Beta Distribution..289
BINOM - Binomial Distribution (discrete)...289
CAUCHY - Cauchy Distribution...289
CHISQ - Chi-square Distribution..289
EXP - Exponential Distribution..289
F - Fisher Distribution..289
FISK - Fisk Distribution...289
GAMMA - Gamma Distribution...290
GEOM - Geometric Distribution (discrete)..290
HYPER - Hypergeometric Distribution (discrete)...290
LNORM - Log-Normal or Galton Distribution..290
LOGIS - Logistic Distribution..290
MWW - Mann-Whitney-Wilcoxon Distribution (discrete)..290
NBINOM - Negative Binomial Distribution (discrete)..291
NORM - Standardized Normal or Gaussian Distribution...291
NORM3P - Normal or Gaussian Distribution...291
POIS - Poisson Distribution (discrete)..291
T- t-Student Distribution..291
UNIF - Uniform Distribution..292
WALD - Wald Distribution...292
WEIBULL - Weibull Distribution...292
WILCOX - Wilcoxon Distribution (discrete)..292

Usage Examples...292

27 Bulk Algorithms
Bulk Matrix Operations..297

Background..297
Applications...298
Available Functionality..298
Examples...298

xi

Bulk Linear Regression...315
Background..315
Applications...315
Available Functionality..315
Examples...316

Bulk Principal Component Analysis (PCA)..319
Background..319
Applications...319
Available Functionality..320
Examples...320

APPENDIX A

Notices and Trademarks
Notices...325
Trademarks..327
Regulatory and Compliance..328

List of Tables

Table 1: Algorithms described in this guide...18
Table 2: Partial list of common parameters...38
Table 3: Case sensitivity examples...52
Table 4: Columns of the V_NZA_MODELS view...53
Table 5: Columns of the V_NZA_COMPONENTS view...55
Table 6: Columns of the V_NZA_ PARAMS view..56
Table 7: Columns of the V_NZA_ COLPROPS view...58
Table 8: Model privileges...64
Table 9: Confusion matrix entries defined...130
Table 10: Confusion matrix-based quality indicators...131
Table 11: Columns of the NZA_META_<model name>_MODEL table...158
Table 12: Columns of the NZA_META_<model name>_NODES table..159
Table 13: Columns of the NZA_META_<model name>_PREDICATES table..160
Table 14: Columns of the NZA_META_<model name>_COLUMNS table..160
Table 15: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table...........................161
Table 16: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table..........................162
Table 17: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table..........................163

xii

Table 18: Columns of the V_NZA_COMPONENTS view...177
Table 19: Columns of the NZA_META_<model name>_MODEL table...191
Table 20: Columns of the NZA_META_<model name>_NODES table..191
Table 21: Columns of the NZA_META_<model name>_PREDICATES table..192
Table 22: Columns of the NZA_META_<model name>_COLUMNS table..193
Table 23: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table...........................194
Table 24: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table..........................195
Table 25: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table..........................196
Table 26: Columns of the NZA_META_<model name>_MODEL table...204
Table 27: Columns of the NZA_META_<model name>_CLUSTERS table...204
Table 28: Columns of the NZA_META_<model name>_COLUMNS table..205
Table 29: Columns of the NZA_META_<model name>_COLUMNS table..207
Table 30: Columns of the NZA_META_<model name>_COVARIANCES table......................................208
Table 31: Columns of the NZA_META_<model name>_DISCRETE_STATISTICS table..........................208
Table 32: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table..........................209
Table 33: Columns of the NZA_META_<model name>_MODEL table...218
Table 34: Columns of the NZA_META_<model name>_MODEL table...219
Table 35: Columns of the NZA_META_<model name>_GROUP table...224
Table 36: Columns of the NZA_META_<model name>_RULE table...224
Table 37: Columns of the NZA_META_<model name>_ITEM table...225
Table 38: Columns of the NZA_META_<model name>_ITEM table...226
Table 39: Trend types and formulas...233
Table 40: Input table column summary...236
Table 41: User-defined time series table columns...237
Table 42: Columns of the NZA_META_<model name>_SERIES table..238
Table 43: Columns of the NZA_META_<model name>_PERIODS table...239
Table 44: Columns of the NZA_META_<model name>_SEASONALITYDETAILS table..........................240
Table 45: Columns of the NZA_META_<model name>_EXPODETAILS table.......................................241
Table 46: Columns of the NZA_META_<model name>_ARIMADETAILS table.....................................241
Table 47: Columns of the NZA_META_<model name>_ARMADETAILS table......................................242
Table 48: Columns of the NZA_META_<model name>_STDDETAILS table..243
Table 49: Columns of the NZA_META_<model name>_INTERPOLATED table.....................................244
Table 50: Columns of the NZA_META_<model name>_FORECAST table..244
Table 51: Columns of the <output> table..245
Table 52: Columns of the <seasadjtable> table...245
Table 53: Time series error codes..249
Table 54: Columns of the NZA_META_<model name>_MODEL table...264
Table 55: Columns of the NZA_META_<model name>_FADIC table...264
Table 56: Columns of the NZA_META_<model name>_DICTIONARY table...264
Table 57: Columns of the NZA_META_<model name>_GLMDIC table..265
Table 58: Columns of the NZA_META_<model name>_PCOVMATRIX table.......................................265
Table 59: Columns of the NZA_META_<model name>_PPMATRIX table..266
Table 60: Columns of the NZA_META_<model name>_RESIDUALS table...267

xiii

Table 61: Columns of the NZA_META_<model name>_STATS table..267
Table 62: Options for the model deployment shell script...273
Table 63: Header values of Netezza PMML models...280
Table 64: ClusteringModel attributes...285
Table 65: Parameters for the nzm..lm_tf UDTF...320
Table 66: Parameters for the nzm..pca_tf UDTF...325
Table 67: Parameters for the nzm..standardize_tf UDTF..326

xiv

Preface

Audience for This Guide
You should have an in-depth understanding of mathematics and statistics to use the IBM Netezza In-
Database Analytics package. In addition, it is helpful to have an understanding of SQL and Netezza
Stored Procedures and you should be familiar with the basic operation and concepts of the IBM
Netezza appliance and the Netezza software.

Purpose of This Guide
This guide provides an introduction to the IBM Netezza In-Database Analytics package. It provides
background information about the purpose and application of each algorithm, as well as guidelines
for proper usage.

Symbols and Conventions
Note on Terminology: The terms User-Defined Analytic Process (UDAP) and Analytic Executable (AE)
are synonymous.

The following conventions apply:

► Italics for emphasis on terms and user-defined values, such as user input.

► Upper case for SQL commands, for example, INSERT or DELETE.

► Bold for command line input, for example, nzsystem stop.

► Bold to denote parameter names, argument names, or other named references.

► Angle brackets (< >) to indicate a placeholder (variable) that should be replaced with actual text,
for example, inza-<release_number>.zip.

► A single backslash (“\”) at the end of a line of code to denote a line continuation. Omit the
backslash when using the code at the command line, in a SQL command, or in a file.

► When referencing a sequence of menu and submenu selections, the “>” character denotes the
different menu options, for example, Menu Name > Submenu Name > Selection.

xv

If You Need Help
If you are having trouble using the IBM Netezza appliance, IBM Netezza Analytics or any of its
components:

1. Retry the action, carefully following the instructions in the documentation.

2. Go to the IBM Support Portal at: http://www.ibm.com/support. Log in using your IBM ID and
password. You can search the Support Portal for solutions. To submit a support request, click
the Service Requests & PMRs tab.

3. If you have an active service contract maintenance agreement with IBM, you may contact
customer support teams via telephone. For individual countries, please visit the Technical
Support section of the IBM Directory of worldwide contacts
(http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#phone)

Comments on the Documentation
We welcome any questions, comments, or suggestions that you have for the IBM Netezza
documentation. Please send us an e-mail message at netezza-doc@wwpdl.vnet.ibm.com and include
the following information:

► The name and version of the manual that you are using

► Any comments that you have about the manual

► Your name, address, and phone number

We appreciate your comments.

xvi

mailto:netezza-doc@wwpdl.vnet.ibm.com
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#phone
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#phone%23phone
http://www.ibm.com/support

C H A P T E R 1
Introduction to IBM Netezza In-Database
Analytics

Overview

The IBM Netezza In-Database Analytics package is for users and developers interested in leveraging
the development and use of analytic algorithms to perform research or other business-related
activities. The package brings data mining capabilities to the Netezza platform, enabling data mining
tasks on large data sets using the computational power and parallelization mechanisms provided by
the Netezza appliance.

Most currently available data mining tools suffer significant performance limitations when applied to
large data sets. These limitations may be two-fold:

► space: if system memory is used for storing data sets and auxiliary data structures to achieve
high performance, the limited memory size and/or address space prevents applying data mining
tools to large data sets.

► time: if external storage is used for storing data sets or auxiliary data structures to overcome
memory limitations, the resulting performance decline makes application of data mining tools to
large data sets impractical.

Overcoming both these limitations, the parallel architecture of the Netezza database environment
enables high-performance computation on large data sets, making it the ideal platform for large-
scale data mining applications.

Mining large data sets might seem unnecessary, as good data mining models can often be created
from data samples. However, the widespread practice of using small data samples when working
with large data sets is typically a matter of necessity not choice. When highly reliable data mining
results are required, no substantial data portions should be discarded. For complex data mining tasks,
creating data samples of an appropriate size and structure may be a non-trivial task. The IBM Netezza
In-Database Analytics package provides the tools necessary for mining the spectrum of data set sizes.

00X6331-01 Rev. 2 17

In-Database Analytics Developer's Guide

List of Algorithms

IBM Netezza In-Database Analytics is a data mining application that includes many of the key
techniques and popular real-world algorithms used with data sets. Table 1 lists the data mining
algorithms described in this guide, grouped into tasks.

Table 1: Algorithms described in this guide

Task Algorithm

Data Exploration Moments

Quantiles

Outlier Detection

Frequency Table

Histogram

Pearson's Correlation

Spearman's Correlation

Covariance

Mutual Information

Chi-Square Test

t -Test

Mann-Whitney-Wilcoxon Test

Wilcoxon Test

Canonical Correlation

One-Way ANOVA

Multivariate Analysis of Variance (MANOVA)

Principal Component Analysis

Tree-Shaped Bayesian Networks

Data Transformation Discretization

18 00X6331-01 Rev. 2

List of Algorithms

Task Algorithm

Standardization and Normalization

Data Imputation

Model Diagnostics Misclassification Error

Confusion Matrix

Mean Absolute Error

Mean Square Error

Relative Absolute Error

Percentage Split

Cross-Validation

Classification Naive Bayes

Decision Trees

Nearest Neighbors

Regression Linear Regression

Regression Trees

Generalized Linear Models

Clustering K-Means Clustering

Divisive Clustering

TwoStep Clustering

Association Rule Mining Association Rules (including FP-Growth)

Time Series ARIMA

Exponential Smoothing

Seasonal Trend Decomposition

Bulk Algorithms Bulk Matrix Operations

Bulk Linear Regression

00X6331-01 Rev. 2 19

In-Database Analytics Developer's Guide

Task Algorithm

Bulk Principal Component Analysis

Terminology and Notation

When describing data mining tasks and algorithms, unless explicitly noted otherwise, assume that
the analyzed data set describes a set of instances from a given domain X and each instance x∈X is
represented by a set of attributes. The domain is a set of real-world entities represented by the data,
such as people, events, transactions, products, or devices. An attribute can be considered a function
a :X ↦ A that assigns a value to each instance from the domain. All instances from the domain are

described by a common set of attributes a1 :X ↦ A1 , a 2: X ↦ A2 , . . ., a n: X ↦ An . An instance
x∈X is represented by a vector of its attribute values a1 x , a 2 x ,... , an x .

It is important to distinguish between discrete and continuous attributes. If a variable can take on any
value between two specified values, it is called a continuous variable; otherwise, it is called a discrete
variable. Continuous attributes take numerical values for which arithmetic operations can be
meaningfully performed. Discrete attributes take a finite number of values that can be tested for
equality, but cannot be reasonably used for any arithmetic calculations, even if they are represented
numerically, which is common. For example, in counting attendees to an event, the attendance can
be any integer between zero and the maximum capacity of the location. However, attendance cannot
be any number—for example a fractional number—between those two limits, therefore, the
attribute is discrete.

For some data mining tasks there is one specific target attribute. For example, this is the case for the
classification task, where the target attribute is designated by c :X ↦ C and called the target
concept. It also applies in the regression task, where the target attribute is designated by f : X ↦ ℝ
and called the target function. In database terms, instances correspond to table rows and attributes
correspond to table columns. When writing a x  to designate the value of attribute a for instance
x , you refer to the value of the column representing a for the row representing x .

Using This Guide

This guide supplements the IBM Netezza In-Database Analytics Reference Guide. It describes the IBM
Netezza In-Database Analytics call interface and provides some background information about the
described algorithms and the data mining tasks they are used to solve. The algorithm description,
which explains the algorithm purpose and principle of operation, is intended to help you choose the
appropriate algorithms for a given task, run the selected algorithms, and interpret the results.

The IBM Netezza In-Database Analytics Reference Guide provides an overview and parameter
description for each algorithm in the package. This information is also available as online help that
can be requested by calling the stored procedures with the 'help' argument.

This guide provides reproducible examples, with real data, that can be used as starting points for
experiments. The examples demonstrate typical useful scenarios, which may include several different
parameter combinations. They are described to an extent necessary to understand, modify, and

20 00X6331-01 Rev. 2

Using This Guide

repeat the examples, but may not fully cover the scope of possible parametrizations. The algorithms
represent various complexity levels. They also differ significantly in their computational costs and the
degree of possible parametrization.

The algorithms described in this guide are exposed to the user via different interfaces, all available
from the Netezza software as stored procedures. No specific data mining knowledge or experience is
required to follow the presented discussion and run the examples. The relatively brief descriptions of
particular algorithms refer to the literature for more details where necessary.

00X6331-01 Rev. 2 21

C H A P T E R 2
Algorithmic Tasks

Overview

There are a number of major data mining task categories leveraged by the IBM Netezza In-Database
Analytics package:

1. Data exploration

2. Data transformation

3. Model diagnostics

4. Predictive modeling , including

► Classification

► Regression

► Clustering

► Association rule mining

The data exploration, data transformation, and model diagnostics categories are broad task families.
They are comprised of several detailed analytical tasks, grouped together based on their common
goals. While they are described in conjunction with details specific to the related algorithms, their
concepts are covered only briefly here.

The predictive modeling category includes the classification, regression, clustering, and association
rule mining tasks. As the name implies, the predictive modeling tasks are used to create models from
the data. The models represent particular types of relationships that have a predictive utility and are
used to make conclusions about new data from the same domain.

These tasks are defined by the model type and criteria used to evaluate model quality.

00X6331-01 Rev. 2 23

In-Database Analytics Developer's Guide

Data Exploration

The broad scope of the Data Exploration task family includes identifying both measures to
characterize data distribution and relationships within the data. Data distribution is typically used
with a single attribute to provide information about its most typical values, diversity, and possible
outliers or unlikely values. Data relationships are used to detect dependencies within multiple
attributes—usually two—where one or more attributes affect the distribution on another attribute.

Data exploration can be divided into two purposes:

► distribution description

► relationship identification

In both cases, different levels of detail are possible and different algorithms can be used, depending
on attribute types and the level of detail required.

The main purpose of data exploration is to gain familiarity with the data, initially assess its predictive
utility, detect possible data quality problems, and make observations that may be useful for
subsequent analytical processing. While it is typically followed by predictive modeling, it may
produce results that are useful on their own.

Data Transformation

The Data Transformation task family provides an intermediate step to transform the analyzed data
set and make it more suitable for subsequent analytical processing. These transformations may
modify values of selected attributes to satisfy requirements of classification, regression, clustering, or
association rule mining algorithms used for predictive modeling.

The IBM Netezza In-Database Analytics package addresses three specific data transformations:

► discretization—replacement of continuous attributes by discrete attributes, with values
corresponding to original value intervals.

► standardization and normalization—modification of continuous attributes to achieve desired
distribution properties.

► data imputation—assignment of values to fill missing attribute values.

Discretization
The discretization process assigns a discrete value to each interval of continuous attribute a to
create a new discrete attribute a ' . A discretization algorithm determines the interval boundaries
that are likely to preserve as much useful information provided by the original attribute as possible.
Data set discretization should preserve the relationship between the class and the discretized
attributes if the data set is to be used for creation of a classification model.

Standardization and Normalization
Standardization and normalization transformations use the original continuous attribute a to

24 00X6331-01 Rev. 2

Data Transformation

generate a new continuous attribute a ' that has a different range or distribution than the original
attribute. Common transformations modify the range to fit the [−1,1] interval (normalization) or
modify the distribution to have a mean of 0 and a standard deviation of 1 (standardization).

Data Imputation
Many analytic algorithms require that the data set has no missing attribute values. However, real-
world data sets frequently suffer from missing attribute values. Missing value imputation provides
usable attribute values in place of the missing values, allowing the algorithms to run.

Model Diagnostics

The Model Diagnostics task family is used to reliably assess the quality of predictive models. To be
useful, the predictive model must exhibit high accuracy both on the data set used to create it, but
more importantly on new, unseen data from the same domain. Because the need for accuracy is
high, the model diagnostic process requires appropriately selected model quality indicators, used to
evaluate the model's prediction on a given data set. It also requires model evaluation procedures,
which estimate quality indicator values on unseen data.

By providing model quality estimates, model diagnostics help determine if a model is acceptable for a
given application. If several candidate models were generated, perhaps obtained using different
algorithms, parameter setups, attribute sets or data transformations, model diagnostics make it
possible to select an appropriate model for use.

Model Quality Indicators
Model quality indicators can be calculated on an arbitrary data set, including a training data set,
which usually overestimates the model’s quality significantly. To avoid the optimistic bias, model
evaluation procedures make a separate validation or a test set that is used only for evaluation
redundant. This removes the optimistic bias, but can raise new issues of pessimistic bias and
variance. Pessimistic bias can occur if the quality of the evaluated model is reduced by preventing a
large portion of the available data from being used for model creation. Alternately, using a small test
set increases the evaluation variance, resulting from a chance factor in data set selection, which
makes the estimates unreliable. The variance can be kept low by aggregating the results of multiple
independent evaluations, but at considerable computational expense.

Model Evaluation Procedures
The main challenge with model evaluation procedures is appropriately handling the tradeoff
between the bias, variance, and computational cost.

The data set used for the evaluation process is referred to as the validation or test set, mostly
depending on the purpose of evaluation. The distinction is based on the application context. For
intermediate evaluation, used to guide model selection from several candidate models, it is more
common to speak about the validation set. For the final evaluation of the model ultimately selected,

00X6331-01 Rev. 2 25

In-Database Analytics Developer's Guide

it is more common to speak about the test set.

When creating models, it is acceptable to use all the available data. However, you should never use a
subset of the same data to evaluate the model. Thus, it is reasonable to build a final model to be
deployed for a particular application using the whole available data set, after another model had
been built on a smaller training set using the same algorithm and parameter setup, and then
evaluated on the remaining validation or test set. The quality indicators obtained from the evaluation
process can serve as conservative, non-overestimating quality estimates for the final all-inclusive
data model.

Predictive Modeling

Algorithmic Classification
Classification is a fundamental processes in business and in every day life. As the name implies,
classification is the act of taking individual items and categorizing them into classes based on
knowledge about the items. It is possible to classify items differently based on the criteria used.
Classification is a common business activity, where it may be useful to organize customers,
employees, transactions, stores, factories, products, devices, documents or any other types of
instances into a set of re-defined meaningful classes.

In data mining, where analysis is being performed on a large amount of data, building classification
models based on available data is a central task. Building a classification model requires that classes
be defined from the data. Once defined, the data is then organized based on the defined classes. A
challenge arises in data mining because typically the correct class labels are not known before the
model is built.

Task Definition
The classification task consists of assigning instances from a given domain into a set of classes. The
domain is described by a set of discrete- or continuous-valued attributes. Classes can be considered
values of a selected discrete target attribute. The class represents a property of the classified
instances that either becomes known later or, less often, a property that is difficult or costly to
determine. It is for this reason that the correct class labels are generally unknown at the time of
model creation, but they are provided for in a subset of the domain.

If unknown, the class is only available on a limited historical data set. This is why the application of a
classification model is also referred to as prediction, and classification is considered one of the
predictive modeling tasks.

The classification task can be used by a classification algorithm to create a classification model. The
resulting model is a machine-friendly representation of the knowledge needed to classify any
possible instance from the same domain that is described by the same set of attributes. The
classification model representation may also be human-readable, but this is not always the case.

Mathematically, if:

► X denotes the domain

26 00X6331-01 Rev. 2

Predictive Modeling

► C is the set of classes

► c is a particular class

the classification task is described as finding a model h : X ↦ C that approximates the target concept
c :X ↦ C , which is unknown except for a subset D⊂ X . Usually, only a smaller subset T⊂D ,

referred to as the training set, is directly used by the classification algorithm for identifying a model.
The remaining instances from D are held out for other purposes, usually model evaluation.

In database terms, in a data set where rows represent instances to be classified, one selected column
contains class labels, and the remaining columns represent attributes. The task is to use the data set
to create a model that can generate class labels for an arbitrary new data set that has the same
attribute where correct class labels may not be known.

A classification model type that deserves special interest is the probabilistic classifier model, which is
capable of estimating class probabilities P d∣x  for arbitrary instances x∈X and all classes d∈C .
While such probabilities can be used to predict class labels using the maximum-probability rule, it is
not always the best approach, such as when non-uniform misclassification costs must be
incorporated into the classification process. Misclassification costs can be specified via a cost matrix
 , with rows corresponding to predicted classes, columns corresponding to true classes, and entries
[d 1, d 2] containing the corresponding numeric cost of predicting class d 1 for an instance of true

class d 2 . A simplified cost vector representation is often sufficient, with a single value [d]
representing the cost of predicting any class d ′≠d for an instance of true class d . Such per-class
misclassification costs are much easier to incorporate in classification algorithms.

Misclassification costs can be based on application-specific domain knowledge, if available, or
subjectively adjusted to make the model more sensitive to some classes that are considered more
interesting or harder to predict. Whenever misclassification costs are non-uniform, the maximum-
probability rule for probabilistic classifiers should be replaced by the minimum-cost rule, which
predicts the class associated with the least expected misclassification cost.

Consider the case of two-class classification tasks with C={0,1} . For such tasks the expected
misclassification cost of predicting class 1 for instance x can be expressed as
P 0∣x [1,0]P 1∣x [1 ,1] . Assuming a zero cost of correct predictions and writing [1] instead

of [1, 0] , this can be further simplified to P 0∣x[1] . Similarly, the expected cost of predicting
class 0 for instance x is P 1∣x [0] . Now the condition for class 1 to be the minimum-cost class for
instance x is that its expected cost is no greater than that associated with class 0, which can be
written as follows:

P 0∣x ∣1∣≤P 1∣x ∣0∣ (1)

After substituting 1− P (1∣x) for P 0∣x the inequality can be solved, yielding:

P 1∣x≥
[1]

 [0][1]
 (2)

which is the minimum-cost rule for two-class tasks. The rule determines an appropriate probability

00X6331-01 Rev. 2 27

In-Database Analytics Developer's Guide

cutoff value that leads to the minimization of misclassification costs. The cutoff is equal to 0.5, which
corresponds to the maximum-probability rule if both types of mistakes have the same cost.

Model Evaluation
A useful classification model should be accurate—regularly generating correct class labels—not only
for the data set from which it was created, but more importantly for any previously unseen data from
the same domain. Therefore, a model-building algorithm must detect relationships between class
labels and attribute values in the available data set and generalize them appropriately so that they
are likely applicable to new data. One basic way to assess a classification model’s performance on a
given data set is the misclassification error, which is one of model quality indicators presented in
more detail in the Model Diagnostics section.

The misclassification error on a data set may serve as a reliable estimator of the true error, also called
the generalization error, which is the probability of misclassifying an arbitrary instance from the
domain, assuming the data set used for error calculation is independent of the training set. If D
denotes the full available data set with known class labels and T⊂D is the training set, then
another subset S⊂D−T should be used for reliable model evaluation. It is the responsibility of
model evaluation procedures, discussed in the Model Diagnostics section, to keep the data used for
model evaluation separate from the training data.

Sometimes the misclassification error is neither sufficient nor the most important performance
measure. The error implicitly assumes that each wrong (or correct) prediction carries the same
weight. This is not necessarily the case in several applications, where some model errors may be
more severe than others.

Applications
The classification task is a very useful abstraction of many practical prediction tasks in a variety of
application domains. Classification models are used to predict the future behavior of people,
diagnose technical devices, monitor financial transactions, recommend actions or predict their
outcomes. Examples of practical applications of the classification task include:

► customer classification based on sociodemographic profile and purchase history

▲ target groups for different types of incentives

▲ loyal or disloyal

▲ likely or unlikely to react to an incentive

▲ likely or unlikely to make a purchase of specific type or within a specific time-frame

▲ likely or unlikely to switch to a competitor

▲ high-performing and low-performing

▲ interested or uninterested in a specific type of advertisement

► retail store classification based on location and sales history

▲ high-performing and low-performing

▲ appropriate and inappropriate for selling specific product types

► technical device classification based on operating logs and measurements

28 00X6331-01 Rev. 2

Predictive Modeling

▲ likely or unlikely to fail within a specific time frame

▲ requiring different types of maintenance actions

► credit card transaction classification based on the current transaction information, transaction
history, and cardholder information likely and unlikely to be fraudulent

► network intrusion detection based on network traffic logs

► text document classification into a set of topic classes

Regression
The regression task definition is nearly the same as the classification task, the difference being that
the target attribute is continuous. As a result, the regression task applications are similar. The target
attribute to predict can represent financial indicators, sales or purchases, physical measurements,
technical device parameters or performance measures, and many other quantities that need to be
predicted based on historical data. The classification and regression tasks are sometimes referred to
jointly as supervised learning tasks, which constitutes a major subclass of inductive learning.

Task Definition
The task consists of finding a regression model, based on a data set with known target attribute
values, that captures and appropriately generalizes the relationship between the continuous target
attribute and other available attributes, continuous or discrete. Such a model could generate
predictions of target attribute values for arbitrary new data sets containing the same attributes.
Consider an unknown target function f : X ↦ ℝ that assigns a real value to each instance from the
domain X , and assume the availability of a subset D⊂ X for which the values of f are known. A
regression algorithm should use a training set T⊆D to find a regression model h : X ↦ ℝ ,
approximating the target function on the entire domain. Instances are represented by means of their
attribute values, as described above for the classification task, and the regression model is a
computational representation of predictively useful relationships between the target function and
the attributes.

The most common reason of the target function being generally unknown, except for an available
data set, is that it represents some quantity related to the future, that is needed before it is known. A
regression model created based on historical data is expected to predict the target function on new
data. This makes regression another example of predictive modeling.

Model Evaluation
Similar to classification, successful regression models must generalize the relationships between the
target attribute and the remaining attributes identified in the training set. This generalization is
necessary to deliver satisfactory performance on previously unseen data. To assess a model’s
generalization capabilities it should be evaluated on a data set independent of the training set, which
in practical terms means selecting a subset S⊆D−T for model evaluation. This is the task of model
evaluation procedures, discussed in the Model Diagnostics section.

Performance measures commonly used for regression models, such as the mean absolute error, the
mean square error, and the relative absolute error are described in the Model Diagnostics section.
These errors represent different ways of measuring how the predictions differ from the true values. A

00X6331-01 Rev. 2 29

In-Database Analytics Developer's Guide

correlation coefficient is also a widely adopted regression performance measure since for some
applications measuring the correlation can be more appropriate than measuring the difference.

Applications
The regression task is most often applied for numerical prediction in scenarios where a quantity
needs to be approximately determined before it becomes available. This may be an amount of
money spent or earned, an industrial process or technical parameter value, production or sales
volume, or some more specific indicators of business decision outcomes. It is not uncommon for the
regression model predictions to be used in an automated or manual optimization process as the
objective function. This assumes the predicted quantity needs to be optimized by changing a number
of factors possibly impacting it, and the model predicts the effects of such changes.

Some typical examples include:

► predicting the value of customer purchases based on purchase history, applied incentives, and
seasonal factors

► predicting the audience of TV or radio advertisements based on the location and broadcast
schedule information

► predicting the resale price of off-lease vehicles based on vehicle VIN-based features, its
condition, mileage, warranty, and geographical location

► predicting the production yield of oil or gas wells based on the geological conditions or the
applied well drilling and completion technology

► predicting the time to failure of a technical device based on operating logs and measurements

► demand forecasting for a product based on a recent sales track and market situation

Clustering
Clustering can be considered a form of classification in which there are no a priori given class labels
and there is no predetermined target attribute. Instead, the set of possible classes is obtained as a
set of clusters, created by analyzing the similarity patterns present in the data. The goal is to group
instances similar with respect to their attribute values in the same cluster, and considerably different
instances in separate clusters.

Task Definition
The clustering task can be seen as a superposition of two sub-tasks:

► cluster formation—data partitioning into similarity-based clusters

► cluster modeling—classification with classes corresponding to the clusters

While two distinct algorithms could be used to address the two sub-tasks, it is more common to use
a single clustering algorithm for both cluster formation and modeling. Using a single algorithm is
convenient since the same principle responsible for cluster formation based on available data can be
also used to classify new data to existing clusters. A clustering model provides both a list of clusters
identified based on a data set and a mechanism for assigning new instances, described by the same
set of attributes, to these clusters. It can be applied to new data as in the case of a classification

30 00X6331-01 Rev. 2

Predictive Modeling

model.

Formally, the clustering task consists in finding a clustering model h : X ↦ Ch , where C h is a set of
similarity-based clusters associated with h, based on a data set T⊆D⊂X . Like the classification
and regression task, the training set T may be a subset of the available data set D , containing
instances described by a set of attributes, but this time with no designated target attribute. The
clustering model should maximize the intra-cluster similarity and minimize the inter-cluster similarity.
The exact meaning of this general similarity principle is established by particular clustering
algorithms. Several algorithms use an explicit distance function to measure the (dis)similarity
between instances.

An interesting extension of the clustering task occurs when adding the requirement of cluster
hierarchization. The resulting hierarchical clustering task requests that each cluster be further
partitioned into sub-clusters, which have their own sub-clusters, and so on. This implies a tree
representation of the clustering model, with nodes representing clusters, and their descendant
nodes representing their sub-clusters. A hierarchical clustering model assigns a sequence of clusters
to each instance from consecutive clustering tree layers, or, alternatively, a single cluster from a
specified level.

Model Evaluation
Unlike the classification and regression tasks, there are no widely accepted “objective” performance
measures for clustering models. While a variety of measures have been described in mathematical
literature, in practice they are used as supplementary rather than primary criteria for model
selection. The latter are mostly based on domain and application-specific requirements and
preferences. The former can be roughly divided into:

► distance-based cluster quality measures—using an explicit distance function, they measure
how close instances are from the same cluster to one another and how distant instances are
from different clusters from one another

► probabilistic cluster quality measures—treating the clustering as a representation of a mix of
probability distributions, they measure how likely the data set is to have been generated from
this mix

► external cluster quality measures—assuming the availability of a reference attribute on some
data subset, not used for clustering, but representing the available domain knowledge about the
desired way of partitioning the data, they measure the consistency of the clustering with the
reference attribute

The third category of cluster quality measures is of little practical interest, since whenever the
clustering is needed, an appropriate reference attribute is unlikely to exist. Such measures are usually
applied in research for benchmarking and comparing clustering algorithms. When using distance-
based clustering algorithms, it is typical to evaluate their effects using distance-based quality
measures using the same distance function.

Applications
Some clustering applications can be summarized as follows:

► clustering can provide useful insights about the similarity patterns present in data and a

00X6331-01 Rev. 2 31

In-Database Analytics Developer's Guide

clustering model can be considered as knowledge per se

▲ customer segmentation

▲ point of sale segmentation

▲ document catalog creation

► clustering can be performed on a selected subset of observable attributes that are available for
all instances, and used to predict hidden attributes that are impossible or difficult to determine
for some instances based on cluster membership

▲ customer clustering based on socio-demographic attributes to predict attributes describing
purchase behavior

▲ point of sale segmentation based on location, building, and local population features, used
to predict attributes describing selling performance

► clustering performed on a set of “normal” instances can be used for anomaly detection, by
issuing alerts for new instances that do not fit an existing cluster

▲ network traffic clustering, used for intrusion detection

▲ credit card transaction clustering, used for fraud detection

▲ sensor signal clustering, used for device fault detection

► clustering can be used as a domain decomposition method for some further data mining tasks,
which may be easier to apply within homogenous clusters

▲ customer clustering and classification with respect to loyalty within clusters

▲ customer clustering and predicting reaction to incentives within clusters

▲ credit card account clustering and classification with respect to fraud likelihood within
clusters

▲ product clustering and demand forecasting within clusters

▲ used vehicle clustering and price prediction within clusters

Association Rule Mining
The association rule mining task assumes that instances from the domain can be described by so
called itemsets rather than attribute values. Unlike attributes, the number of items associated with
particular instances can and usually does differ substantially. One common example is a retail
purchase transaction, described by the list of purchased items. The goal of association rule mining is
to identify sets of frequently co-occurring items.

Task Definition

Assume that for each instance x∈X there is a set of associated items I x⊂ I , where I denotes
the set of all possible items. This is equivalent to an attribute representation with one attribute ai : X

↦ {0,1} for each item i∈I . However. the sets of items corresponding to particular instances are
usually very small subsets of the set of all possible items I , which makes such a representation
inconvenient. Any subset of I is called an itemset, and an ordered pair of itemsets A , B⊂I
written as A⇒B , is called an association rule. The task of association rule mining consists in finding
highly reliable and useful association rules based on a provided data set D⊂X . For consistency

32 00X6331-01 Rev. 2

Predictive Modeling

with the other data mining tasks discussed previously, this document uses the term “model” to refer
to the output of the association rule mining task, that is, a set of association rules.

It is not uncommon to adopt a simplified view of the association rule mining task, where frequent
itemsets are to be found rather than association rules. The meaning of ‘frequent’ refers to a high
occurrence rate in the analyzed data set and is explained when discussing model evaluation. The
difference between the rule and itemset formulation is not substantial, since frequent itemsets can
be used to generate association rules in a relatively simple and efficient way without accessing the
data. This is how association rule mining algorithms work.

Model Evaluation
For the association rule mining task the model itself is not evaluated, but rather its individual
components: single association rules or itemsets. The evaluation is based on counting instances from
a data set S⊂X , which can either be the same data set from which the model was derived or a new
data set on which it is evaluated—with appropriate itemsets. The two most commonly used
performance measures for association rules are:

► support:

supp
s
(A⇒ B)=

∣S A∪B∣

∣S∣
 (3)

► Confidence:

conf
s
 A⇒ B=

∣S A∪B∣

∣S A∣
 (4)

Where S I={x∈S ∣ I x⊆ I } for any itemset I⊂I is the subset of S consisting of instances such
that their associated sets of items are completely contained in I . The support is therefore the ratio
of all instances from S containing all items from A and B , and the confidence is the ratio of such
instances to instances containing all items from A only. Sometimes the common numerator of the
fractions defining the support and confidence is referred to as the absolute support, as opposed to
the relative support defined above.

The support is also defined for itemsets. The support of itemset I on data set S is calculated as:

supps I =
∣S I∣

∣S∣
 (5)

Again, the numerator of this fraction is referred to as the absolute support. Itemsets with support
exceeding a certain user-specified threshold are called frequent itemsets. Association rules are
considered reliable and useful if both their support and confidence exceed user-specified thresholds.

00X6331-01 Rev. 2 33

In-Database Analytics Developer's Guide

Applications
The most common example of market basket analysis used to explain association rules is also likely
the most common application. Association rules discovered from customer purchase transactions are
highly valued in retail marketing. High-support and high-confidence product associations can be used
to make individualized product recommendations for direct marketing campaigns, design cross-
selling promotion offers, choose attractive rewards for loyalty programs, prepare advertisements or
booklets, and adjust product placement on store shelves. The scope of possible association rule
mining applications is much wider than just the retail world, however. For example, it is not
uncommon to look for associations in medical or biological data, in technical device logs, in car or
plane crash reports, in crime or terrorist attack reports.

34 00X6331-01 Rev. 2

C H A P T E R 3
Working with Data Sets

Sample Data Sets

Most data sets used throughout this guide come from the UCI Machine Learning Repository, widely
used by the data mining community for benchmarking algorithms. This section lists the data sets
used in the guide, as well as data set configuration instructions.

CensusIncome
The CensusIncome data set comes from the 1994 and 1995 population surveys by the US Census
Bureau. The UCI repository contains two different data sets extracted from these surveys. While the
smaller Adult data set is sometimes also known as “Census Income,” this guide refers to the larger
Census-Income (KDD) data set—used here to demonstrate data exploration, data transformation,
classification, and clustering algorithms—as the “CensusIncome data set.”

Data Description
The data set contains 299,285 instances and 40 attributes, 33 discrete and 7 continuous. The
attribute income represents the class for classification. The remaining attributes describe the
demographic, social, professional, family, and financial situation of individuals to be classified into
two income classes.

Data Set Configuration
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file
and configuring the database tables and data, which must be performed before the examples in this
guide based on the CensusIncome data set can be used.

00X6331-01 Rev. 2 35

In-Database Analytics Developer's Guide

WineQuality
The WineQuality data set describes the properties of the Portuguese Vinho Verde wine. The UCI
repository contains one data set for white wines and one for red wines. This guide uses the larger
white wine data set to demonstrate data exploration and regression algorithms.

Data Description
The data set contains nearly 4900 instances and 12 continuous attributes. One attribute, quality,
represents the target function for regression. It is the quality evaluation provided by experts and
expressed numerically in the [0,10] range. The remaining attributes represent physicochemical
wine properties that should be used to predict wine quality.

Data Set Configuration
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file
and configuring the database tables and data, which must be performed before the examples in this
guide based on the WineQuality data set can be used.

Retail
The Retail data set used in the Netezza database is based on the Belgian Retail data set, which is
market basket data from an anonymous Belgian retail store, available from the FIMI Dataset
Repository courtesy of Tom Brijs. It is used in this guide to demonstrate association rule mining.

Data Description
The data set covers over 88,000 store receipts from more than 5000 customers. Each receipt
represents a purchase transaction and has a number of items associated with it. A more detailed
description of the data set can be found in Tom Brijs’ paper Retail Market Basket Data Set.

Data Set Configuration
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file
and configuring the database tables and data, which must be performed before the examples in this
guide based on the Retail data set can be used.

36 00X6331-01 Rev. 2

http://fimi.ua.ac.be/data/retail.pdf

C H A P T E R 4
Using Netezza Analytic Procedures

When enabling a database for use with analytics procedures, you must both enable the database and
set individual user access permissions. There are four scripts used to ensure that databases are
properly created and that access rights for various classes of user are properly set. See the IBM
Netezza Analytics Administrator's Guide for a complete description of setup, as well as important
usage notes.

Call Interface

The algorithms discussed in this manual are available through stored procedures that can be called
directly from nzSQL. The call interface follows the following common pattern:

CALL proc('arg1=val1, arg2=val2, …, argn=valn');

Each procedure has a single character string (NVARCHAR) argument parsed as a parameter string,
which contains a number of comma-separated argument specifiers. A single argument specifier of
the form

arg=val

provides a value val for a named argument arg. Some procedures accept a list of semicolon-
separated values for a single argument:

arg=val1; val2;...; valm

Algorithm parameter names can be supplied in any case (upper, lower, or mixed) and in any order.
White space between parameter names, equal signs, and other separator characters are also
allowed. Algorithm argument values fall in to the following categories:

► numeric constants

► boolean constants

► string constants

► table names or column names

00X6331-01 Rev. 2 37

In-Database Analytics Developer's Guide

When the parameter string is parsed for a particular algorithm, its arguments are recognized and cast
to appropriate data types. Arguments that specify table or column names are also converted to the
database's default letter case, unless bounded by double quotes. In the following example, if the
stored procedure is called in a database defined to use upper-case names, the value of argument
intable is converted to upper case and the value of argument outtable remains in lower case due to
the double quotes around the argument value:

CALL proc('intable=tab1, outtable="tab2"');

will be implicitly converted to:

CALL PROC('INTABLE=TAB1, OUTTABLE="tab2"');

The same double-quoting mechanism is required when passing table or column names containing
non-letter special characters that cannot be directly used in nzSQL. Table and column names can
contain national characters.

For some procedures, a column name passed as an argument value must pass an additional value
used to specify a column-specific operation or parameter for the algorithm. In such cases a colon is
used to separate the actual name and the additional value assigned to it:

arg=colname:val
arg=colname1:val1; colname2:val2; …; colnamem:valm

The 'help' parameter string can be used with any procedure to display the list of accepted arguments
and a description of the algorithm's operation.

CALL proc('help');

It is best to run analytic stored procedures in user-created databases that have been properly
initialized to work with models, not in the NZA database. Algorithms always write output tables or
models to the current database. Subsequent upgrades to Netezza In-Database Analytic functions
could result in deleting your output tables or models if they are stored in the NZA database. Input
tables referenced in the 'intable' parameter may be qualified with a database name qualifier (for
example, nza..CensusIncome). See Working With Models or Metadata Management for more
information on initializing models.

Some common parameters are described in the table below, although not all listed parameters are
used by every algorithm. Many algorithms accept or require these parameters; this varies from
algorithm to algorithm. This is not a complete list of all possible parameters. Parameters that are
specific to a particular algorithm or a small set of algorithms are discussed fully in the the detailed
algorithm section.

Table 2: Partial list of common parameters

Parameter Description

by Identifies a column name for grouping, in algorithms that
support this. For example:

'by=age'

check Sets the type of validation check the algorithm performs on

38 00X6331-01 Rev. 2

Call Interface

Parameter Description

the data.

► A setting of NULL checks the data for a NULL value in
any column.

► A setting of ALL checks that each ID column value is
unique and that there are no NULL values in the
columns. (Note that this can be quite time consuming.)

► A setting of NONE turns off the validation check. For
example:
'check=all'

'check=none'

'check=nulls'

coldefrole Identifies the default role for the columns of the input
table. See Column Properties for more information. For
example:

'coldefrole=ignore'

coldeftype Identifies the default type for the columns of the input
table. See Column Properties for more information. For
example:

'coldeftype=cont'

colPropertiesTable Identifies the name of the table that contains information
about the properties of the columns of the input table.
These properties are used by the algorithm. See Column
Properties for more information. For example:

'colPropertiesTable=colPropertiesCensus'

help Generates help output for the specific algorithm. When
used, this must be the only parameter supplied on the call.
For example:

call nza..hist('help')

id Identifies the unique identifier column name for the table
being processed. If this parameter is required and not
supplied, the default column name is assumed to be 'id'.
For example:

'id=itemid'

incolumn Identifies a single column or set of columns as input to the
algorithm. Columns can have 'properties' and 'roles'
associated with them. See Column Properties for more
information. For example:

00X6331-01 Rev. 2 39

In-Database Analytics Developer's Guide

Parameter Description

'incolumn=mycolumn'

'incolumn=col1; col2; col3'

intable Identifies the name of the input table that contains the data
on which the algorithm will operate. The table name may
contain a database qualifier. For example:

'intable=mydb..mytable'

model Identifies the name of the model to be created (for
algorithms that generate a model) or the name of the
model to be processed (for algorithms that act on existing
models). When creating a model, the model is created in
the database where the algorithm is run. The database
must be initialized to work with metadata management.
(See Metadata Management for more information.) The
model name must be unique within the database and
cannot already exist. For example:

'model=my_arule_model'

outtable Identifies the name of the output table to be created. The
table is created in the database where the algorithm is run.
The table cannot already exist in the database or an error is
issued. For example:

'outtable=myouttable'

target Identifies the column name that splits the input data into
different class groups. If this parameter is required and not
supplied, the default column name is assumed to be 'class'.
For example:

'target=sex'

Column Properties

Column properties provide the user with control over designating the type of data in columns being
processed without relying on the algorithm's default casting of data types. Supplying a property
value allows the caller to identify nominal and numeric columns. In addition to types, the column
property specification also allows the caller to identify the role a column plays in the computation
being done by the algorithm. Column roles are specific to each individual algorithm. Column types
have a defined set of values.

The following are valid columns types:

► nominal [nom]

► continuous [cont]

40 00X6331-01 Rev. 2

Column Properties

To supply a property to a column in the incolumn list, the property comes after the column name
separated by a colon. For example:

CALL nza..EWDISC('intable=nza..CensusIncome_train,
incolumn=age:5; num_persons_worked_for_employer:2;
weeks_worked_in_year:5,
outtable=ci_ewd');

In the example above, additional data for the columns being referenced in the incolumn parameter is
supplied. The meaning of the role or descriptive data that follows the colon (:) is specific to this
algorithm. For more details on a specific algorithm, refer to the IBM Netezza In-Database Analytics
Reference Guide.

In the next example, column type for the columns being referenced in the incolumn parameter is
supplied:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train,
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income,
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

Columns having roles of target and/or id can be also specified with the incolumn parameter. Using
this method, the example above would now look as follows:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train,
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont; id:id; income:target,
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

Properties that are related to more than one parameter are separated by a “|” vertical bar. For
example:

CALL nza..STD_NORM('intable=nza..CensusIncome_train,incolumn=age:S;
wage_per_hour:N; capital_gains:L;capital_gains|capital_losses:C, id=id,
outtable=CensusIncome_train_std_num');

In addition to setting column properties for individual columns in the incolumn parameter, it is also
possible to set a default type for all columns using the coldeftype parameter. If coldeftype is specified
and a column property is specified for a column in the incolumn parameter, the property specified in
the incolumn parameter takes precedence. For example:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, coldeftype=nom,
incolumn=AGE:cont; capital_gains:cont; capital_losses:cont;
dividends_from_stocks:cont;
NUM_PERSONS_WORKED_FOR_EMPLOYER:ignore; WAGE_PER_HOUR:ignore;
WEEKS_WORKED_IN_YEAR:ignore; id:cont,
id=id, target=income, model=ci_tree1, eval=gini, minimprove=0.005,
minsplit=1000');

In this example, by default, columns are treated as nominal except those which are continuous due
to being specifically designated as such in the incolumn parameter.

Similar to coldeftype, default role can be specified with coldefrole, as in the example below:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, coldefrole=ignore,

00X6331-01 Rev. 2 41

In-Database Analytics Developer's Guide

incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE: cont, id=id, target=income,
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

In the example above all columns will be ignored except those that are defined by incolumn, id, and
target.

Another method for supplying column properties for an input table is to create a column properties
table associated with the specific input table. This provides a convenient way to specify this
information for tables that are used frequently in algorithms and ensures consistency in how the data
is handled with each algorithmic call. When naming a column properties table in an algorithm's call
the caller does not need to specify column properties in the incolumn parameter or use the
coldeftype or coldefrole parameters, but may do so to override the properties specified in the column
properties table.

You can use the following procedures to create and manage a column properties table:

► COLUMN_PROPERTIES

► COLUMN_PROPERTIES_CHECK

► SET_COLUMN_PROPERTIES

► GET_COLUMN_LIST

Using a Column Properties Table
The following example returns a list of specified columns separated by semicolons. For example:

CALL nza..GET_COLUMN_LIST('colPropertiesTable=colPropertiesIris,
role=input;id;target;input, type=nom;cont, separator=;');

 GET_COLUMN_LIST

 "ID";"SEPALLENGTH";"SEPALWIDTH";"CLASS"

Below is an example of calling an algorithm supplying a column properties table, which would have
been created in a separate step.

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train,
colPropertiesTable=colPropertiesCensus,
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income,
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

COLUMN_PROPERTIES Procedure
This procedure creates a column properties table. All columns are set by default (that is, numeric
types are set to continuous). For example:

call nza..COLUMN_PROPERTIES('intable=nza..CensusIncome,
outtable=colPropertiesCensus');
This table also defines a role for each column. The following are possible roles:

► id – column is an identifier

► target – column is a target value

► ignore – attribute is ignored

42 00X6331-01 Rev. 2

Column Properties

► objweight – contains weights of objects (if algorithm supports weighting of objects, if not, this
column is ignored

► input – for all input variables (default role)

The example below demonstrates how to create a column properties table, using coldeftype and
incolumn parameters, with a combination of default values and overrides to default values.

call nza..COLUMN_PROPERTIES('intable=nza..Iris,
outtable=colPropertiesIris, coldeftype=cont,
incolumn=id:id; class:nom; petallength:ignore; petalwidth:ignore');

The procedure nza..COLUMN_PROPERTIES() creates a new table:

IDCOL | COLNAME | COLDATATYPE | COLTYPE | COLROLE |
COLWEIGHT

 1 | ID | INTEGER | cont | id | 1
 2 | SEPALLENGTH | DOUBLE PRECISION | cont | input | 1
 3 | SEPALWIDTH | DOUBLE PRECISION | cont | input | 1
 4 | PETALLENGTH | DOUBLE PRECISION | cont | ignore | 1
 5 | PETALWIDTH | DOUBLE PRECISION | cont | ignore | 1
 6 | CLASS | NATIONAL CHARACTER VARYING(12) | nom | input | 1

You can modify this table and pass it as column properties to procedures that support this. The
default Coltype is set based on a column datatype (read from the table definition). Colweight is set to
1 by default.

COLUMN_PROPERTIES_CHECK Procedure
This procedure checks if the colPropertiesTable table is correct. Below is an example:

CALL nza..COLUMN_PROPERTIES_CHECK('intable=nza..iris,
colPropertiesTable=colPropertiesIris');

An exception is raised if:

► type is incorrect or inconsistent with the table datatype

► more than one id or objweight is defined

► column name is incorrect (does not match input table columns)

► type does not match the specification [cont, nom]

► role and type do not match one of the allowed values

► the datatype cannot be cast on an attribute (for example if the varchar column has been defined
as continuous)

SET_COLUMN_PROPERTIES Procedure
This procedure sets and/or updates properties in the specified colPropertiesTable table.

CALL nza..SET_COLUMN_PROPERTIES('intable=nza..iris,
colPropertiesTable=colPropertiesIris, incolumn=petallength:input;
petalwidth:input');

00X6331-01 Rev. 2 43

In-Database Analytics Developer's Guide

GET_COLUMN_LIST Procedure
This procedure retrieves a list of specified columns from a colPropertiesTable.

CALL nza..GET_COLUMN_LIST('colPropertiesTable=colPropertiesIris,
role=input;id;target;input, type=nom;cont, separator=;');

The above example returns a list of specified columns separated by semicolons. For example:

 GET_COLUMN_LIST

 "ID";"SEPALLENGTH";"SEPALWIDTH";"CLASS"

Below is an example of calling an algorithm supplying a column properties table, which would have
been created in a separate step.

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train,
colPropertiesTable=colPropertiesCensus,
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income,
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

The table colPropertiesTable contains property data for the input table columns, but the incolumn
parameter has higher priority and overrides the settings from the column properties table. For
example, in the example above, age will be treated as continuous regardless of what is specified in
the column properties table.

Algorithms Supporting Column Properties
Below is a list of algorithms that support column properties:

► Naïve Bayes (NAIVEBAYES)

► Decision tree (DECTREE)

► Regression tree (REGTREE)

► Divisive clustering (DIVCLUSTER)

► K-means (KMEANS)

► kNN (KNN)

► GLM

► Linear model

► PCA

► Tree-shaped Bayesian networks

Missing Value Support

Many real world databases suffer from missing values in tables. One solution to this problem is to
preprocess these tables to either:

► remove rows or columns with missing values using SQL queries

44 00X6331-01 Rev. 2

Missing Value Support

► replace missing values with some special value using SQL queries

► impute the value by using the Netezza Analytics IMPUTE_DATA procedure

For easier processing and better model quality and predictions, Netezza Analytics provides an
internal solution to deal with the missing values. Depending on the algorithm, functions will either
intelligently handle or skip the missing table data.

The following selected algorithms are capable of building or applying models using tables with
missing values, internally handling missing values in an appropriate manner (instead of just ignoring
instances with missing values):

► Decision Trees

► Regression Trees

► Naïve Bayes classifier

For other algorithms, if rows contain missing values, the rows are ignored, but the table is still used.
Preprocessing is still possible, using the Netezza Analytics supplied IMPUTE_DATA procedure, but is
not required. Note that preprocessing is not “automated.” When receiving a data set with missing
values, each algorithm either processes them in its own way (decision trees, regression trees, naive
Bayes) or ignores instances (rows) with missing values. Preprocessing may be explicitly applied to get
rid of missing values. For algorithm-specific details of missing value support, see the algorithm
description in the IBM Netezza In-Database Analytics Reference Guide.

Working With Models

The Metadata Management feature provides an environment for managing the analytics models
created by the Netezza Analytics software. The implementation of the Metadata Management
component is done on top of the existing database system, using stored procedures and user-defined
functions.

All analytics models created by the various Netezza Analytics functions (like DECTREE or KMEANS) are
registered in a catalog. There are administrative views and functions that are provided for model
management. The Metadata Management system provides the following capabilities:

► Listing information about models

► Performing basic operations on models (for example, delete, copy, rename, update)

► Performing advanced operations on models (for example, print, PMML format and export)

► Securing data (grant and revoke privileges on models and model operations)

Note: The Metadata Management feature is utilized by all algorithms that generate models. Any
database used for models must be initialized for use by the Metadata Management feature. This is
done by calling nza..initialize().

All model manipulation should be done using the Metadata Management provided functions. Model
tables should not be altered, updated, dropped, etc.. using normal SQL/DDL statements.

For more information, see the section on Metadata Management.

00X6331-01 Rev. 2 45

C H A P T E R 5
Metadata Management

Introduction

IBM Netezza Analytics provides a set of data mining algorithms that generate analytic models. An
analytic model is considered to be any data mining model, such as a decision tree or a regression
tree, generated by one of the data mining algorithms. Each algorithm stores a generated analytic
model in one or more database tables or Netezza Matrices. The tables can be read by the user via
normal SELECT statements; the matrices can be accessed using functions provided by the Netezza
Matrix Engine.

In addition, a set of tools for Metadata Management for the analytic models are provided. Metadata
management provides a means to track information about the tables created and used by analytic
models. The tools used for this tracking are a set of database objects, such as:

► tables, views, and stored procedures that provide a catalog for analytics models

► functions to manage the models

► a security environment for the models

Metadata Management provides provisions for exporting models using Predicitive Model Markup
Language (PMML), an XML-based format used to store and exchange data mining models between
different modeling platforms.

The Metadata Management component is implemented “on top” of the existing database system.
This method allows analytics models to be managed in a manner similar to other database objects
such as tables and views.

Structure
The Metadata Management interface consists of a set of database views and a set of stored
procedures.

The catalog for the metadata of analytics models is made up of a number of tables. All analytics

00X6331-01 Rev. 2 47

In-Database Analytics Developer's Guide

models created by the various data mining functions, such as DECTREE or KMEANS, are registered in
the catalog. The internal catalog tables for metadata storage of analytics models are not directly
accessible for the normal analytics user; data access is provided by special views and procedures.

Custom views and a set of public procedures are used to perform the necessary operations on the
analytics models. The metadata for analytic models for a given database is stored in that database.
As a result, the database views used for metadata are also located in the local database. These views
are created during database initialization. The stored procedures used for Metadata Management,
however, are centrally located in the NZA database, and are created during IBM Netezza Analytics
installation. For more information on database initialization, refer to the Metadata Administration
Objects section.

Privileges for operations on models can also be managed for users and groups.

Preparing the Database
Each database where analytics models are to be used must be initialized by the system administrator
using the create_inza_db.sh script. In addition, each user that needs to use the analytics functions
must be prepared by the system administrator using the create_inza_db_user.sh script. For more
information on these scripts, refer to the IBM Netezza Analytics Administrator’s Guide.

Metadata Management Tools

A number of administrative views and other functions are offered that allow you to work with the
metadata information for each model. In addition, there is a security layer for the analytics models
that provides privileges for operations on models that can be granted to users and groups.

The metadata management system provides the following tools, accessible though the public
interface of Stored Procedures and Database Views described in the following sections.

Model Property Objects
► List all analytics models and their properties, for example name, owner, create date, etc.

► List all tables/views/matrices belonging to an analytics model

► List all parameters used to create an analytics model

► List all column properties defined for the input data used to create a model

► Filter the listed objects by their properties

Model Management Objects
► Delete one or more analytics models, both underlying tables/view/matrices as well as metadata

► Copy an analytics model

► Rename an analytics model

► Update the properties of an analytics model

48 00X6331-01 Rev. 2

Metadata Management Tools

► Update the contents of an analytics model

► Print an analytics model to the console

► Convert analytics models to the PMML format and export them, for example to use for
visualization

Model Security Objects
► Set initial security privileges on new analytics models

► Change the owner of an analytics model

► Grant or revoke privileges on operations with analytics models to users and groups

Metadata Administration Objects
► Enable a database for metadata management

► Determine the version of the metadata objects

► Determine if a database is initialized to utilize metadata

► Remove metadata objects from a database

Usage Scenarios
The functionality offered by the metadata management system provides access to analytics models
and their properties. The stored procedures and database views that are the public interface to the
metadata management functionality are typically accessed through the command line or using SQL
scripts executed on the command line. Access using ODBC/JDBC also allows external applications to
perform management functions.

Some typical scenarios for using the management functions on analytic models are:

► Using the list functions to get an overview of the models

► Using the drop functions to remove models that are no longer needed

► Using the alter function to categorize and describe the models

► Using the copy function to exchange a model with other users on the same NPS

► Using the PMML conversion function to create a PMML model, for example, for using a PMML
visualizer

► get a quick overview of a model using the print function

Model Naming Conventions

Model Name Length
Model names are limited to 64 characters since they are used to generate names for model
components (tables/views/matrices). Since internal table names have a character limit, the model

00X6331-01 Rev. 2 49

In-Database Analytics Developer's Guide

name in turn must also be limited. For more information see the Model Component Naming
Conventions section.

Model Name Uniqueness
Model names must be unique throughout a database. As a result a user cannot create a model with
the same name as a model that is already used in the database, regardless of the user that created
the model.

System Case
By default, the Netezza system uses uppercase letters for table names and model components. This is
known as the system case. The system case can be configured to use lowercase instead, which was
the default in earlier Netezza releases; however, it is not recommended to convert an existing
uppercase system to a lowercase system or vice versa. When entering table names or model
component names in SQL commands on an uppercase system, they are converted to all uppercase
unless they are enclosed in double quotes ("). When surrounded by double quotes, names are saved
as entered.

Model Component Naming Conventions

Each algorithm stores its analytic models in one or more database components
(tables/views/matrices). The case used for the naming conventions is dependent on the case setting
of the NPS. By default, the Netezza system uses uppercase letters to display SQL output. The system
case can be configured to use lowercase instead, which was the default in earlier Netezza releases.

The system automatically converts identifiers, such as database, table, and column names, to the
default system case, which is Upper on new systems. To use mixed case and/or spaces, double quotes
must be used around the identifier. For example:

CREATE TABLE "Emp Table" (emp_id integer, emp_name char(20));
SELECT emp_id FROM "Emp Table";

General Component Naming Conventions
Each component is assigned a canonical name using a special naming schema. The name is generated
in the form:

 <Prefix>_<Derived_model_name>_<Derived_component_type>_<Sequence_ID>

Where:

► <Prefix> is always NZA_META for uppercase systems and nza_meta for lowercase systems..

► <Derived_model_name> is the model name created using the conventions described in the
Model Naming Conventions section. The maximum length is 64 characters.

► <Derived_component_type> is the usage type in the case specified for the database, for example
MODEL, PMML, or INPUT for uppercase databases and model, pmml, or input for lowercase

50 00X6331-01 Rev. 2

Model Component Naming Conventions

databases. Any instances of one or more consecutive spaces are converted to an underscore
(“_”). Maximum length is 38 characters if a sequence ID is used; 42 characters otherwise. For
more information on table types, refer to NZA..LIST_COMPONENTS Procedure section.

► The sequence ID, if needed; otherwise omitted. Maximum length is 4 characters.

Model Naming Conventions
Due to certain table naming requirements on the IBM Netezza Appliance, the derived model name
has some limitations.

White Space Conversion
One or more consecutive spaces in a model name are converted to a single underscore (“_”). In SQL,
using spaces in table names force the table name to be quoted in SQL statements. However, readable
model names often include spaces. Using an underscore eliminates the need for such quoting.

Note: Some similar model names, for example “Model 1” and “Model_1” cannot be used in the
same database, as they both resolve to “Model_1”.

Case Conversion
The derived model name is the only element of the name where the case may not be automatically
converted based on the system case. Model names, like table names in the database, are case-
sensitive, therefore converting them to the system case could cause conflicts.

As an example, consider a model called “Sample Model” that, due to its structure, uses two tables
with usage type “Column Statistics.” In this case, the table names are:

► NZA_META_Sample_Model_COLUMN_STATISTICS_0

► NZA_META_Sample_Model_COLUMN_STATISTICS_1

Case Sensitivity Examples
Since model names are treated in a similar manner to database objects in SQL statements, the
following apply:

► A model name is converted to the system case.

► A model name in double quotes is not converted .

► Model name literals in a where clause, for example in the list_model() procedure, are not
converted.

For example, Table 3 illustrates some examples for a Netezza appliance whose system case is the
default uppercase.

Table 3: Case sensitivity examples

Command Result

CREATE TABLE foo (x integer) Creates a table FOO

00X6331-01 Rev. 2 51

In-Database Analytics Developer's Guide

Command Result

nza..kmeans('model=foo ... ') Creates a model FOO

CREATE TABLE "foo" (x integer) Creates a table foo

nza..kmeans('model="foo" ... ') Creates a model foo

SELECT * FROM _V_TABLE WHERE TABLENAME =
'foo';

Returns the table information only if the
table name is foo (literals in a WHERE
clause are not converted).

nza..list_models('where=modelname=''foo'' '); Lists the model only if the model name is
foo (not FOO).

Model Property Objects

For accessing model properties, the following views and stored procedures are defined:

► Views

▲ V_NZA_MODELS View

▲ V_NZA_COMPONENTS View

▲ V_NZA_PARAMS View

▲ V_NZA_COLPROPS View

► Stored procedures

▲ NZA..LIST_MODELS Procedure

▲ NZA..LIST_COMPONENTS Procedure

▲ NZA..LIST_PARAMS Procedure

▲ NZA..LIST_COLPROPS Procedure

The views are required for programmatic access; however, a number of stored procedures are
defined that output a subset of the view's information to the console. These procedures are intended
to be used in a manner similar to the “\” commands in nzsql, that is, the procedures display only the
basic information for the objects in a more readable format.

V_NZA_MODELS View
The V_NZA_MODELS view provides access to the core metadata of an analytic model. This view lists
all analytic models and their properties. Each record contains the metadata for an individual model.
Following are the view columns:

52 00X6331-01 Rev. 2

Model Property Objects

Table 4: Columns of the V_NZA_MODELS view

Column Name Column Type Description

MODELNAME (unique
key column)

NVARCHAR(64) The name of the analytics model.

OWNER NVARCHAR(128) The name of the owner of the model.

CREATOR NVARCHAR(128) The name of the creator of the model.

CREATED TIMESTAMP The date and time when the model was created.

MODIFIED TIMESTAMP The date and time when the analytics model
was most recently modified.

STATE VARCHAR(16) The state of the model.

DESCRIPTION NVARCHAR(8192) A user-defined description of the model.

COPYRIGHT NVARCHAR(128) A copyright notice for the model.

MININGFUNCTION VARCHAR(64) The mining function of the model.

ALGORITHM VARCHAR(64) The name of the algorithm used to create the
model.

COMPONENTFORMAT VARCHAR(16) A version identifier indicating the format of the
model tables.

APPLICATIONNAME VARCHAR(64) The name of the application that created the
model.

APPLICATIONVERSION VARCHAR(16) The version of the application that created the
model.

USERCATEGORY NVARCHAR(64) A user-defined category name.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► OWNER—The name of the regular database user that is the owner of the model. Initially, the
owner is set to the same name as the creator.

Note: If the name of the database user is changed, the view shows the changed name correctly.
However, if the database user is dropped from the database, the view shows the name of the
dropped user until a new owner is assigned by an administrator.

► CREATOR—The name of the regular database user who called the procedure to build the model.

00X6331-01 Rev. 2 53

In-Database Analytics Developer's Guide

Note: If the name of the database user is changed, the view shows the changed name correctly.
However, if the database user is dropped from the database, there is no procedure to change the
creator name.

► CREATED—The date and time when the analytics model was created. This value cannot be
changed.

► MODIFIED—The date and time when the analytics model was most recently modified. This value
is updated each time there is a change to the model metadata or the model contents via one of
the provided procedures.

► STATE—The current state of the model. Valid values are “Complete”, “Creating” and “Updating”.

▲ Creating—The model is being calculated.

▲ Updating—The model is being updated.

▲ Complete—No creation or update process is running. Write access to the model metadata
and model contents might be restricted when a model is not in the “Complete” state.

Note: For very large data sets, the model may remain in the Creating state for some time.

► DESCRIPTION—A free text field intended to be used to provide a description of, and any other
information about, the analytics model. The initial value is NULL. When model generation is
complete, the user can update the column texts using the NZA..ALTER_MODEL stored procedure.
For more information refer to the NZA..ALTER_MODEL Procedure section.

► COPYRIGHT—A free text field intended to be used to provide a copyright notice. This is useful if ,
for example, the model is converted to a PMML model, which should have a copyright section.
The initial value is NULL. The user can update the column once the model generation is
completed. When model generation is complete, the user can update the column texts using the
NZA..ALTER_MODEL stored procedure. For more information refer to the NZA..ALTER_MODEL
Procedure section.

► MININGFUNCTION—The mining function of the model. The values are supplied by the individual
mining algorithms and, where applicable, are based on the PMML standard values.

► ALGORITHM—The name of the algorithm used to create the analytics model. The values are
supplied by the individual mining algorithms, and where applicable, are based on the PMML
standard values.

► COMPONENTFORMAT—This format of the model tables. The makeup of the model
components, such as the number of tables, table layout, views, or matrices can change for an
algorithm between software versions. Since it is possible for different databases with different
formats of metadata or model components to exist in parallel, this value indicates the software
version format for the component. Generally, the component format version is of the form
<major_version>.<minor_version>. As an example, all component formats that did not change
since release 1.x.x are shown as “1.0”.

Optionally, the value can also contain a second component format number which indicates the
earliest version of IBM Netezza Analytics that is compatible with the format to the string. For
example, a value of “3.5(2.0)” indicates that the component format is 3.5, but the components
can be read by any application that expects component format 2.0 or above.

Finally, if the version in brackets is missing, there is no backward compatibility. That is, “3.5” is
the same as “3.5(3.5)”.

54 00X6331-01 Rev. 2

Model Property Objects

► APPLICATIONNAME—The name of the application used to create the model. Currently, the
value is always “IBM Netezza Analytics”.

► APPLICATIONVERSION—The version of the application that was used to create the model.

► USERCATEGORY—A free text field intended to be used to provide a category for the model. For
example, a project name.

V_NZA_COMPONENTS View
The V_NZA_COMPONENTS view provides access to the names and types of the components, that is
tables/views/matrices, associated with an analytic model. Each record contains the metadata for a
specific component of an individual model in a given database. Following are the view columns:

Table 5: Columns of the V_NZA_COMPONENTS view

Column Name Column Type Description

MODELNAME (unique
key column)

NVARCHAR(64) The name of the analytics model.

NAME (unique key
column)

NVARCHAR(128) The name of a component (table, view, or
matrix).

SCHEMA (unique key
column)

NVARCHAR(128) The schema that contains the component.

DATABASE (unique key
column)

NVARCHAR(128) The database that contains the component.

TYPE VARCHAR(16) The component type.

MANAGEMENT VARCHAR(16) The management level of the component.

USAGETYPE VARCHAR(64) The usage type of the component.

SEQID SMALLINT An identifier used if more than one component
of the same type exists.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► NAME—The name of a component in either the current database or another database. If the
name of the table/view is changed, the view shows the changed name correctly; there is no
procedure to change matrix names.

► SCHEMA—The schema that contains the component. If NPS multiple schema mode is enabled,
the schema for managed components is INZA.

► DATABASE—The database that contains the component. Managed components must be in the

00X6331-01 Rev. 2 55

In-Database Analytics Developer's Guide

current database; therefore, the value must be the current database.

► TYPE—The component type. Valid values are “Table”, “View”, and “Matrix”.

► MANAGEMENT—There are two types of management used to distinguish components.

▲ Managed—The life cycle of these objects is controlled by the provided procedures. They are
dropped when the model is dropped, renamed when the model is renamed, and so on.
These objects must reside in the current database. The components containing the model
contents are managed by IBM Netezza Analytics. Note that matrices are public objects and
can be manipulated by any user. Therefore, it is possible that changes in the matrix
components of a model make the model inconsistent.

▲ Referenced—The name of these objects are included in the metadata, but the objects are
not managed, nor is referential integrity enforced. These objects can reside in a database
other than the current database. Examples of referenced components are input components
for an algorithm and PMML tables. If these objects are dropped, the reference remains.

► USAGETYPE—The type of the component. For example, the core table of an analytic model is of
type “Model”; PMML tables are of type “PMML”; an input table is of type “Input”.

► SEQID—The optional sequence ID for the object. Typically, this value is NULL. However, if an
algorithm stores more than one component of the same type, they are distinguished by the
sequence ID. The ID is a small integer value greater than or equal to zero and selected by the
algorithm.

V_NZA_PARAMS View
The V_NZA_PARAMS view provides access to the individual parameters passed to the model building
procedure used to create or update a model, including the name of the stored procedure. Each
record contains the metadata for a specific parameter used for an individual model.

Note: Some passed parameters, for example the “model” or the “id” parameter. are not available via
this view, The view also shows parameters that were not passed to the procedure but have a default
value.

Table 6: Columns of the V_NZA_ PARAMS view

Column Name Column Type Description

MODELNAME (unique
key column)

NVARCHAR(64) The name of the analytics model.

TASKSEQ (unique key
column)

SMALLINT Identifies a task used to create/update the
model.

PARAMETERNAME
(unique key column)

VARCHAR(64) Name of the parameter.

PARAMETERTYPE VARCHAR(64) Data type of the parameter.

PARAMETERVALUE NVARCHAR(8192) Value of the parameter.

56 00X6331-01 Rev. 2

Model Property Objects

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► TASKSEQ—Every operation to create or update a model can be viewed as a task; each task for a
given model is assigned a task sequence ID. When a model is created, the task sequence ID is set
to 1. All parameters used in the creation of that model are stored with ID 1. When a model is
updated, the task sequence ID is incremented, and the new ID is used to store the parameters of
the update procedure. That way we can store the complete series of stored procedure calls that
have been executed on a model. In this manner, the complete series of stored procedure calls
that have been executed on a model can be recorded.

► PARAMETERNAME—The name of a parameter that has been specified in the parameter string
of the model building or model updating procedure. There is a special parameter named
“procedure”. This parameter indicates the name of the stored procedure used to build the
model.

Note: Parameters that represent column properties are not available in this view; however, they
are available via the V_NZA_COLPROPS view. See the V_NZA_COLPROPS View section for more
information.

► PARAMETERTYPE—The data type of the parameter. This column contains SQL data type names.

► PARAMETERVALUE—The value of the parameter as it is passed to the model building or
updating stored procedure. Values are stored as strings. The information from the
PARAMETERTYPE column can be used to convert the value to another type, if needed.

V_NZA_COLPROPS View
This view provides access to the column properties of the input table. Special properties of the input
table columns can be defined, for example, if a column should be treated as continuous or nominal.
These properties can be passed as parameters in the command line, or in a special table. In the event
the same property is specified twice, the property in the command line overrides the property
definition on the special table.

Each record contains the metadata for specific property of an individual column for a given model.

Table 7: Columns of the V_NZA_ COLPROPS view

Column Name Column Type Description

MODELNAME (unique
key column)

NVARCHAR(64) The name of the analytic model.

COLUMNNAME (unique
key column)

NVARCHAR(128) The name of an input table Λ column.

PROPERTYNAME
(unique key column)μ

VARCHAR(64) The name of a column property.

PROPERTYTYPE VARC Data type of the property.

00X6331-01 Rev. 2 57

In-Database Analytics Developer's Guide

Column Name Column Type Description

HAR(
64)

PROPERTYVALUE NVARCHAR(64) The value of the column property.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► COLUMNNAME—The name of a column in the input table. If no column properties are specified
for an input table column, it is not shown.

► PROPERTYNAME—The name of the property. Valid property names are “idcol”, “coldatatype”,
“coltype”, “colrole” and “colweight”.

▲ coldatatype—The SQL data type of the input column

▲ coltype—The mining type of the input column, either nominal or continuous

▲ colrole—A special role of the input column, for example, target or id

▲ colweight—A weight for the input column

▲ idcol—The physical sequence number of a column.

An example of idcol is in the instance of a command such as CREATE TABLE NEWTABLE (A INT,
B VARCHAR, C DOUBLE) then A has idcol 1, B has idcol 2 and C has idcol3

► PROPERTYTYPE—The data type of the property. Typically the property values are special words
so the type is VARCHAR; however, the weight property has a numerical type, for example
INTEGER or DOUBLE.

► PROPERTYVALUE—The value of the property.

NZA..LIST_MODELS Procedure
The NZA..LIST_MODELS procedure allows the user to output a list of models that match the criteria
specified in the parameter string, provided the user has been granted the LIST privilege or any other
object privilege on the model. The output is a list of the selected models with columns
MODELNAME, OWNER, CREATED, STATE, MININGFUNCTION, ALGORITHM, and USERCATEGORY.
For more information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section.

Example
CALL NZA..LIST_MODELS('where=OWNER=''JOE'' AND
ALGORITHM=''classification''');

NZA..LIST_COMPONENTS Procedure
The NZA..LIST_COMPONENTS procedure allows the user to output a list of components that match
the criteria specified in the parameter string, provided the user has been granted the LIST privilege or
any other object privilege on the model. The output is a list of the selected components with
columns MODELNAME, NAME, SCHEMA, DATABASE, TYPE, MANAGEMENT, USAGETYPE, and

58 00X6331-01 Rev. 2

Model Property Objects

SEQID. For more information on granting privileges, refer to the NZA..GRANT_MODEL Procedure
section.

Example
CALL NZA..LIST_COMPONENTS('where=OWNER=''BOB'' AND USAGETYPE=''Model''');

NZA..LIST_PARAMS Procedure
The NZA..LIST_PARAMS procedure allows the user to output a list of parameters used to create
models using criteria specified in the parameter string, provided the user has been granted the LIST
privilege or any other object privilege on the model. The output is a list of parameters with columns
MODELNAME, TASKSEQ, PARAMETERNAME, PARAMETERTYPE, and PARAMETERVALUE. For more
information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section.

Example
CALL NZA..LIST_PARAMS('where=MODELNAME=''My_Model''');

NZA..LIST_COLPROPS Procedure
The NZA..LIST_COLPROPS procedure allows the user to output a list of column properties that match
the criteria specified in the parameter string, provided the user has been granted the LIST privilege or
any other object privilege on the model. The output is a list of column properties with columns
MODELNAME, COLUMNNAME, PROPERTYNAME, PROPERTYTYPE, PROPERTYVALUE. For more
information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section.

Example
CALL NZA..LIST_COLPROPS('where=PROPERTYNAME=''COLDATATYPE''');

Model Management Objects

For performing Model Management, the following stored procedures are defined:

► Stored Procedures

▲ NZA..MODEL_EXISTS Procedure

▲ NZA..DROP_MODEL Procedure

▲ NZA..DROP_ALL_MODELS Procedure

▲ NZA..ALTER_MODEL Procedure

▲ NZA..COPY_MODEL Procedure

▲ NZA..PRINT_MODEL Procedure

▲ NZA..PMML_MODEL Procedure

▲ NZA..EXPORT_PMML Procedure

NZA..MODEL_EXISTS Procedure
The NZA..MODEL_EXISTS procedure determines if the specified model exists. When run, the system
returns TRUE if the model exists; otherwise it returns FALSE.

00X6331-01 Rev. 2 59

In-Database Analytics Developer's Guide

NZA..DROP_MODEL Procedure
The NZA..DROP_MODEL procedure drops the model with the specified name, provided the user has
been granted the privilege to drop the model. All managed model components
(tables/views/matrices) and all metadata regarding the model are removed. If the procedure
executes successfully, the system returns TRUE and outputs the model name. If the model metadata
could be removed but one of the model components could not be dropped, the system returns FALSE
and outputs a warning. For more information on granting privileges, refer to the
NZA..GRANT_MODEL Procedure section.

NZA..DROP_ALL_MODELS Procedure
The NZA..DROP_ALL_MODELS procedure drops the selected models from the database, provided the
user had been granted the DROP privilege for all models. Once run, the procedure outputs the
names of all dropped models. The procedure could also be used by the administrator to drop all
models before cleaning up metadata. If the procedure executes successfully, the system returns
TRUE. However, since the procedure calls DROP_MODEL for each individual model, the procedure
returns TRUE only if all DROP MODEL calls were successful. For more information on granting
privileges, refer to the NZA..GRANT_MODEL Procedure section.

NZA..ALTER_MODEL Procedure
The NZA..ALTER_MODEL procedure alters properties of the specified model, provided the user has
been granted the ALTER privilege for the model. At least one of the optional parameters must be
specified. Multiple properties can be modified with a single call by specifying all of the applicable
parameters.

Notes:

► The model name and owner can be changed only if the state of the model is “Complete”.

► When a model name is changed, the names of the model's managed components are changed
accordingly.

► Models that have been built using the model building procedures on the local machine get the
application name ”IBM Netezza Analytics” and the current application version which are read-
only and cannot be changed.

NZA..COPY_MODEL Procedure
The NZA..COPY_MODEL procedure copies the specified model, including all managed components
and metadata, to the current database, provided the user has been granted the SELECT privilege for
the source model. Models can be copied either from the current database or from another database.
The model is copied into the current database, with the new model name specified by the value
provided by the copy parameter. The active user is set as the owner of the copied model.

Note: Only models whose state is “Complete” can be copied.

60 00X6331-01 Rev. 2

Model Management Objects

NZA..PRINT_MODEL Procedure
The NZA..PRINT_MODEL procedure generates a formatted presentation of the specified model.

Notes:

► Only models whose state is “Complete” can be printed.

► The print function is not available for all algorithms. In the event a model cannot be printed, a
warning message is returned.

NZA..PMML_MODEL Procedure
The NZA..PMML_MODEL procedure creates a PMML representation of the analytics model and
stores it in a database table, provided the user has been granted the SELECT privilege for the model.
The resulting PMML string is split into several fragments, each stored in a separate row. Each row is
assigned a sequence ID to define the order of the rows.

Notes:

► Only models whose state is “Complete” can be converted to PMML.

► The PMML function is not available for all algorithms. In the event a model cannot be converted
to PMML, a warning message is returned.

Details
The table specified by outtable can be an existing table or a new table.

► If the specified outtable does not exist, it is created with the columns MODELNAME,
PMML_SEQ_ID, PMML.

► If the specified outtable exists, the first column with datatype NVARCHAR(n <= 128) is used to
store the model name, the first column with datatype INTEGER/SMALLINT/BIGINT is used to
store the sequence ID, and the first column with datatype NVARCHAR(n >= 1024) is used to store
the PMML fragments.

The model name column is optional for existing tables. However, a table that has no model name
column can store only one PMML model. If an existing table with a model name column already
contains a model with the same name, an exception is thrown. If an existing table without a model
name column is not empty, an exception is also thrown.

If the user has been granted the ALTER privilege as well as the SELECT privilege on the model, the
PMML table is added to the metadata of the analytics model. If the metadata already contains a
reference to a PMML table for this model, it is overwritten.

Important: PMML tables are not created/dropped automatically when a model is created/dropped.
In addition, the contents of regular components and PMML tables are not synchronized. However,
since only one PMML table reference for each model is maintained, the possibility of a large amount
of inconsistent data is minimized.

00X6331-01 Rev. 2 61

In-Database Analytics Developer's Guide

NZA..EXPORT_PMML Procedure
The NZA..EXPORT_PMML procedure exports an analytic model to a file. This can be done by either:

► exporting the analytics model as a PMML model and then saving it to a file

► exporting the analytics model as a PMML table and then saving it to a file

PMML Model to File
When exporting from a model, if there is already a PMML table for the model registered in the
metadata, the model is taken from this table and written to the file name specified. There is no need
to specify the optional outtable parameter. If there is not a registered PMML table but an outtable
was specified, the procedure first calls the PMML_MODEL procedure to create the PMML table and
then exports the model from the resulting table. If an outtable was not specified, the model is
converted and exported without using an intermediate PMML table. This method uses the following
form of the procedure:

EXPORT_PMML('<model>,<file>,[<outtable>]')

The following privileges are required:

Action Privilege

To export a model to a file LIST privilege on the model

A PMML table reference exists in the metadata SELECT privilege on this PMML table

A PMML table reference does not exist in the
metadata

SELECT privilege on the model.

PMML_MODEL is called to create the specified
outtable/ outtable is registered in the metadata as
PMML table for this model

ALTER privilege on the model

PMML Table to File
When exporting from a table, the PMML table is specified by the intable parameter. If the PMML
table contains more than one model, use the model parameter to identify the appropriate model.
This method uses the following form of the procedure:

EXPORT_PMML('<intable>,<file>,[<model>]')

In this scenario, the only privilege needed is SELECT privilege on the specified PMML table.

62 00X6331-01 Rev. 2

Model Management Objects

Security and Administration

The Metadata Management functionality provides a security layer that can be used to manage access
to models and the related metadata by users. In addition, Metadata Management provides
procedures for enabling and disabling access to metadata objects for a given database, as well as the
ability to get metadata-related information about a database.

Security
Metadata Management allows security to be applied to models. The security layer limits a user's
access rights to models and metadata. For example, a user cannot drop a model simply by dropping
its model table; instead users must use the metadata interface to manage their models.

The security mechanism for analytics models:

► Allows the definition of privileges for users or groups on models and their metadata

► Prevents a scenario where all models in the database are publicly available or are able to be
modified by any user

► Ensures that the model data is consistent with the model metadata

Privileges
Security is governed by a system of privileges that can be granted to users. A user must be granted
privileges on analytic models in order to perform operations on them. Privileges can be granted or
revoked similar to database privileges. However, the existing SQL commands GRANT and REVOKE
cannot be used for analytics models, therefore Metadata Management uses a custom set of
privileges.

There are two types of privileges. The CREATE privilege is an admin privilege, that is, it is not bound
to a specific model, since, by definition, the model does not yet exist. The remaining privileges—LIST,
SELECT, DROP, ALTER, and UPDATE—are object privileges. The object privileges are bound to a
specific model and can be granted to users and groups, including users that are not in the inza_users
group. They can also be granted to the special group “public”. The table below defines the privileges
available for analytic models:

Table 8: Model privileges

Privilege Type Description

CREATE Administrator Allows the user/group to create an analytics model.

LIST Object Allows the user/group to display a model and its
properties.

SELECT Object Allows the user/group to read the model components.

00X6331-01 Rev. 2 63

In-Database Analytics Developer's Guide

Privilege Type Description

DROP Object Allows the user/group to drop a model.

ALTER Object Allows the user/group to change the properties of a
model.

UPDATE Object Allows the user/group to change the contents of a
model.

The CREATE privilege is granted to all IBM Netezza Analytics users, that is, users that are members of
the group “inza_users”1.

When a model is created, there are no object privileges associated with it. Instead, the user who
created the model becomes the model's owner. Initially, only the model's creator (who gets all
privileges), the database owner, and the user ADMIN can view and manipulate the model. For other
users to gain access to the model, the owner, the database owner, or the user ADMIN must grant
privileges to it.

► A user who has one of the privileges SELECT, DROP, ALTER, UPDATE can list models, even if this
privilege is not granted explicitly.

► The SELECT privilege for a model is granted on/revoked from all managed components, since the
SELECT privilege allows to read these objects.

► The UPDATE privilege is not needed directly for metadata management, but rather is is needed
for stored procedures in the algorithm components that update the model contents, such as
PRUNE_DECTREE.

When a privilege is given to a user/group, it can be given “with grant option.” When the grant option
is given, the user can in turn give the privilege to other users.

Important: The security model ensures that the regular IBM Netezza Analytics user does not bring
the metadata into an inconsistent state. However, in the database, the database owner as well as the
administrator (user ADMIN) have extensive privileges that supersede the privileges granted by the
security model. As a result, it is possible for these users to change data in the tables and to make
changes in the metadata that are not allowed by the official procedures available to standard users.
Changes by these users could result in inconsistent data.

Matrices and the Security Model
Managed matrices are not included in the security model. While the security model can be thought
of as relating generally to all model components, certain privileges have no effect on matrices.
Matrices are public objects, that is, all matrix access procedures can be called by everyone on every
matrix in the database. This public access prevents the security model from being applied to them.

Important: Managed matrices have public read/write access privileges, therefore it is possible that
they can be illegally dropped or modified by any user.

1 System Administrators can add users to this group using the create_inza_db_user.sh script, typically run when
configuring a database for use with Netezza Analytics.

64 00X6331-01 Rev. 2

Security and Administration

Administration
Metadata management provides a set of procedures that can be used to enable metadata
functionality for a database. The database owner and the ADMIN user are the only privileged users
who can execute these functions. However, it is strongly recommended that while working with
other IBM Netezza Analytics functions, these highly privileged IDs not be used; regular user IDs
should be used instead.

Administrator Functions
Using the provided functions, the database owner and ADMIN user can enable metadata for a
database, disable metadata and remove metadata objects from a database, and request information
about the database, including whether the database is enabled for metadata use and, if so, its
metadata version. For more detailed information, refer to the Metadata Administration Objects
section.

In addition, these users have the ability to grant and revoke privileges for other users. While standard
users can be granted these privileges, only the database owner and ADMIN user can be guaranteed
to have this ability. For more detailed information, refer to the Model Security Objects section.

Dropped Users
In the event that the user who is recorded as the owner of a model is dropped from the database,
the V_NZA_MODELS view shows the name of the dropped user as the owner until a new owner is
assigned. In that event, a new owner must be set using a valid, active user name. Refer to the
NZA..ALTER_MODEL Procedure section.

Database Cleanup
Over the course of time, delete and update commands on the metadata tables produce unused
records. While the number of such records is likely to be low, the administrator can reclaim this space
using the GROOM command, if desired.

Migration
When new releases of IBM Netezza Analytics become available, updated or new functionality, either
in Metadata Management or in the Model Components, may affect the metadata tables. In this
event, migration from one metadata version to another is required.

Note: Typically, metadata procedures check for the correct initialization of metadata before
executing. Therefore, if metadata migration is required, the Metadata Management module issues a
warning message.

Migration is initiated by calling the NZA..INITIALIZE procedure, which migrates the metadata tables.
To perform migration, the user must have the ALTER model privilege. For more information, refer to
the NZA..INITIALIZE Procedure section.

Since different databases with different formats of metadata or model components can exist in
parallel, migration is performed independently per database.

00X6331-01 Rev. 2 65

In-Database Analytics Developer's Guide

WARNING: If the old data is needed, the user must copy the model before migration occurs.
Otherwise the data will be lost.

While the typical scenario is to migrate from the release that immediately preceded the current
release, it is possible that migration may be necessary from older releases. For example, if a user has
release 2.0 and now installs release 4.0, the process is to perform a migration from the 2.0 format to
the 3.0 format, the another migration from the 3.0 format to the 4.0 format.

Concurrency
The Netezza database supports only the isolation level SERIALIZABLE. This isolation level limits the
concurrency of transactions. If two transactions read and write to the same database table, it is
possible that the younger transaction aborts with the error:

ERROR: <your database>.ADMIN.<a table> : Could not serialize - transaction
aborted
Since the algorithm and metadata management procedures use the same set of metadata tables, this
error can also happen when IBM Netezza Analytics procedures are called.

Note that the error can only happen if two IBM Netezza Analytics procedures work with models in
the same database. If different databases are used (each database has its own set of metadata
tables), this error cannot occur.

If you see this error message, you can:

► Run your procedure at a later time.

► Switch off serialization checking for the current session. To do so, enter the following on the
command line (this command should be run outside of a transaction):

set serializable = false;

NZA..MIGRATE_MODEL Procedure
The NZA..MIGRATE_MODEL procedure migrates the components of a model that was created in a
previous version of Netezza Analytics to the format of the current version. Model components are,
for example, tables, views, and matrices. If the migration is not needed, the procedure does not
migrate the components and shows an appropriate message.

If a procedure that uses a model detects that the model must be migrated before it can be
processed, you get the following message:

The model <model-name> is stored in an older format that is not supported
(Format Version = 1.0). Call MIGRATE_MODEL to convert this model to the
latest format.

The MIGRATE_MODEL procedure does not migrate the metadata of models but only the model
components. The migration of the metadata for all databases and models is done by the script
update_inza_dbs.sh. Typically, this script is run during the upgrade of Netezza Analytic. You can,
however, also call the script manually.

NZA..REGISTER_MODEL Procedure
With the NZA..REGISTER_MODEL procedure, you can register a model that was created by using IBM

66 00X6331-01 Rev. 2

Security and Administration

Netezza Analytics 1.x so that you can use it with Netezza Analytics 2.x Metadata Management.

Take this procedure before you work with IBM Netezza Analytics 3.x because a direct registration to
IBM Netezza Analytics 3.x is not supported.

To register a model, you must have been granted the SELECT privilege on the previous model tables.

Before registration is done, the appropriate database must be initialized. Once initialized, the
procedure must be called separately for each model. In addition, it is important that the procedure
uses the same parameters used to create the model originally. The procedure assumes that the
model was created using the algorithm specified by the procedure parameter and checks only for
correct parameters and the availability of the underlying tables.

If the value of a parameter is not known, a question mark (?) can be specified if the default should
not be used.

The original tables and matrices are not modified. Once under model management control, the caller
of the function is added as the creator and owner of the model.

Note: FP-GROWTH models cannot be migrated to ARULE models and therefore cannot be registered.

Example
call nza..register_model('procedure=DIVCLUSTER, model=divcluster_adult,
intable=nza..adult, outtable=divcluster_adult_out,id=id, target=income,
distance=euclidean, maxiter=5, minsplit=30, maxdepth=3,randseed=12345');

The parameter values provided are not validated against the model. Using the example above, if
distance was set to Manhattan when the model was created (instead of Euclidean), registration will
be incorrect.

Model Security Objects

For setting model Security, the following stored procedures are defined:

► Stored Procedures

▲ NZA..GRANT_MODEL Procedure

▲ NZA..REVOKE_MODEL Procedure

▲ NZA..LIST_PRIVILEGES Procedure

NZA..GRANT_MODEL Procedure
The NZA..GRANT_MODEL procedure grants one or more privileges on a model to one or more users
or groups. At least one user or group must be specified.

00X6331-01 Rev. 2 67

In-Database Analytics Developer's Guide

NZA..REVOKE_MODEL Procedure
The NZA..REVOKE_MODEL procedure revokes a privilege on a model from users or groups. For a list
of valid values to use with the privilege parameter, see Table 8 in the Privileges section.

NZA..LIST_PRIVILEGES Procedure
The NZA..LIST_PRIVILEGES procedure lists either the object privileges or grant permissions for the
specified user. If no user is specified, the procedure lists privileges for all users, provided the
requesting user has permissions to view the privilege list. The grant parameter of the procedure
controls whether object (the default) or grant permissions are displayed. To display grant privileges:

NZA..LIST_PRIVILEGES('grant=true')

The output columns are USERNAME, MODELNAME, and PERMISSIONS.

Notes:

► Only the effective privileges are listed; individual user or group privileges are not shown.

► To view privileges, the user must have select access on the system view _V_SYS_PRIV.

► Privileges of the ADMIN user are not shown, since this user always has all privileges.

Metadata Administration Objects

For performing model administration, the following stored procedures are defined:

► NZA..INITIALIZE Procedure

► METADATA_VERSION Procedure

► NZA..IS_INITIALIZED Procedure

► NZA..CLEANUP() Procedure

NZA..INITIALIZE Procedure
The NZA..INITIALIZE() procedure is called to enable a database for the analytic functions and creates
all database objects needed to manage the metadata for the analytic models. It is called when a new
database for IBM Netezza Analytics is set up during the execution of the create_inza_db.sh script. In
addition, calling the NZA..INITIALIZE procedure manually can initiate a migration from one metadata
version to another, if needed. For more information, refer to the Migration section.

METADATA_VERSION Procedure
The METADATA_VERSION() procedure is used to determine the version of the metadata objects used
in the current database. It is generated in the current database when the INITIALIZE() procedure is
applied on it. If the metadata has not been initialized, this procedure does not exist.

68 00X6331-01 Rev. 2

Metadata Administration Objects

NZA..IS_INITIALIZED Procedure
The NZA..IS_INITIALIZED() procedure determines if the metadata objects have been created in the
specified database. The procedure also check whether the version of the metadata objects is as
expected.

NZA..CLEANUP() Procedure
The NZA..CLEANUP() procedure drops all metadata objects in the current database. To successfully
clean up the metadata objects, all metadata tables must be empty. If the tables are not empty,
NZA..DROP_ALL_MODELS() must be called to delete all models. For more information, refer to the
NZA..DROP_ALL_MODELS Procedure section.

00X6331-01 Rev. 2 69

C H A P T E R 6
Data Exploration

Background

Data exploration algorithms constitute a collection of useful computational techniques used in
virtually all data mining projects to become familiar with the data. This section reviews those
available in the IBM Netezza In-Database Analytics package.

The data exploration algorithms can be divided into the following categories:

► distribution description

► relationship identification

The distribution description category consists of algorithms used to describe the empirical
distribution of single attributes or the joint distribution of multiple—usually two—attributes.
Algorithms in the relationship identification category detect and quantify relationships between
attributes. These algorithms are standard and widely known. The adopted definitions of all calculated
quantities are provided in the subsections below. Implementation-specific details are covered, if
necessary, when presenting the available functions and usage examples.

Moments
Moments are quantities used to describe certain aspects of continuous attribute distributions. Of
particular interest are the central moments or moments around the mean. The kth central moment is
the mean of differences between attribute values and the attribute mean raised to the power of k ,
which for an attribute a and data set D can be written as:

a ,k D =
1
∣D∣∑x∈D

 a  x −ma  D  
k

 (6)

Where:

00X6331-01 Rev. 2 71

In-Database Analytics Developer's Guide

ma D=
1
∣D∣∑x∈D

a x  (7)

is the mean value of attribute a in data set D , the basic location measure. Notice that the 0th
central moment is 1 and the 1st central moment is 0, which means that only k ≥ 2 central moments
actually say something about the data. In practice, k∈{2,3, 4} is used.

The 2nd central moment is the variance, which measures the dispersion of the distribution. The 3rd
and 4th central moments are usually used in a standardized form, that is, divided by the
corresponding power (3 or 4, respectively) of the standard deviation. The 3rd standardized central
moment is called the skewness and serves as a common distribution asymmetry measure:

skewaD =
a , 3D

sa
3
D 

 (8)

where sa D is the standard deviation of attribute a on data set D . It takes a value of 0 for
symmetrical distributions, negative values for a longer left tail, and positive values for a longer right
tail.

The 4th standardized central moment is the kurtosis and serves as a measure of distribution
peakedness. Typically, a constant of 3 is subtracted from the 4th standardized central moment in a
kurtosis calculation, with the result sometimes referred to as excess kurtosis:

kurta D =
a , 4D 

sa
4
D 

−3 (9)

This correction makes the kurtosis of a normal distribution equal to 0. It is negative for distributions
flatter than normal and positive for distributions more peaked than normal.

Quantiles
Quantiles constitute a convenient and intuitive description of continuous attribute distribution that
allow observation of location, dispersion, and asymmetry. Quantiles of a continuous attribute are
values from its range taken at regular intervals of its cumulative distribution. The quantile of order
p∈ [0, 1] of attribute a on data set D can be defined as a value q p satisfying the following

conditions:

∣D a p∣

∣D∣
≤ p (10)

72 00X6331-01 Rev. 2

Background

∣D a≤ p∣

∣D∣
≥ p (11)

where Dap and Da≤p denote the subsets of D where the inequality in the subscript is satisfied by
the values of attribute a . Informally, the order p quantile of an attribute is a value that cuts off the
lower p⋅100 % of instances in the data set with respect to the attribute’s values. The order 0.5
quantile is also known as the median, which partitions the data set into halves, and the 0.25, 0.5, and
0.75 order quantiles are called the quartiles, which partition the data set into quarters, with the first,
second, and third designated as q1 , q 2 , q3 , respectively. Other common special cases include:

► deciles—quantiles of order 0.1, 0.2,..., 0.9

► percentiles—quantiles of order 0.01, 0.02,..., 0.99

When using quartiles, the second quartile q2 , also known as the median, serves as a location
measure; the difference between the third and the first quartile q3−q1 called the inter-quartile
range serves as a dispersion measure; and the following ratio, called the quartile skewness, can be
used as an asymmetry measure:

q3−q2−q2−q1

q3−q1

 (12)

Outlier Detection

It is common to apply the following quartile-based outlier detection criteria:

a x   q1 −q3−q1 (13)

a x   q3 q3−q1 (14)

These report the value of attribute a for instance x as outlying if it is below the first quartile or
above the third quartile by more than the inter-quartile range multiplied by a coefficient a , which
controls the aggressiveness of outlier detection. A commonly-used value for this parameter is 1.5.

Frequency Table
A univariate frequency table describes the distribution of a discrete attribute by providing the
occurrence count for each unique value. A bivariate frequency table similarly describes the joint
probability distribution of two discrete attributes, by providing the occurrence count for each distinct
combination of their values.

00X6331-01 Rev. 2 73

In-Database Analytics Developer's Guide

Histogram
A histogram is a frequency table counterpart for continuous attributes. Although usually presented
visually as a graph, it can be considered a table providing occurrence counts for a series of disjoint
intervals covering the range of the attribute. The intervals can be of equal or inequal width. The
number of intervals and their boundaries can be specified manually to ensure the histogram is most
meaningful and readable, or adjusted automatically to the distribution.

Pearson’s Correlation
Pearson’s correlation coefficient, also known as the linear correlation coefficient, measures the
degree of linear relationship between two continuous attributes. For attributes a1 and a 2 it is
calculated on data set D as follows:

corPa1 ,a2
D=

∑x∈D  a1  x −ma1
 D    a2  x −ma 2

 D  

∑x∈D  a1  x −ma1
 D  

2
∑x∈D  a2  x −ma 2

 D  
2 (15)

where ma 1
D and ma 2

D  denote the mean values of attributes a1 and a 2 on data set D ,
respectively. In practical terms, it measures how close the data points are to a straight line in the
two-dimensional space of a1 and a 2 .

The linear correlation coefficient falls in the [−1,1] interval, with absolute values approaching 1
denoting nearly linear relationships, absolute values above 0.7 usually considered to indicate strong
relationships, and absolute values below 0.3 usually considered to indicate no relationship. The sign
of the correlation coefficient indicates whether the relationship is increasing (positive correlation:
when one attribute increases the other tends to increase) or decreasing (negative correlation: when
one attribute increases the other tends to decrease).

Spearman’s Correlation
When searching for relationships between attributes, there may be an interest in nonlinear
relationships that appear weak according to Pearson’s correlation, but may actually be strong. One
way to detect them is to use Spearman’s correlation coefficient, also known as the rank correlation
coefficient, which measures the degree of monotonic relationship between two continuous
attributes. For attributes a1 and a 2 it is calculated on data set D as follows:

corSa1 , a2
D=1−

6∑x∈D  ra1
 x −ra 2

 x  
2

∣D∣∣D∣2−1
 (16)

where r a1
 x and r a2

x  denote the ordinal number rank of instance x in relation to attributes a1
and a 2 , respectively.

Unlike linear correlation it is ordering and not the attribute values that impact rank correlation. The

74 00X6331-01 Rev. 2

Background

rank correlation coefficient falls in the [−1,1] interval, with absolute values approaching 1 denoting
nearly linear relationships, absolute values above 0.7 usually considered to indicate strong
relationships, and absolute values below 0.3 usually considered to indicate no relationship. The sign
of the correlation coefficient indicates whether the relationship is increasing (positive correlation:
when one attribute increases the other tends to increase) or decreasing (negative correlation: when
one attribute increases the other tends to decrease).

Covariance
The covariance for a pair of continuous attributes provides a dependency measure that is similar and
closely related to the linear correlation. The formula for calculating the covariance of attributes a1
and a 2 on data set D is:

cova1 ,a 2
D  =

1
∣D∣−1

∑
x∈D

a1  x −ma 1
 D   a2  x −ma2

 D   (17)

which can be seen to relate to the corresponding Pearson’s correlation coefficient defined above as
follows:

cova1 ,a 2
D  = corSa1 ,a 2

D sa1
D  sa 2

D  (18)

Where sa 1
D  and sa 2

D  are the standard deviations of attributes a1 and a 2 , respectively, on data
set D .

It is common to calculate and use a covariance matrix for a set of n continuous attributes
a1 , a2 , ... , an , which is an n×n matrix containing the covariance for each pair of attributes from this

set. The covariance matrix is a convenient way to detect and describe linear relationships within a set
of attributes. Consider the covariance matrix for two sets of attributes, ai 1

, ai 2
, ... , ai m

 and
a j 1

, a j 2
,... ,a jn

. It is an m×n matrix containing the covariance for each pair of attributes ai k
, a j l

,
where k=1,2, ... ,m; l=1, 2,... , n .

Mutual Information
The mutual information is an information theory-based dependence measure intended for discrete
attributes. For attributes a1 and a 2 , it is calculated on data set D as follows:

I a1 , a2
D =∑

v1∈A1

∑
v2∈A2

P a1  x =v1 , a2  x =v2 

⋅log
P a1  x =v1 , a2  x =v2 

P  a1  x =v1  P a2  x =v2 

 (19)

where the base of the logarithm can be arbitrary, but is usually taken as 2, and the probabilities are

00X6331-01 Rev. 2 75

In-Database Analytics Developer's Guide

estimated from data set D based on value occurrence counts:

P  a1  x =v1  =
∣Da1= v1

∣

∣D∣
 (20)

P  a1  x =v1 =
∣Da 2=v2

∣

∣D∣
 (21)

P  a1  x =v1 , a2  x =v2  =
∣Da 1=v1

∩Da 2=v2
∣

∣D∣
 (22)

By putting a condition in a subscript to a data set here and thereafter we refer to the subset
satisfying the condition. The quantity measures the information about one attribute that is contained
in the other. It is non-negative, equal to 0 for independent attributes, and symmetric.

Conditional Entropy
The conditional entropy is an information theory-based unidirectional dependence measure
intended for discrete attributes. For attributes a1

given a2
, it is calculated on data set D as follows:

H a1∨a2
(D)=∑

v1∈A1

∑
v2∈A2

P (a1 (x)=v1 , a2 (x)=v2)

¿ l o g
P (a2 (x)=v 2)

P (a1 (x)=v1 , a2 (x)=v2)

 (23)

The entropy can be considered as a measure of variation of an attribute in the data set. The
conditional entropy is then a measure of how the first variable varies if we keep the second fixed.

Chi-Square Test
The chi-square (or “ 2 ”) test is used to detect statistically significant relationships between discrete
attributes. The formula for calculating the 2 statistic for attributes a1 and a2 on data set D can
be written as:

a1 ,a 2

2
D = ∑

v1∈A1

∑
v2∈A2

∣Da1=v1 ,a 2=v2
∣− Ea1=v1 , a2=v2


2

E a1=v1 , a2=v2

 (24)

76 00X6331-01 Rev. 2

Background

Where Da 1=v1 , a2=v2
 is the subset of D with the value of a1 equal v1 and the value of a2 equal

v2 , and Ea1= v1 ,a 2=v2
 is the expected number of such instances under the null hypothesis of no

relationship between the attributes. This expected number is calculated as:

Ea1= v1 ,a 2=v 2
=
∣Da1=v 1

∣⋅∣Da 2=v2
∣

∣D∣
 (25)

where Da 1=v1
 and Da 2=v2

 denote the subsets of D with the conditions from the subscripts
satisfied. The statistic accumulates the discrepancies between the actual and expected numbers of
attribute value associations, standardized by dividing by the expected value. It is large whenever the
actual numbers differ from the expected ones substantially, which is unlikely under the null
hypothesis of no relationship.

The 2 statistic is a random variable approximately following the 2 distribution. It can be used to
determine the p -value (“right tail”), which is the probability of obtaining a 2 statistic value at
least as large as actually calculated assuming the null hypothesis. If sufficiently low, typically, 0.05 or
0.01, it is considered justification for rejecting the null hypothesis. Alternatively, the corresponding
value of the cumulative distribution function can be determined and used to reject the null
hypothesis if sufficiently close to 1.

t-Test

A t -test is any statistical hypothesis test in which the test statistic follows a Student's t distribution, if

the null hypothesis is supported.

When a test statistics follows the normal distribution and we know apriori the standard deviation
(scaling term) of this statistic, then the hypothesis would be tested using the normal distribution.

However, what is most frequently encountered, we have to estimate the standard deviation of the
test statistics based on the sample, then the test statistic (under certain conditions) follows a
student's t distribution. Student’s t -test comes in a number of variations, depending on the intended

application:

► a single mean

► unpaired (for two means)

► paired

► for a regression line slope

These tests are applicable to normally distributed attributes only and using them for attributes with
other distributions may lead to unreliable conclusions.

The t -test for a single mean tests the null hypothesis of the mean attribute value in the whole
domain being equal to a specified theoretical value  , based on the observed mean and variance in
the data set. The underlying statistic is calculated as:

00X6331-01 Rev. 2 77

In-Database Analytics Developer's Guide

t a , D  =
ma D −

sa D

∣D∣
 (26)

where ma D and saD  are the mean and standard deviation of attribute a on data set D .

The unpaired t -test is used to test the hypothesis of the mean attribute value in two sub-domains
being equal based on their observed means and variance in the two corresponding subsets of the
data sets. Both the sub-domains and the corresponding data subsets are also called groups. Typically,
the partitioning into two groups is represented by two values of another discrete attribute. The
statistic is calculated according to the following formula:

t aD 1 , D2 =
ma D1 −ma D2

 sa
2D1

∣D1∣


sa
2D2

∣D2∣

 (27)

where ma D1 and saD1 are the mean and standard deviation of attribute a on subset D1 ,
and ma D2 and saD 2 are the mean and standard deviation of attribute a on subset D2 ,
respectively.

The paired t -test considers two attributes and a single data set to test the null hypothesis of the
mean difference between the two attributes across the whole domain being 0. This is equivalent to
the t -test for a single mean applied to a new attribute defined as the difference of the original two
attributes:

t a1 ,a2
D =

ma1−a 2
D 

Sa1−a2
D

∣D∣

 (28)

where ma 1−a2
D  and sa1−a2

D denote the mean and standard deviation of differences between
a1 and a2 on data set D .

The t -test for a regression line slope is used to test the null hypothesis that two continuous
attributes are linearly related with a given slope coefficient  . For the application of this test, a
regression line a2 x=ba1x v for two attributes a1 and a2 is using data set D , which yields
an estimated slope coefficient ba1 , a2

D and intercept va 1 , a2
D  calculated as:

ba1 , a2
D =

∑x∈D  a1  x  −ma 1
 D   a2  x  − ma 2

 D  

∑x∈D  a1  x −ma1
 D  

2 (29)

78 00X6331-01 Rev. 2

Background

va 1 , a2
D  = ma2

D − ba1 , a2
Dma 1

D (30)

Then the estimated slope coefficient is compared to the theoretical one,  , to achieve the following
test statistic:

t a1 ,a2 , D =
ba1 , a2

D − 

sb a1,a 2

D 
 (31)

where ma 1
D  and ma 2

D are the means values of attributes a1 and a2 on D , and:

sba
1
, a

2

D =
1

∣D∣−2∑x∈d  a2  x  − ba1 , a2
 D  a1  x   v a1 , a2

 D   
∑x∈D  a1  x  −ma 1

 D  
 (32)

is the standard deviation of the estimated slope coefficient.

All these t statistics can be considered random variables with different realizations for different data
sets from the same domain following Student’s distribution. These variables can be used to
determine the p -values or cumulative distribution function values on which to base the decision to
accept or reject the null hypotheses. A sufficiently low p -value—typically, 0.05 or 0.01—justifies
rejecting the null hypothesis. Likewise, cumulative distribution function values sufficiently close to 0
or 1 justify rejecting the null hypothesis. This has the additional advantage of specifying whether the
obtained test statistic appeared unlikely low or unlikely high according to the distribution assuming
the null hypothesis.

Mann-Whitney-Wilcoxon Test
The Mann-Whitney-Wilcoxon test is a non-parametric counterpart of the unpaired t -test. It is used
to verify the hypothesis that the locations of a continuous attribute differ significantly in two sub-
domains based on the observed differences of their location in the corresponding two data subsets.
As with the unpaired t -test, the partitioning into two groups is usually represented by two values of
a discrete attribute.

The hypothesis is tested without making any assumptions on their distributions. It is possible by
defining a test statistic that does not directly depend on attribute values, but rather on their
ordering, which is similar in spirit to Spearman’s rank correlation. It is calculated for attribute a
based on data subsets D1 and D2 as follows:

uaD1 , D2 = ∑
x1∈D1

∣{x2∈D2∣ a x2a x1}∣
1
2 ∣{x2∈D2 ∣a  x2=a x1}∣ (33)

For each instance from the first subset, the test counts the number of instances in the second subset

00X6331-01 Rev. 2 79

In-Database Analytics Developer's Guide

for which the value of attribute a is less than or equal to the value of attribute a of the first subset.
Cases where the value is equal, are weighted with ½. If the statistic approaches its minimum or
maximum values—0 and ∣D1∣⋅∣D2∣ , respectively—it indicates a strong location difference that is likely
to occur not only for the observed data sets, but also for the whole corresponding sub-domains The
distribution of the Mann-Whitney-Wilcoxon statistic, necessary to determine the p -values or
cumulative distribution function values used for rejecting or accepting the null hypothesis of no
location difference, is tabulated for small data sets and approximated by a normal distribution for
larger data sets.

Wilcoxon Test
The Wilcoxon test is related to the paired t -test in the same way as the Mann-Whitney-Wilcoxon
test is related to the unpaired t -test. It is a non-parametric approach to testing the hypothesis that
two continuous attributes do not differ significantly, that is their median difference in the whole
domain is 0. The underlying Wilcoxon statistic. also known as the signed rank statistic, is calculated
for attributes a1 and a2 on data set D as follows:

wa1 ,a 2
D = ∑

x∈{ x'∈D∣a 2 x' a1 x' }

r a1−a2
 x (34)

where r a1−a 2
x  is the rank of instance x with respect to the absolute difference between a1 and

a2 , that is, ∣a1 x −a2 x∣ . The formula sums the ranks for all instances where the value of the
second attribute is less than the value of the first attribute. The distribution of the statistic is
tabulated for small data sets and approximated by a normal distribution for larger data sets.

Canonical Correlation
Just as Pearson’s correlation measures the degree of linear relationship between two attributes, the
canonical correlation measures the degree of linear correlation between two sets of attributes, that
is, it looks for many-to-many rather than one-to-one dependencies. Consider two sets of attributes,
a i1

, ai 2
, ... , a im

 and a j1
, a j2

, ... , a j n
. So called canonical variates are identified for these sets, which

are new attributes formed as linear combinations of the original attributes:

u x  =∑
k=1

m

ik
a ik
x (35)

v  x =∑
k=1

n

 j k
a jk
 x (36)

where the coefficients of these linear combinations, αi1
, αi 2

, ... , αim
 and α j1

, α j2
, ... , α jn

, are called
canonical coefficients. They are chosen so as to maximize the linear correlation between the

80 00X6331-01 Rev. 2

Background

canonical variates on the analyzed data set D , corSu ,v D  . The maximum achieved linear
correlation between the canonical variates is the canonical correlation between the two attribute
sets:

corCa i
1
,... ,a i

m
; a j

1
,... , a j

n

(D)= max
ai

1
,... , ai

m
; a j

1
, ... , a j

n

corSu , v (D) (37)

One-Way ANOVA
The one-way ANOVA (ANalysis Of VAriance) can be considered an extension of the unpaired t -test
for two means that can compare the means in more than two groups. The underlying statistical test,
called the F -test, is equivalent to the t -test in the case of two groups with the F statistic equal to
the square of the corresponding t statistic. In practice, the one-way ANOVA is applied whenever
there are at least three groups to consider. As with the basic t -test, a single continuous attribute is
considered, for which location differences in subgroups are to be detected.

Apart from the extension to more than two groups, the one-way ANOVA can take into account
experimental design. This term refers to one common application of the one-way ANOVA to
experimentally analyze the effects of some treatments to a set of experimental units or subjects.
Treatments determine the grouping, as each possible treatment corresponds to one group.
Experimental units are represented by instances in the data set, with the analyzed continuous
attribute representing the effects of particular treatments observed for particular units. In this
setting, the experimental design determines how treatments are assigned to particular units, that is,
how the grouping is performed. In other words, the experimental design represents information
about the procedure used to collect the analyzed data that is taken into account in the analysis.

Two common experimental designs are the completely randomized design (CRD) and the random
block design (RBD). The CRD is the simplest design assuming that treatments are assigned to
experimental units at random. Groups do not need to be of equal size, but there can be no factors in
the experiment that affect the likelihood of a particular treatment being assigned to a particular unit.
In the more complex random block design, it is assumed that experimental units are arranged into a
number of blocks of the same size, equal to the number of possible treatments, according to some
factor that is suspected to impact the treatment effects. Units from each block are randomly
assigned to different treatments. This approach “filters out” the possible impact of the factor used
for blocking, by making sure that treatments are randomly assigned within the blocks. Discrete
attributes in the analyzed dataset are represented by the grouping or treatment in either case, and
by the blocking for the RBD design.

Multivariate Analysis of Variance (MANOVA)
MANOVA is a statistical procedure to compare multivariate variance models for different groups of
input data. It is a generalization of One-Way ANOVA , whereas not only a single variable but multiple
dependent variables are supported.

Similar to ANOVA, MANOVA is often used to measure the effects of treatments for a group of
subjects or experimental units. A typical example is to show different versions of a website to
different user groups to measure different quantities for each user. A quantity is, for example, the

00X6331-01 Rev. 2 81

In-Database Analytics Developer's Guide

time that the user spent on the website or the number of purchases. The results are then analyzed to
find out whether these quantities significantly differ for each of the user groups.

MANOVA is most suitable for several dependent variables that are moderately correlated. If the
dependent variables are too highly correlated, that is, they are measuring the same effect, it would
be better to use a single ANOVA model. If the dependent variables are uncorrelated, you could apply
a set of pair-wise ANOVAs to measure each effect independently.

In general, you can get the following information by using the MANOVA procedure:

► If there are interactions among the dependent variables

► If there are interactions among the independent variables

► If changes in the independent variables significantly affect the dependent variables

The MANOVA algorithm is based on the test for equality of location parameters in the group of k
samples. The test is done under the following assumption:

Y i∼N p(μi ,Σ)i.i.d. ,Σ>0

where:

► Each sample i is independently drawn from the p dimensional multivariate normal distribution
with the sample-specific mean vector μi

► Each sample i consists of ni multivariate observations (column vectors) that are

denoted by y i , j , where 1⩽ j⩽n i

► All groups share the common covariance matrix Σ

► Matrix Σ is non-singular

Requirements and assumptions for the computation
The following conditions apply to the computation:

► As the test is based on the comparison of covariance estimators, the computational
procedure requires the following formula to start the computation:

∑
i=1

k

ni⩾ p

► For the description of the statistical tests and test procedures, the following
notations are used:

▲ N=∑
i=1

k

n i

▲ μ̂i=
1
n i
∑
j=1

nk

y i , j

▲ μ̂=
1
N
∑
i=1

k

∑
j=1

nk

y i , j

▲ E=∑
i=1

k

∑
j=1

nk

(y i , j−μ̂i)(yi , j−μ̂i)
T

82 00X6331-01 Rev. 2

Background

▲ H=∑
i=1

k

ni (μ̂−μ̂i)(μ̂−μ̂i)
T

► The k-sample tests for equality of location parameters test the following hypothesis:

{H 0 :μ1=...=μk

H A:∃i≠ jμi≠μ j
}

► According to the assumptions, matrix E and matrix H are independent and
distributed through the Wishart distribution in the following way:

▲ Independent from H 0 : E∼W p(Σ ,νE)

▲ Under H 0 : H∼W p(Σ , νH)

▲ With the following degrees of freedom:
νE=N−k ,
νH=k−1

► Under H A , matrix H is distributed through the non-central Wishart distribution.

► The tests for the H_0 hypothesis and the H_A hypothesis are:

▲ Wilks' test

▲ Roy's test

▲ Pillai's test

▲ Hotelling's test

These tests are based on matrix H and matrix E. The test statistics can be
expressed in terms of the eigenvalues and eigenvectors of matrix A.

Matrix A is defined as follows:

A=E−1 H
► To ensure numerical stability, the eigenproblem of matrix A

(A−λi I)q i=0
is reformulated to a generalized eigenproblem of matrix H and matrix E
(E−1 H−λi I)qi=0⇔(H−λ i E)qi=0

► The solution of the generalized eigenproblem is represented in the following way:
λ1⩾...⩾λ p

Wilks' test
Wilks' lambda distribution Λ is defined as follows:

Λ=
∣E∣

∣H+E∣
=∏

i=1

p
1

1+λ i

Under the null hypothesis (H 0), the test statistics follow Wilks' lambda distribution:

Λ∼Λ(p ,νE ,νH)

You can compute Wilks' lambda distribution by using the following schemes:

► Bartlett's approximation

00X6331-01 Rev. 2 83

In-Database Analytics Developer's Guide

► Rao's F approximation

► Exact F-distribution when constraints concerning p ,νE ,νH are met.

For the description of approximation schemes, the following notation is used:

f =νE−
p−νH+1

2

For the different approximation schemes, the following notations are used:

► Bartlett's approximation
− f log(Λ (p ,νE ,νH))∼χ

2
[p νH]

The degree of accuracy of three decimal places for the approximation is reached when

p2
+νH

2
⩽
1
3

f

Tip: Use Bartlett's approximation instead of Rao's F approximation if this degree of accuracy is
reached, given that neither p nor νH are equal 1 or 2.

► Rao's F approximation

d={√ (p νH)
2
−4

p2
+νH

2
−5

if p2
+νH

2
−5≠0

1 otherwise
}

λ=
p νH−2

4
The asymptotic distribution of Λ(p , νE , νH) can be expressed as follows:

(
1−d√Λ(p ,νE ,νH)

d√Λ(p ,νE , νH)
)(

f d−2 λ
p νH

)∼F (p νH , f d−2 λ)

When p2
+νH

2
−5=0⇔ p νH=2 or νH= p=1 , the expression is reduced to the exact

distribution. If p = 1, or if p = 2, or if νH = 1, or if νH = 2, the following numerical
simplifications are made:

Roy's test
The test statistics is defined as follows:

84 00X6331-01 Rev. 2

Background

θ=
λ1

1+λ1

However, because the approximations of the θ distriution are not satisfactory, the upper bound
on the distribution of λ1 is considered instead.

Let d=max (p ,νH) under H 0 be F upper=
(νE−d−1)λ1

d
∼F [d ,νE−d−1] , where

F upper is a conservative approximation. That means, if H 0 is accepted by using
F upper , the exact test that is based on θ , would also accept H 0 .

Pillai's test
The following notation is used:

s=min(νH , p)

m=
1
2
(∣νH− p∣−1)

M=
1
2
(νE−p−1)

The test statistics is defined as follows:

V= trace[(E+H)−1 H]=∑
i=1

s λi

1+λ i

The approximate distribution under H 0 is as follows:

(2M+s+1)V
(2m+s+1)(s−V)

∼F [s (2m+s+1) , s (2M+s+1)]

Hotelling's test
The following notation is used:

s=min(νH , p)
a= p νH

B=
(νE+νH− p−1)(νE−1)

(νE−p−3)(νE− p)

b=4+
a+2
B−1

c=
a (b−2)

b (νE− p−1)

The test statistics is defined as follows:

U=trace [E−1 H]=∑
i=1

s

λ i

The approximate distribution under H 0 is as follows:

00X6331-01 Rev. 2 85

In-Database Analytics Developer's Guide

U
c
∼F [a , b]

When νH=1 (two sample comparison), the test statistic distribution is reduced to the exact
Hotelling distribution. You can transform the Hotelling distribution to the F distribution by using the
following algorithm:

νE− p+1

p
U∼F [p ,νE− p+1]

Principal Component Analysis
Principal component analysis (PCA) is an analytical procedure based on an orthogonal linear data
transformation to a new representation space. It can be thought of as replacing the original
attributes by new attributes, called principal components, which correspond to the directions in the
original attribute space exhibiting the greatest variance. The number of principal components used is
at most equal to the number of original attributes, but it is often considerably less, since one of
common motivations behind PCA is dimensionality reduction.

Principle component analysis, being strongly based on linear algebra calculations, can be directly
applied to numerical data only. Data sets containing discrete attributes need to undergo
preprocessing that numerically encodes their discrete values. With all attributes being continuous,
the data set D can represented by a matrix A , with rows corresponding to n attributes and
columns corresponding to ∣D∣ instances (this is a typical convention adopted for PCA, although it is
not consistent with the view of data sets as tables with rows representing instances and column
representing attributes). Principal component analysis involves the following major operations
performed on such a data matrix:

► calculating row means u [i] for i=1,2, , n that is, attribute value means for each attribute,
based on its values for all instances)

► calculating the deviations of data matrix elements from the row means, B [i , j]=A[i , j]−u [i]

► calculating the covariance matrix C=
1
∣D∣

B⋅BT

► calculating the eigenvectors and eigenvalues of the unbiased covariance matrix estimator such
that V−1

⋅C⋅V=E , where V is the matrix of eigenvectors and E is the diagonal matrix of
eigenvalues of C

► sorting the columns of the V and E matrices in the decreasing order of eigenvalues

► (optionally) trimming the V and E matrices to a selected number of highest eigenvalues and
the corresponding eigenvectors, to be used as basis vectors for a new representation space

► finding projection to the selected eigenvectors

The obtained eigenvectors – which are the principal components that were looked for – can be
considered transformed attribute value vectors in a new representation space (also called feature
vectors). If not all eigenvectors are selected, this results in dimensionality reduction.

Corresponding eigenvectors and eigenvalues could also be computed using Singular Value

86 00X6331-01 Rev. 2

Background

Decomposition algorithm, which provides a more stable but significantly slower and much more
memory-consuming alternative to the procedure presented above.

PCA can be considered an advanced data exploration algorithm used to find patterns in the data and
identify a transformed data representation that highlights this patterns. Whereas simple data
exploration algorithms may be sufficient for exploring single attributes or pairs of attributes, the
utility of PCA most clearly manifests itself for multidimensional data (with several attributes), where
these simple algorithms are not sufficient. If the analyzed data set does indeed exhibit strong
patterns, the new representation obtained using PCA can be considerably compressed by
dimensionality reduction, without a significant information loss. This makes it possible to also
consider PCA a powerful data transformation technique that can be applied prior to further analytical
work. Areas where this technique has proven particularly useful are those where high-dimensional
data sets are encountered, including text mining, image analysis, biological data analysis, customer
preference and taste analysis (collaborative filtering), etc.

Available Functionality

The following distribution description algorithms are available:

► moments— the MOMENTS stored procedure is used for calculating distribution moments and
related summary statistics for continuous attributes, such as mean, variance, standard deviation,
skewness, excess kurtosis, minimum, and maximum.

► quantiles— the QUANTILE, QUARTILE, and MEDIAN stored procedures are used for calculating
distribution quantiles and related summary statistics for continuous attributes.

► outlier detection—the OUTLIERS stored procedure is used for detecting outlying values of
continuous attributes based on quartiles.

► frequency table—the UNITABLE and BITABLE stored procedures are used for calculating
univariate (for single attributes) and bivariate (for attribute pairs) frequency tables, showing
distinct attribute value occurrence counts).

► histogram—the HISTOGRAM stored procedure is used for calculating histograms for continuous
attributes (occurrence counts per intervals).

The following relationship identification algorithms are available:

► Pearson’s correlation—the CORR stored procedure is used for calculating Pearson’s linear
correlation for a pair of continuous attributes.

► Spearman’s correlation—the SPEARMAN_CORR stored procedure is used for calculating
Spearman’s rank correlation for a pair of continuous attributes.

► covariance—the COV and COVARIANCEMATRIX stored procedures are used for calculating the
covariance of a pair of continuous attributes and the covariance matrix for two sets of
continuous attributes.

► mutual information—the MUTUALINFO stored procedure is used for calculating the mutual
information for a pair of discrete attributes. Note that the mutual information is a concept
related to the entropy – see the stored procedures for ENTROPY, JOINTENTROPY, and
CONDENTROPY.

00X6331-01 Rev. 2 87

In-Database Analytics Developer's Guide

► chi-square test—the CHISQ_TEST stored procedure is used for performing Pearson's 2 test for
independence for a pair of discrete attributes.

► t -test—the T_ME_TEST, T_UMD_TEST, T_PMD_TEST, and T_LS_TEST stored procedures are
used for performing Student’s t -test for a single continuous attribute (a single mean), for a
single continuous attribute in two subgroups (two means, unpaired), for two continuous
attributes (two means, paired), and for a linear regression slope.

► Mann-Whitney-Wilcoxon test—the MWW_TEST stored procedure is used for performing the
Mann-Whitney-Wilcoxon non-parametric test for a continuous attribute in two subgroups
(unpaired).

► Wilcoxon test—the WILCOXON_TEST stored procedure is used for performing the Wilcoxon non-
parametric test for two continuous attributes (paired).

► canonical correlation—the CANONICAL_CORR stored procedure is used for calculating the
canonical correlation for two sets of continuous attributes.

► one-way ANOVA—the ANOVA_CRD_TEST and ANOVA_RBD_TEST stored procedures are used for
performing the analysis of variance test for a continuous attribute in multiple groups, using
either:

▲ the completely randomized design, with two specified attributes—one discrete attribute
representing the treatment or grouping, and one continuous attribute representing the
effect of treatments.

▲ the randomized block design with an additional specified discrete attribute representing the
blocks.

► MANOVA—the MANOVA_ONE_WAY_TEST and MANOVA_TWO_WAY_TEST stored procedures
test the multivariate analysis of variance for different groups of input data with two or more
dependent variables.
These stored procedures use one of the following designs:

▲ Completely randomized design, with two specified attributes—one discrete attribute that
represents the treatment or grouping, and one continuous attribute that represents the
effect of treatments.

▲ Randomized block design with an additional specified discrete attribute that represents the
blocks.

All procedures that perform statistical tests adopt the convention of presenting the cumulative
distribution value of the test statistic on output instead of the p -value. This approach has the
advantage of indicating whether the obtained test statistic appeared unlikely low or unlikely high
according to the distribution assuming the null hypothesis, whenever rejecting the null hypothesis is
recommended. The calculated cumulative distribution value for the test statistic is also referred to as
the percentage point.

Examples of Algorithm Functionality

In this section, the functionality of each algorithm is illustrated with examples. Note that the Netezza
implementations have been optimized to work with large data sets, which in some cases requires
using approximation techniques that may produce slightly different results for medium or small data

88 00X6331-01 Rev. 2

Examples of Algorithm Functionality

sets.

Moments Example
The following stored procedure call demonstrates how to calculate moments for the continuous age
attribute in the CensusIncome data set:

CALL nza..MOMENTS('intable=nza..CensusIncome, incolumn=age,
outtable=ci_m_age');

The specified output table ci_m_age contains a single row with the following fields::

► columnname—the attribute name

► countt—the number of instances on which the moments calculation is based

► average—the mean value of the specified attribute

► variance—the variance of the specified attribute

► skewness—the skewness of the specified attribute

► kurtosis—the kurtosis excess of the specified attribute

► stdev—the standard deviation of the specified attribute

► minimum—the minimum value of the specified attribute

► maximum—the maximum value of the specified attribute

Examining the output from

SELECT * FROM ci_m_age;

reveals that the age attribute ranges from 0 to 90 years, with a mean value of about 34.5 and
standard deviation of about 22. The distribution has a noticeably longer right tail with a skewness of
about 0.37 and is considerably less peaked than normal with a kurtosis of about −0.73.

The same calculation can be repeated in subgroups determined by another attribute. The following
example uses the income attribute to split the moments calculation into two groups:

CALL nza..MOMENTS('intable=nza..CensusIncome, incolumn=age, by=income,
outtable=ci_m_age_income');

The output table has the same structure as the previous example with an additional column named
as the grouping attribute, and contains one row for each distinct value. The remaining fields contain
the same statistics as described above, calculated separately within groups. Examining its contents
using

SELECT * FROM ci_m_age_income;

reveals considerable differences of age distribution in the high-income and low-income groups. The
high-income group contains people that are older on the average, but with less age standard
deviation and a more peaky (concentrated around the mean) age distribution.

When analyzing data sets with many attributes, it may be inconvenient to issue a separate call and

00X6331-01 Rev. 2 89

In-Database Analytics Developer's Guide

inspect a separate output table to get a distribution description for each attribute. In these cases, the
SUMMARY1000 procedure is useful. It is capable of generating the same descriptive statistics for up
to 1000 attributes in one call, as demonstrated below:

CALL nza..SUMMARY1000('intable=nza..CensusIncome,
 Vaincolumn=age;
 wage_per_hour;
 capital_gains;
 capital_losses;
 dividends_from_stocks;
 num_persons_worked_for_employer;
 weeks_worked_in_year,
 outtable=ci_m_continuous');

The above call requests distribution description statistics be calculated for all continuous attributes in
the CensusIncome data set by specifying them via the incolumn argument (if not specified, all
attributes will be considered). The resulting output table contains one row for each input attribute
and the following columns:

► columnname—the attribute name

► columnid—the ordinal attribute identification number

► countt—the number of instances on which the calculation is based

► average—the mean value of the corresponding attribute

► variance—the variance of the corresponding attribute

► stdev—the standard deviation of the corresponding attribute,

► skewness—the skewness of the corresponding attribute

► kurtosis—the kurtosis excess of the corresponding attribute

► minimum—the minimum value of the corresponding attribute

► maximum—the maximum value of the corresponding attribute

► nonmissingcases – the number of instances on which the calculation is based

► missing – the number of instances for which the value of the attribute is missing

► distinctvalues – in case of nominal attributes – the number of distinct values

► mostfrequentvalue - in case of nominal attributes – the value that was most frequent (or
among the most frequent)

► mostfrequentcases- in case of nominal attributes – the count of instances for which the above
value is the attribute value.

You can omit the incolumn argument, in which case all the columns will be summarized (provided
they are fewer than 1000). For example:

CALL nza..SUMMARY1000('intable=nza..CensusIncome, outtable=ci_m_all');

As for moments, you can also call the procedure with the by parameter.

CALL nza..SUMMARY1000('intable=nza..CensusIncome, outtable=ci_m_allby,
by=income');

90 00X6331-01 Rev. 2

Examples of Algorithm Functionality

Using Select * from ci_m_allby will show you the result of this procedure.

Quantiles Example
To calculate a single quantile value of specified order use the following call:

CALL nza..QUANTILE('intable=CensusIncome, incolumn=age, quantiles=0.25')

It returns the 0.25 order quantile, also referred to as the 1st quartile, of the age attribute. Multiple
quantiles for the same attribute can be calculated in one call by specifying more than one value in a
semicolon-separated list:

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, quantiles=0.0;
0.25; 0.5; 0.75; 1.0, outtable=ci_age_q');

This calculates the 0, 0.25, 0.5, 0.75, and 1 order quantiles or the minimum, the 1st quartile, the 2nd
quartile (median), the 3rd quartile, and the maximum, and stores the values in the specified output
table ci_age_q. The table contains one row per quantile and two columns:

► p—the quantile order,

► value—the quantile value.

Examining the received contents using

SELECT * FROM ci_age_q;

reveals that the age attribute is within the range from 0 to 90, which corresponds to the moments
example, with the 1st quartile equal to 15, the median equal to 33, and the 3rd quartile equal to 50.

While the QUANTILE procedure demonstrated above calculates quantiles of arbitrary orders in the
[0,1] interval, there are separate procedures to handle the most common special cases. To calculate

the 1st, 2nd, or 3rd quartile use the QUARTILE procedure, as in the following example:

CALL nza..QUARTILE('intable=nza..CensusIncome, incolumn=age, quartile=3');

This call returns the requested 3rd quartile of the age attribute and is equivalent to:

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age,
quantiles=0.75');

Similarly, the MEDIAN procedure returns the median, as demonstrated below:

CALL nza..MEDIAN('intable=nza..CensusIncome, incolumn=age');

which is equivalent to the following calls of QUARTILE or QUANTILE:

CALL nza..QUARTILE('intable=nza..CensusIncome, incolumn=age, quartile=2');

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, quantiles=0.5');

with respect to the calculated values, but uses a different specialized algorithm optimized for large

00X6331-01 Rev. 2 91

In-Database Analytics Developer's Guide

data sets. The MEDIAN procedure is not recommended for input tables with less than millions of
rows, for which the general quantile/quartile algorithm may perform better.

Note that if a single quantile is to be calculated, the value is returned and no output table is created.

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age,
 quantiles=0.25, outtable=test');

QUANTILE

 15
(1 row)

To calculate several quantiles at once, separate the quantile values with semicolons. The quantile
values are returned in the output table and the number returned by QUANTILE function indicates a
number of quantiles computed.

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age,
 quantiles=0.25;0.75, outtable=test');

QUANTILE

 2
(1 row)

SELECT * FROM test;

 P | VALUE
------+-------
 0.75 | 50
 0.25 | 15
(2 rows)

Outlier Detection Example
The following stored procedure call performs outlier detection for the age attribute of the
CensusIncome data set:

CALL nza..OUTLIERS('intable=nza..CensusIncome, incolumn=age,
outtable=ci_age_out');

The output table contains a single column containing the values of the input attribute that fall
outside the non-outlying range, which is below the 1st quartile or above the 3rd quartile by more
than the inter-quartile range multiplied by a coefficient that defaults to 1.5. The multiplier value can
be set to a different value via the multiplier argument to change the aggressiveness of outlier
detection. In the sample data, the above call found no outliers, so using the following modified call
demonstrates a more aggressive attempt by using multiplier=1:

CALL nza..OUTLIERS('intable=nza..CensusIncome, incolumn=age, multiplier=1,
outtable=ci_age_out1');

92 00X6331-01 Rev. 2

Examples of Algorithm Functionality

Examining the contents of the output table:

SELECT * FROM ci_age_out1 ORDER BY 1;

reveals that age values above 85 are identified as outlying.

Frequency Table Example
The following call demonstrates how to create a frequency table for a single discrete attribute, using
the example of the education attribute in the CensusIncome data set:

CALL nza..UNITABLE('intable=nza..CensusIncome, incolumn=education,
outtable=ci_education_ft');

The output table contains the following columns:

► education—distinct values of the education attribute specified as the input attribute; note that
in normal usage, the column is named after the input attribute

► count—the number of occurrences or absolute frequency of each value

► freq—the relative frequency percentage of each value

► cum—the cumulative percentage of each value, if ordered lexicographically

Examining the output for the education attribute using

SELECT * FROM ci_education_ft ORDER BY 1;

reveals that 3.3% of the population have Masters degrees, 0.6% have Ph.D. degrees, and 23.8% are
children. Further, those with 10th grade, 11th grade, and 12th grade education with no diploma
account for 8.3%.

To examine the distribution of education within subgroups corresponding to different income classes,
a bivariate frequency table can be created as follows:

CALL nza..BITABLE('intable=nza..CensusIncome, incolumn=income:x; education:y,
outtable=ci_education_income_ft');

The output table contains columns corresponding to the two specified input attributes, containing all
distinct combinations of their values, and a count column with the number of occurrences of each
combination. It can be inspected as demonstrated below:

SELECT * FROM ci_education_income_ft order by 1, 2;

The same output can be produced by:

SELECT income, education, count(*)
FROM CensusIncome
GROUP BY income, education
ORDER BY income, education;

00X6331-01 Rev. 2 93

In-Database Analytics Developer's Guide

Histogram Example
Previous examples revealed a wealth of information about the distribution of the age attribute in the
CensusIncome data set, but a histogram can give a much more detailed picture. The following
example shows how it can be created:

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age,
outtable=ci_age_hist1');

The output table contains the following columns:

► idx—the interval number

► bleft—the left interval bound

► bright—the right interval bound

► counts—the number of instances with the value of the input attribute in the corresponding
interval

By default, intervals are right-closed, but this can be changed by specifying the right=FALSE
argument. To examine the histogram data issue the following query:

SELECT * FROM ci_age_hist1 ORDER BY 1;

The above call runs the HIST procedure in automatic mode, so the number of equal-width intervals
are determined automatically. For certain instances, however, it might be useful to explicitly specify
the number of intervals:

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age, nbreaks=5,
outtable=ci_age_hist2');

or even specify breaks to make the resulting intervals more meaningful:

CREATE TABLE CensusIncome_age_breaks (break integer);
INSERT INTO CensusIncome_age_breaks VALUES (0);
INSERT INTO CensusIncome_age_breaks VALUES (5);
INSERT INTO CensusIncome_age_breaks VALUES (12);
INSERT INTO CensusIncome_age_breaks VALUES (18);
INSERT INTO CensusIncome_age_breaks VALUES (25);
INSERT INTO CensusIncome_age_breaks VALUES (35);
INSERT INTO CensusIncome_age_breaks VALUES (50);
INSERT INTO CensusIncome_age_breaks VALUES (65);
INSERT INTO CensusIncome_age_breaks VALUES (80);
INSERT INTO CensusIncome_age_breaks VALUES (90);

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age,
btable=CensusIncome_age_breaks, bcolumn=break, outtable=ci_age_hist3');

When explicitly specifying histogram breaks, ensure they span the entire range of the attribute.
Examining the output from:

SELECT * FROM ci_age_hist3 ORDER BY 1;

reveals a sufficiently detailed, but easily comprehended description of the distribution of the age

94 00X6331-01 Rev. 2

Examples of Algorithm Functionality

attribute.

Pearson’s Correlation Example
The example call below illustrates how to measure the relationship between the alcohol and quality
attributes in the WineQuality data set using Pearson’s correlation coefficient:

CALL nza..CORR('intable=nza..WineQuality, incolumn=alcohol; quality');

The resulting value of about 0.44 indicates there is a linear relationship—albeit weak—between the
two attributes, with more alcohol tending to give better quality.

The correlation can be also calculated in subgroups determined by the values of a selected grouping
attribute. Use the income attribute for grouping in the CensusIncome data set, and find the
correlation between the age and wage_per_hour attributes:

CALL nza..CORR('intable=nza..CensusIncome, incolumn=age; wage_per_hour,
by=income, outtable=ci_corP_age_wage_per_hour_income');

This time an output table must be created, containing one column with correlation values, one
column with distinct values of the selected grouping attribute, and one row for each of them.
Inspecting the contents using

SELECT * FROM ci_corP_age_wage_per_hour_income;

verifies that there is no linear relationship between the age and wage_per_hour attributes both in
high-income and low-income groups.

You can compute a correlation matrix for two sets of attributes (computing in groups via the by
parameter is also possible):

CALL nza..CORRELATION1000MATRIX('intable=nza..WineQuality,
incolumn=fixed_acidity| volatile_acidity| citric_acid| residualsugar:X;
density| pH| alcohol:Y, outtable=wq_cormat');

SELECT * from wq_cormat;

You can compute a list of correlations for a list of pairs (computing in groups via the by parameter is
also possible):

CALL nza..CORRELATION500PAIRS('intable=nza..WineQuality,
incolumn=fixed_acidity:volatile_acidity; citric_acid: residualsugar; density:
pH; alcohol: fixed_acidity:, outtable=wq_corlst');

SELECT * from wq_corlst;

Spearman’s Correlation Example
The following call requests that Spearman’s rank correlation be calculated for the same pair of
attributes, alcohol and quality, from the WineQuality data set:

00X6331-01 Rev. 2 95

In-Database Analytics Developer's Guide

CALL nza..SPEARMAN_CORR('intable=nza..WineQuality, incolumn=alcohol;
quality');

The returned value is marginally greater than for Pearson’s correlation.

CALL nza..SPEARMAN_CORR_S('intable=nza..WineQuality, incolumn=alcohol;
quality');

It shows more information (percentage point, t-statistics and degrees of freedom).

Covariance Example
To calculate the covariance between the alcohol and quality attributes on the WineQuality data set
one can issue the following call:

CALL nza..COV('intable=nza..WineQuality, incolumn=alcohol; quality');

As with linear correlation, the covariance can be calculated in subgroups determined by the values of
a specified grouping attribute. You can demonstrate this capability on the CensusIncome data set,
using the income attribute for grouping and looking for the covariance of the age and
wage_per_hour attributes:

CALL nza..COV('intable=nza..CensusIncome, incolumn=age; wage_per_hour,
by=income, outtable=ci_cov_age_wage_per_hour_income');

SELECT * FROM ci_cov_age_wage_per_hour_income;

The output table contains only one column, COVARIANCE, containing the covariance value for each
value of the specified grouping attribute.

The covariance matrix for two sets of continuous attributes can be calculated as demonstrated by the
following call:

CALL nza..COVARIANCE1000MATRIX('intable=nza..WineQuality,
incolumn=fixed_acidity| volatile_acidity| citric_acid| residualsugar:X;
density| pH| alcohol:Y, outtable=wq_covmat');

SELECT * from wq_covmat;

This calculates the covariances for attribute pairs from the two specified attribute sets on the
WineQuality data set.

Note that computing in groups via the by parameter is also possible.

You may compute a list of covariances for a list of pairs (the by parameter is also possible here).

CALL nza..COVARIANCE500PAIRS('intable=nza..WineQuality,
incolumn=fixed_acidity:volatile_acidity; citric_acid: residualsugar; density:
pH; alcohol: fixed_acidity:, outtable=wq_covlst');

SELECT * from wq_covlst;

96 00X6331-01 Rev. 2

Examples of Algorithm Functionality

Mutual Information Example
Mutual information can be used to measure the degree of relationship between the education and
income discrete attributes on the CensusIncome data set as follows:

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=education;
income');

It can also be used for the sex and income attributes:

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=sex; income');

The much lower result in the second example indicates that income is more strongly related to
education than to gender. You can also examine the relationship between the education and sex
attributes in subgroups corresponding to income levels:

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=education; sex,
by=income, outtable=ci_mi_education_sex_income');

Select * FROM ci_mi_education_sex_income;

The output table contains one row for each distinct value of the grouping value, containing the
mutual information value within the corresponding group. In this instance, relationship appears to be
weak in both groups.

Conditional Entropy Example
A call computing the entropy of sex attributed:

CALL nza..entropy('intable=nza..CensusIncome, incolumn=sex');

being close to 1 reveals that both men and women are equally represented in the data.

The joint entropy of sex and income:

CALL nza..joint_entropy('intable=nza..CensusIncome, incolumn=sex;income');

is quite close to the sum of entropies for sex and for income so that it is no wonder that conditional
entropy of income on sex

CALL nza..cond_entropy('intable=nza..CensusIncome, incolumn=sex:X;income:Y');

is nearly identical with that for income, meaning sex has no significant impact of income.

Chi-Square Test Example
The following call demonstrates how to verify the significance of the relationship between the
education and sex attributes on the CensusIncome data set using the χ 2 test:

CALL nza..CHISQ_TEST('intable=nza..CensusIncome, incolumn=education; sex,

00X6331-01 Rev. 2 97

In-Database Analytics Developer's Guide

outtable=ci_chi2_education_sex');

SELECT * FROM ci_chi2_education_sex;

The output table contains a single row with the value of the 2 statistic, the number of its degrees
of freedom, and the corresponding value of the 2 cumulative distribution function value shown in
the percentage column. If close to 1, this value justifies rejecting the null hypothesis. The obtained
value of nearly 1 indicates the relationship between the attributes is statistically significant. The same
calculation can be also repeated separately in the two different income groups:

CALL nza..CHISQ_TEST('intable=nza..CensusIncome, incolumn=education; sex,
by=income, outtable=ci_chi2_education_sex_income');

SELECT * FROM ci_chi2_education_sex_income;

The results show that, while statistically significant in both groups, the relationship between
education and gender is more prominent in the low-income group.

Note that computing in groups via the by parameter is also possible here.

t-Test Example
The following call demonstrates how to apply the t -test for a single mean to verify the null
hypothesis that the mean value of the WineQuality data set quality attribute is 5:

CALL nza..T_ME_TEST('intable=nza..WineQuality, incolumn=quality, mean=5,
outtable=wq_t_quality_5');

SELECT * FROM wq_t_quality_5;

The output table contains the test’s cumulative distribution function value (in the percentage
column), the t statistic value, and the number of degrees of freedom. If the cumulative distribution
function value is close to 0, for example, values of 0.05 or less, it justifies rejecting the null hypothesis
of the true population mean being equal the specified value and recommends an alternative
hypothesis of the true population mean being less than the specified value. If it is close to 1, for
example, 0.95 or greater, it justifies rejecting the null hypothesis of the true population mean being
equal to the specified value and recommends an alternative hypothesis of the true population mean
being greater than the specified value. In this example, the returned value of nearly 1 suggests the
true mean wine quality exceeds 0.5.

The same test can be applied to verify the null hypothesis of the mean value of the
weeks_worked_in_year in the population being equal 24 based on the CensusIncome data set:

CALL nza..T_ME_TEST('intable=nza..CensusIncome,
incolumn=weeks_worked_in_year, mean=24,
outtable=ci_t_weeks_worked_in_year_24');

SELECT * FROM ci_t_weeks_worked_in_year_24;

98 00X6331-01 Rev. 2

Examples of Algorithm Functionality

The percentage column in the output table contains a cumulative distribution value of near 0 for the
test statistic, which suggests that the true mean differs significantly from and is less than 24. The
same hypothesis can be also verified in different income groups by specifying the by argument
appropriately:

CALL nza..T_ME_TEST('intable=nza..CensusIncome,
incolumn=weeks_worked_in_year, mean=24, by=income,
outtable=ci_t_weeks_worked_in_year_24_income');

SELECT * FROM ci_t_weeks_worked_in_year_24_income;

As you can see, whereas the true mean is below 24 in the low-income group, it exceeds 24 in the
high-income group. To further explore the dependence between the weeks_worked_in_year and
income attributes, you can apply the unpaired t -test for two means to verify the null hypothesis
that the true means of the former differ in the subpopulations determined by the latter as follows:

CALL nza..T_UMD_TEST('intable=nza..CensusIncome,
incolumn=weeks_worked_in_year, class=income, class1="50000+.", class2="-
50000.", outtable=ci_t_weeks_worked_in_year_income');

SELECT * FROM ci_t_weeks_worked_in_year_income;

The percentage value of 1 indicates a statistically significant difference, with the mean value in the
high-income group greater than in the low-income group. The same can be repeated for the
wage_per_hour attribute:

CALL nza..T_UMD_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour,
class=income, class1="50000+.", class2="-50000.",
outtable=ci_t_wage_per_hour_income');

SELECT * FROM ci_t_wage_per_hour_income;

Here, too, the mean value in the high-income group is confirmed to be significantly greater than in
the low-income group.

The attribute used to split the data set into two groups does not have to be binary as long as you only
consider instances with two different values. The following example demonstrates how the same
unpaired t -test can be used to examine whether the mean value of the wage_per_hour attribute
differs significantly between never married and divorced individuals, which are represented by 2 out
of 7 possible values of the marital_status attribute:

CALL nza..T_UMD_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour,
class=marital_status, class1="Never married", class2=”Divorced”,
outtable=ci_t_wage_per_hour_marital_status');

SELECT * FROM ci_t_wage_per_hour_marital_status;

The percentage value near 0 indicates that the mean wage per hour value in the never married group is below
that of the divorced group.

00X6331-01 Rev. 2 99

In-Database Analytics Developer's Guide

The following call demonstrates the regression line slope version of the t -test, applied to verify the
null hypothesis that the alcohol and quality attributes are linearly related with a regression line
slope of 5.

CALL nza..T_LS_TEST('intable=nza..WineQuality, incolumn=alcohol:X; quality:Y,
slope=5, outtable=wq_t_ls_alcohol_quality');

SELECT * FROM wq_t_ls_alcohol_quality;

The obtained percentage value is well below 0.01, providing sufficient justification to reject the null
hypothesis and indicates that the true regression line slope is less than the one specified via the
slope parameter.

Note that computing in groups via the by parameter is also possible here.

Mann-Whitney-Wilcoxon Test Example
To demonstrate the Mann-Whitney-Wilcoxon test, follow the same scenario as for the unpaired t -
test, which is its non-parametric counterpart. Start by verifying whether the weeks_worked_in_year
attribute differs significantly between the two income groups:

CALL nza..MWW_TEST('intable=nza..CensusIncome, incolumn=weeks_worked_in_year,
class=income');

The procedure returns a string (VARCHAR object) containing:

► the values of the test statistic, tagged uStat

► the parameters of the normal approximation of its distribution

► the corresponding cumulative distribution function value, a percentage, tagged pp

The corresponding cumulative distribution function value is nearly 1, indicating a statistically
significant difference, with the values in the high income group usually greater than in the low-
income group. The same can be repeated for the wage_per_hour attribute:

CALL nza..MWW_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour,
class=income');

Again, the mean value in the high-income group is confirmed to be significantly greater than in the
low-income group.

Canonical Correlation Example
The following call demonstrates the usage of canonical correlation to find relationships between two
sets of attributes of the WineQuality data set, one containing the fixed_acidity, volatile_acidity,
citric_acid, and residualsugar attributes and the other containing the density, pH, and alcohol
attributes:

CALL nza..CANONICAL_CORR('intable=nza..WineQuality, incolumn=fixed_acidity:X;
volatile_acidity:X; citric_acid:X; residualsugar:X; density:Y; pH:Y;
alcohol:Y, outtable=wq_cancor');

100 00X6331-01 Rev. 2

Examples of Algorithm Functionality

SELECT * FROM wq_cancor;

The resulting output table contains a single row and a single column. The calculated results are
presented in text form, and contain the highest achieved correlation value between canonical
variates along with the corresponding canonical coefficient for the two specified sets of input
attributes. The correlation of about 0.95 obtained in this example indicates the two sets of attributes
in the WineQuality data set are closely related.

One-Way ANOVA Example
To illustrate the one-way ANOVA algorithm, use a modified version of the WineQuality data set.
Assume the alcohol attribute represents the treatment applied to wines, and the quality attribute
represents the observed effect. To make it possible, the alcohol attribute is discretized using the
equal-frequency algorithm into four intervals as follows:

CALL nza..EFDISC('intable=nza..WineQuality, outtable=wq_efd, binprec=1,
incolumn=alcohol:4');

CALL nza..APPLY_DISC('intable=nza..WineQuality, btable=wq_efd,
outtable=WineQuality4, replace=TRUE');

To use the discretized alcohol attribute as the treatment, each of the values must have the same
occurrence count, which is a theoretical application condition for the completely randomized design
ANOVA. This is not strictly achieved by equal-frequency discretization. In this instance, it is enforced
as follows:

CREATE TABLE WineQuality4s AS
(SELECT * FROM WineQuality4 WHERE alcohol=1 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=2 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=3 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=4 LIMIT 1100);

Using the resulting data set, the completely randomized design of the one-way ANOVA test can be
used:

CALL nza..ANOVA_CRD_TEST('intable=WineQuality4s, incolumn=quality,
treatment=alcohol');

The procedure returns a text string containing the full set of calculated quantities, including the value
of the F -test statistic and the corresponding cumulative distribution function value, which is nearly
1 in this example, indicating a significant relationship between the alcohol contents and the quality.

You may want to look at several attributes, not just the quality attribute, at the same time.

CALL nza..ANOVA_CRD_TEST('intable=WineQuality4s,
incolumn=quality;volatile_acidity ; citric_acid , treatment=alcohol,outtable
= wqan');
As there will be more output rows now, you need to have an output table. By inspecting it, we see

00X6331-01 Rev. 2 101

In-Database Analytics Developer's Guide

that the alcohol differentiates not only the quality, but also other attributes like citric_acid or
volatile_acidity.

Manova Example
The MANOVA_ONE_WAY_TEST and MANOVA_TWO_WAY_TEST stored procedures have the following
syntax:

CALL nza..MANOVA_ONE_WAY_TEST(NVARCHAR(ANY) paramString)
CALL nza..MANOVA_TWO_WAY_TEST(NVARCHAR(ANY) paramString)

Parameters are:

► paramString—input parameters specification
Type: NVARCHAR(ANY)

► intable— the input table name
Type: NVARCHAR(ANY)

► outtable— the output table name
Type: NVARCHAR(ANY)

► factor1—the input table column that identifies a first factor
Type: NVARCHAR(ANY)

► factor2—the input table column that identifies a second factor
For MANOVA_TWO_WAY_TEST only
Type: NVARCHAR(ANY)

► incolumn—the input table observation columns, separated by a semicolon (;)
Type: NVARCHAR(ANY)

► by—the input table column that splits the table into subtables, separated by a semicolon (;)
Type: NVARCHAR(ANY)

► type—columns (traditional) or trcv (task/row/column/value, where row is the default value)
Type: NVARCHAR(ANY)

► id—the input table column that uniquely identifies records
Type: NVARCHAR(ANY)

A string that confirms the execution of the process is returned. The output is contained in the output
table of type TEXT.

To illustrate the MANOVA algorithm, the WineQuality data set is used. This data set examines how
the pH value, the chlorides, and the density of the wine influence the wine quality.

In the example, the input table is converted to row-column-value (RCV) format, and then a MANOVA
one-way stored procedure is called. The result is printed by calling the
PRINT_MANOVA_ONE_WAY_TEST stored procedure. The resulting table shows the pH-values and the
significance for the Wilks' test, the Roy's test, the Pillai's test, and the Hotelling's test.

CALL nza..COL2TRCV_MANOVA_ONE_WAY_TEST('intable=nza..winequality,
incolumn=ph;chlorides;density,id=id, factor1=quality, outtable=trcv1');
CALL nza..MANOVA_ONE_WAY_TEST('intable=trcv1, outtable=res_1');
CALL nza..PRINT_MANOVA_ONE_WAY_TEST('intable=res_1');

102 00X6331-01 Rev. 2

Examples of Algorithm Functionality

Principal Component Analysis Example
To demonstrate the creation and application of Principal Component Analysis model this example
uses the WineQuality data set:

CALL nza..PCA('intable=nza..WineQuality, model=wq_pca, id=id, scaleData=TRUE,
centerData=TRUE, forceEigensolve=FALSE');

To apply the model (project the data into the space spanned by the selected number of principal
components of the corresponding dimensionality) the following call should be used:

CALL nza..PROJECT_PCA('intable=nza..WineQuality, model=wq_pca, id=id,
outtable=wq_proj4, pcNumber=4');

00X6331-01 Rev. 2 103

C H A P T E R 7
Tree-Shaped Bayesian Networks

Tree-shaped Bayesian networks formally belong to the data exploration category. However, this
algorithm is considerably more complex than other data exploration algorithms and not as widely
known, warranting detailed description.

A Bayesian network can be considered a graphical representation of probabilistically described
relationships within a set of attributes, allowing probabilistic inference to be performed. The
representation is created by extracting the structural properties of the distribution from the data.

Creating and using general Bayesian networks are algorithmically and computationally complex. Tree-
shaped Bayesian networks, however, constitute a simplified subclass of Bayesian networks with
restrictions imposed on the type of attribute relationships that can be discovered and represented.
The restrictions permit simpler and more efficient algorithms as well as more straightforward
interpretation. Tree-shaped Bayesian networks may be not sufficient for highly-accurate prediction,
but provide an excellent qualitative description of the relationship structure observed in the data.

Background

Bayesian networks can be used to represent a joint probability distribution of multiple discrete
attributes. A Bayesian network consists of two essential parts:

► structure—a directed acyclic graph, where nodes represent attributes and directed edges
represent “direct influence”

► conditional probability distributions—the conditional probability of a node given its parents. or
the marginal distribution for the node, if there are no parent nodes

A Bayesian network can be used in a formal probabilistic inference process, but even in informal
interpretations, can be a valuable source of the following insights into the data:

► determining primary and secondary relationships between attributes

► which attributes are independent or relatively independent given other attributes

► strength of the primary and secondary relationships

00X6331-01 Rev. 2 105

In-Database Analytics Developer's Guide

An analogous representation for continuous attributes is possible. Under the assumption of
normality, dependencies between continuous attributes can be expressed in a simplified form of
partial correlations. This is based on the following equation that holds for normal random variables
X and Y :

E Y∣X  = EYrY
X−EX
 X

 (38)

where  X is the standard deviation of X , Y is the standard deviation of Y , E is the expected
value symbol, and r is the correlation coefficient of X and Y . The root cause of correlations is of
interest when looking at Bayesian networks for continuous attributes.

Apart from providing valuable insights about the relationship structure in the data, Bayesian
networks can be considered predictive models and applied to new data. Unlike ordinary classification
and regression models, the target attribute for Bayesian network prediction is not specified at the
model building phase, but at the model application phase. In the most basic case, the network can be
applied to predict any attribute of those for which it was created, based on the known values of the
remaining attributes. When considering only continuous attributes and using correlations to describe
their relationships, as discussed above, the Bayesian network implicitly represents a collection of
regression models for each attribute. Note that the simplicity of this representation does not
guarantee high prediction quality, particularly if there no sufficiently strong linear correlations in the
data, but it can be still useful as a quick model prototyping approach.

If the Bayesian network has the structure of a tree, spanning the specified set of attributes, then the
inference process is simplified, because if Z is on the path from X to Y , then the correlation
between X and Y can be decomposed as follows:

r XY = r XZ⋅rZY (39)

Another important property of a Bayesian network tree is that there exists a Chow-Liu algorithm
approximating any joint probability distribution with a tree in an optimal way.

In tree-shaped Bayesian networks, edge orientations become immaterial and therefore inference
about which attribute is caused by which becomes impossible. As such, the edges in a tree-shaped
Bayesian network should be considered undirected. All other structural insights, however, are
possible. In addition, the overview of major attribute relationships becomes more comprehensive,
which is important when the number of attributes numbers in the hundreds or more.

Applications

Bayesian network tree discovery algorithms can be applied whenever a Bayesian network is needed
for:

► determining the major dependencies among attributes

106 00X6331-01 Rev. 2

Applications

► Creating a simplistic model to derive correlations between attributes from a small set of pre-
computed ones

► identifying subsets of attributes that do not appear to be related to the same topic, by splitting
the tree by the weakest links

► identifying attributes of central importance, that is, those that are central in the network, with
many links

Available Functionality

The IBM Netezza In-Database Analytics package implements the tree version of Bayesian networks
for continuous attributes. It provides the stored procedures listed below.

► TBNET1G—A spanning tree is constructed linking all specified attributes based on the strongest
correlations, providing the user an overview of the most significant interrelations governing the
whole set of attributes.

► TBNET2G—A spanning tree is constructed linking all specified attributes based on the strongest
correlations. The distinctive feature compared to TBNET1G and standard Bayesian network
construction algorithms is that one specifies two subsets of attributes and the resulting tree is
bipartite — nodes within each set are not directly connected. This feature is particularly useful
when the two subsets of attributes characterize distinct objects or distinct parts of an object, and
only “external” links between different objects/parts are of interest and not “internal” ones
within.

► BTBNET_GROW— has the functionality of TBNET1G with the additional possibility to include
binary variable(s) by specifying either an identity relation (an attribute equals a value or not, for
discrete attributes mainly) or a-greater-than-relation (for discretizing continuous one). These
new variables will be treated like “continuous” with “truth” being represented by 1 and
“falsehood” by 0.

► TBNET_GROW—A spanning tree is constructed linking all specified attributes based on the
strongest correlations. The generated model is suitable for predicting values of any attribute with
the TBNET_APPLY procedure.

► TBNET_APPLY—The Bayesian network generated by TBNET_GROW is used for value prediction
in a continuous table based on the formula:

E Y∣X  = EY  r y
X−EX
 X

 (40)

► TANET_GROW— (tree-augmented network) A spanning tree is constructed linking all specified
attributes based on the strongest correlations. Subsequently the coefficients are trained
separately in classes identified by a class attribute. The generated model is suitable for predicting
values of any attribute with the TANET_APPLY procedure.

► TANET_APPLY—The Bayesian network generated by TANET_GROW is used for value prediction in
a continuous table in a way similar to TBN_APPLY, but with coefficients specific for particular
classes.

00X6331-01 Rev. 2 107

In-Database Analytics Developer's Guide

► MTBNET_GROW— for each level of a class attribute, a separate spanning tree is constructed
linking all specified attributes based on the strongest correlations. The generated model is
suitable for predicting values of any attribute with the TANET_APPLY procedure.

► MTBNET_DIFF— lists the differences between trees at the different levels of the class attribute.

Examples

The functionality of the tree-shaped Bayesian networks implementation is illustrated by the
examples using the WineQuality data set.

The TBNET1G procedure, can be applied to all attributes of the data set in the following manner:

CALL nza..TBNET1G('intable=nza..WineQuality,
 incolumn=fixed_acidity;
 volatile_acidity;
 citric_acid;
 residualsugar;
 chlorides;
 free_sulfur_dioxide;
 total_sulfur_dioxide;
 density;
 pH;
 sulphates;
 alcohol;
 quality,
 model=wq_tbn1');

The resulting model, specified via the model argument, consists of a table containing the network
structure with each row representing a network edge and the following columns:

► BNID—the internally assigned Bayesian network ID

► VARXID—the internally assigned ID of the first attribute of the edge

► VARXNAME—the name of the first attribute of the edge

► VARYID—the internally assigned ID of the second attribute of the edge

► VARYNAME—the name of the second attribute of the edge

► CORR—the linear correlation between the attributes of the edge

Note that, since the network is undirected, the representation of an attribute being shown as the
first or second on an edge carries no special meaning.

You can inspect the network created for the WineQuality data set as follows:

SELECT * FROM nza_meta_wq_tbn1_model ORDER BY ABS(CORR) DESC;

Notice that residualsugar and density are the two most strongly correlated attributes. The density
attribute is also highly correlated—negatively—to the alcohol attribute. The correlation values can
be verified to match those returned by the CORR procedure:

CALL nza..CORR('intable=nza..WineQuality, incolumn=residualsugar; density');
CALL nza..CORR('intable=nza..WineQuality, incolumn=density; alcohol');

108 00X6331-01 Rev. 2

Examples

If you are particularly interested in attributes most related to the quality attribute, you can filter the
corresponding edges by adding an appropriate WHERE clause to the above query:

SELECT * FROM nza_meta_wq_tbn1_model
WHERE VARXNAME='QUALITY' OR VARYNAME='QUALITY'
ORDER BY ABS(CORR) DESC;

Other noteworthy optional parameters not illustrated in the above example include:

► baseidx—the numeric ID to be assigned to the first attribute, for easier internal management

► samplesize—the size of the sample to take if the number of instances/attributes is too large,
where processing time may be too long for the user

While the samplesize parameter is not required for the WineQuality data set (due to its small size)
the following call demonstrates the effect of the baseidx parameter being set to 1:

CALL nza..TBNET1G('intable=nza..WineQuality,
 incolumn=fixed_acidity;
 volatile_acidity;
 citric_acid;
 residualsugar;
 chlorides;
 free_sulfur_dioxide;
 total_sulfur_dioxide;
 density;
 pH;
 sulphates;
 alcohol;
 quality,
 baseidx=1,
 model=wq_tbn1_1');

SELECT * FROM nza_meta_wq_tbn1_1_model ORDER BY ABS(CORR) DESC;

The node numbering starts from the specified value. This argument may be useful for configuring
disjoint node number spaces when creating and analyzing several networks for the same data set
using different attribute sets.

With the TBNET2G procedure, the incolumn argument allows you to specify two disjoint attribute
subsets, Each attribute name is followed by a colon (:) and either X or Y to distinguish the two sets.
The algorithm considers only inter-subset links and not intra-subset links when creating the network
structure. This is demonstrated in the example below, where the set of all attributes in the
WineQuality data set is split into two subsets:

CALL nza..TBNET2G('intable=nza..WineQuality,
 incolumn=fixed_acidity:X;
 volatile_acidity:X;
 citric_acid:X;
 residualsugar:X;
 chlorides:X;
 free_sulfur_dioxide:X;
 total_sulfur_dioxide:X;
 density:Y;
 pH:Y;
 sulphates:Y;

00X6331-01 Rev. 2 109

In-Database Analytics Developer's Guide

 alcohol:Y;
 quality:Y,
 model=wq_tbn2');

You can examine the created structure using:

SELECT * FROM nza_meta_wq_tbn2_model ORDER BY ABS(CORR) DESC;

All the created edges link attributes from one set to attributes from the other set. In the second
subset, it is the density attribute that has the most frequent and strongest relationships with the
attributes from the first subset.

The TBNET_GROW procedure is called in the same way as the TBNET1G procedure.

CALL nza..TBNET_GROW('intable=nza..WineQuality_train,
 incolumn=fixed_acidity;
 volatile_acidity;
 citric_acid;
 residualsugar;
 chlorides;
 free_sulfur_dioxide;
 total_sulfur_dioxide;
 density;
 pH;
 sulphates;
 alcohol;
 quality,
 model=wq_tbnm');

This call uses the training subset of the WineQuality data to allow subsequent evaluation of the
predictions on the test subset.

Examining the resulting output table:

SELECT * FROM nza_meta_wq_tbnm_model ORDER BY ABS(CORR) DESC;

reveals the generated contents to be richer. For each network edge the means and standard
deviations of the two nodes being linked are calculated and stored, making it possible to apply the
network for prediction. This is demonstrated by the following two calls, one predicting the quality
attribute and the other predicting the density attribute on the test set:

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=quality,
outtable=WineQuality_quality_tbnm, model=wq_tbnm');

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=density,
outtable=WineQuality_density_tbnm, model=wq_tbnm');

The quality of the predictions can be evaluated using the mean square error:

CALL nza..MSE ('pred_table=WineQuality_quality_tbnm,
pred_column=quality_pred, pred_id=id, true_table=nza..WineQuality_test,
true_column=quality, true_id=id');

CALL nza..MSE ('pred_table=WineQuality_density_tbnm,
pred_column=density_pred, pred_id=id, true_table=nza..WineQuality_test,

110 00X6331-01 Rev. 2

Examples

true_column=density, true_id=id');

Use the following auxiliary view to put the true and predicted values next to each other:

CREATE VIEW WineQuality_tbnm_pred AS
SELECT PQ.quality_pred, T.quality as quality, PD.density_pred, T.density as
density
FROM WineQuality_quality_tbnm PQ, WineQuality_density_tbnm PD,
nza..WineQuality_test T
WHERE PQ.id=T.id AND PD.id=T.id;

You can also calculate their test set correlations:

CALL nza..CORR('intable=WineQuality_tbnm_pred, incolumn=quality_pred;
quality');
CALL nza..CORR('intable=WineQuality_tbnm_pred, incolumn=density_pred;
density');

In this example, the density attribute turns out to be a much better predictor than the quality
attribute. The results obtained for the quality attribute, however, are comparable to those possible
with the kNN or regression tree algorithms. For more information on kNN, see Nearest Neighbors.
For more information on regression tree algorithms, see Regression Trees.

The TBNET_APPLY procedure accepts an optional type argument that can be used to select one of
the following variations of the prediction algorithm:

► best—using the most correlated neighbor node, which is the default value

► neighbors—using weighted prediction of all neighbor nodes

► nn-neighbors—the same as above, but with NULL-value nodes, that is, those corresponding to
attributes that have missing values for the instance for which the prediction is calculated,
skipped

The previous two calls to TBNET_APPLY can be repeated with the prediction type set to neighbors:

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=quality,
type=neighbors, outtable=WineQuality_quality_tbnm_n, model=wq_tbnm');

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=density,
type=neighbors, outtable=WineQuality_density_tbnm_n, model=wq_tbnm');

You can evaluate the prediction quality:

CALL nza..MSE ('pred_table=WineQuality_quality_tbnm_n,
pred_column=quality_pred, pred_id=id, true_table=nza..WineQuality_test,
true_column=quality, true_id=id');

CALL nza..MSE ('pred_table=WineQuality_density_tbnm_n,
pred_column=density_pred, pred_id=id, true_table=nza..WineQuality_test,
true_column=density, true_id=id');

The achieved mean square error values are higher than with the default setting (type=best), which is
desirable in most cases.

00X6331-01 Rev. 2 111

C H A P T E R 8
Discretization

Discretization algorithms can be divided into two main categories:

► unsupervised—the target concept (class attribute) is not used in the criteria for setting interval
bounds,

► supervised—the target concept (class attribute) is taken into account when seeking the most
appropriate interval bounds.

Unsupervised algorithms are typically applied when discretization is performed without the intention
of subsequently using the data for classification, or when a variety of classification tasks can be
considered for the same data set, with different attributes used as the target concept. While both
categories include algorithms of various levels of refinement and complexity, supervised algorithms
tend to be more complex conceptually and computationally.

Background

IBM Netezza In-Database Analytics contains implementations of the following discretization
algorithms:

► equal-width discretization—an unsupervised discretization algorithm using the equal width
criterion for interval bound setting

► equal-frequency discretization—an unsupervised discretization algorithm using the equal
frequency, that is, equal data count, criterion for interval bound setting

► minimum-entropy discretization—a supervised discretization algorithm that identifies the most
appropriate interval bounds by minimizing class distribution impurity

The equal-width and equal-frequency algorithms are less complex, and therefore more
computationally efficient. They can handle large numbers of attributes and the quality of the
discretization intervals they produce are sufficient for several applications.

The equal-width algorithm identifies the range of the discretized attribute and divides it evenly into a
specified number of intervals. However. this approach is not robust with respect to outliers, which
may throw off the algorithm by extending the attribute’s range, resulting in bad interval data. Use the

00X6331-01 Rev. 2 113

In-Database Analytics Developer's Guide

equal-width algorithm only after checking the discretized attributes for outliers and removing them,
if necessary.

The equal-frequency algorithm identifies interval bounds in a more robust way. It adapts to the
actual data distribution by seeking intervals containing the values of the discretized attribute
corresponding to the same number of instances. However, exact results may be impossible when the
size of the data set does not divide evenly by the required number of intervals or when there are
several instances where the discretized attribute takes the same values. For this reason, the
algorithm allows the user to specify a parameter to control its disposition to modify the required
number of intervals to achieve more uniform interval frequencies.

The minimum-entropy discretization is a top-down method that starts from a single interval covering
the whole attribute range and divides it into smaller intervals. It seeks interval bounds that minimize
the class impurity of subsets of instances corresponding to particular intervals, measured by the
entropy. For interval I , it is calculated as:

E  I  =∑
d ∈C

−P d∣I  log2 P d∣I  (41)

where d iterates over all classes, P d∣I =∣T I
d
∣

∣T I∣
 is the probability of class d in interval I ,

estimated based on the subset of instances T I where the attribute a being discretized takes value
in interval I :

T I = { x∈T∣a x∈I } (42)

and d in the superscript denotes selection of instances of class d only. Dividing intervals continues
until an automatic stop criterion based on the minimum description length (MDL) principle is
satisfied.

Applications

Discretization is one of the most commonly applied data transformations for data mining. Typically, it
is performed as a preprocessing step before classification, when the classification algorithm to be
applied requires discrete attributes or is more efficient using them.

While the most common reason for discretizing continuous attributes is a modeling algorithm’s
inability to use continuous attributes, there may be more reasons to consider it a useful data
transformation even if the algorithm to be used subsequently supports continuous attributes
directly:

► it is likely to considerably reduce the computational effort of modeling

► it usually results in a simpler and more readable model

► it may help prevent overfitting by eliminating some opportunities to overfit

114 00X6331-01 Rev. 2

Available Functionality

Available Functionality

The following discretization functionality is available in IBM Netezza In-Database Analytics:

1. the equal-width, equal-frequency, and minimum-entropy algorithms — the EWDISC, EFDISC,
and EMDISC stored procedures,

2. user-specified number of intervals as stop criteria for the equal-width and equal-frequency
algorithms

3. an automatic MDL-based stop criterion for the minimum-entropy algorithm

4. output tables containing interval bounds on output

5. output views containing the original data set with a discretized attribute attached

The actual number of intervals is guaranteed to be the same as specified on input only for the equal-
width algorithm. The equal-frequency algorithm can produce fewer intervals if necessary to achieve a
sufficiently uniform interval frequency. This is controlled by a precision parameter, binprec, that
determines how large a discrepancy between the theoretically required and actual interval frequency
is acceptable. The theoretically required interval frequency is the data set size divided by the number
of requested intervals.

Examples
The example illustrates using each of the discretization algorithms in the IBM Netezza In-Database
Analytics package to discretize all continuous attributes in the CensusIncome data set. The following
three calls request that all the continuous attributes present in the data set be discretized using the
equal-width, equal-frequency, and minimum-entropy algorithms.

 CALL nza..EWDISC('intable=nza..CensusIncome_train,
incolumn=age:5;

wage_per_hour:4;
capital_gains:3;
capital_losses:3;
dividends_from_stocks:3;
num_persons_worked_for_employer:2;
weeks_worked_in_year:5,

outtable=ci_ewd');

CALL nza..EFDISC('intable=nza..CensusIncome_train,
incolumn=age:5;

wage_per_hour:4;
capital_gains:3;
capital_losses:3;
dividends_from_stocks:3;
num_persons_worked_for_employer:2;
weeks_worked_in_year:5,

binprec=1, outtable=ci_efd');

CALL nza..EMDISC('intable=nza..CensusIncome_train,
target=income,
incolumn=age;

00X6331-01 Rev. 2 115

In-Database Analytics Developer's Guide

wage_per_hour;
capital_gains;
capital_losses;
dividends_from_stocks;
num_persons_worked_for_employer;
weeks_worked_in_year,

outtable=ci_emd');

The equal-width and equal-frequency algorithms are instructed to create specific numbers of
intervals for each attribute after the colons following the attribute names. The above calls requested
five (5) intervals for the age and weeks_worked_in_year attributes, four (4) intervals for the
wage_per_hour attribute, three (3) intervals for the capital_gains, capital_losses, and
dividends_from_stocks attributes, and two (2) intervals for the
num_persons_worked_for_employer attribute.

The equal-frequency algorithm takes an additional binprec argument that specifies the tolerance for
the frequency equality condition, which may be impossible to satisfy exactly. The actual number of
instances in an interval can differ from the “theoretically” required number of instances per interval,
calculated as the data set size divided by the number of requested intervals, by no more than
binprec 100%. The value of 1 used in the example is the maximum, which instructs the algorithm to⋅
accept even substantially unequal interval frequencies. However, it may still divide the discretized
attribute range to less intervals than requested. For the minimum-entropy algorithm the class
column with respect to which the supervised discretization process is performed is specified via the
target argument.

All the discretization procedures generate output tables containing interval bounds for each
discretized attribute. These intervals can be applied to replace the original continuous attributes with
their discretized versions both in the data set on which the intervals were identified, as well as on a
new data set containing the same attributes. This capability is crucial whenever discretization is
performed as part of a modeling process where one has to apply the discretization intervals
identified on the training set to another data set for which the model is used to generate predictions.

Regardless of the algorithm used to create discretization intervals, they can be applied to a data set
in the same way, as demonstrated below for the training test:

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_ewd,
outtable=CensusIncome_train_ewd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_efd,
outtable=CensusIncome_train_efd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_emd,
outtable=CensusIncome_train_emd, replace=TRUE');

The replace=TRUE argument requests that the original continuous attributes are not preserved in
the output tables.

You can then apply the same discretization intervals to the validation and test sets:

CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_ewd,
outtable=CensusIncome_val_ewd, replace=TRUE');

116 00X6331-01 Rev. 2

Available Functionality

CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_efd,
outtable=CensusIncome_val_efd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_emd,
outtable=CensusIncome_val_emd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_ewd,
outtable=CensusIncome_test_ewd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_efd,
outtable=CensusIncome_test_efd, replace=TRUE');

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_emd,
outtable=CensusIncome_test_emd, replace=TRUE');

The continuous attributes in the validation and test sets have been discretized using the
discretization intervals identified by each of the three discretization methods on the training set. This
process should always be performed when using discretization as a data transformation on data that
is to be used for predictive modeling.

00X6331-01 Rev. 2 117

C H A P T E R 9
Standardization and Normalization

Standardization and normalization are arithmetic transformations applied to continuous attributes to
modify their values to achieve a desired change of the range or distribution.

Background

The two basic standardization and normalization operations are specified as follows:

► standardization—subtract the mean and divide the difference by the standard deviation, so that
the resulting modified attribute has mean 0 and standard deviation 1:

a ' x  =
a x −ma D

saD
 (43)

where ma D and saD  denote the mean and standard deviation of attribute a on data set D
being transformed,

► normalization—divide by the maximum absolute value, so that the resulting modified attribute
has values in the [−1,1] interval:

a ' x =
a x 

max x∈D ∣a x ∣
 (44)

More refined transformations, which use the length (Euclidean norm) of attribute value vectors, are
sometimes useful. Specifically, let ∥a∥D be the norm of the vector of values of attribute a on data
set D being transformed:

00X6331-01 Rev. 2 119

In-Database Analytics Developer's Guide

∥a∥D = ∑
x∈D

a2
x (45)

and let ∥a{i1 ,i 2 ,... ,i m}
 x∥ be the norm of the m -element vector of values of selected attributes

a i1 , i2 , ... ,im
 for instance (row) x :

∥a{i1 ,i 2 , ... ,im}
x ∥= ∑

k=1

m

a ik

2
x  (46)

The former can be called the column norm of attribute a and the latter called the row norm of
attributes a i1 , i2 , ... ,im

. Then the following additional types of normalization can be considered:

► unit normalization—divide by the column norm, so that the resulting modified attribute has a
column norm of 1:

a ' x  =
a x 
∥a∥

 (47)

► row normalization—for each attribute from a specified subset, divide by the corresponding row
norm, so that the modified attributes have a row norm of 1 for each instance:

a ' ik
x  =

a i k
x 

∥a{i1 , i2 , ... , im}
x∥

 (48)

► vector normalization—for each attribute from a specified subset, divide by the maximum
corresponding row norm, so that the modified attributes have row norms between 0 and 1:

a ' ik
(x)=

a i k
(x)

max x∈D∥a{i1 , i2 , ... , im}
(x)∥

 (49)

Applications

The primary reason to apply standardization, normalization, and related transformation is to make
the data better suited for some algorithms to be applied subsequently. This is typical for memory-
based classification and regression, as well as distance-based clustering algorithms. The quality of
predictions generated by such algorithms strongly depends on the employed distance measures. An
appropriate transformation may be necessary to ensure an attribute does not have too much or too
little impact on the calculated distance.

120 00X6331-01 Rev. 2

Available Functionality

Available Functionality

The IBM Netezza In-Database Analytics package offers the following standardization and
normalization functionality via the STD_NORM stored procedure:

► standardization of one or more specified attributes

► normalization of one or more specified attributes

► unit normalization of one ore more specified attributes

► row normalization of a specified set of attributes

► vector normalization of a specified set of attributes

► multiple attributes transformed, possibly with different transformations, in one call

Different standardization or normalization operations can be requested for different attributes in a
single call to the procedure that implements this functionality. These operations are specified using
the transform parameter that may contain several semicolon-separated transformation specifiers of
the following form:

► attr:L—leave attribute attr unchanged

► attr:S—standardize attribute attr

► attr:N—normalize attribute attr

► attr:U—apply unit normalization to attribute attr

► attr1/attr2/attr3:C—apply row normalization to attributes attr1, attr2, attr3, where one or
more attributes must be specified

► attr1/attr2/attr3:V—apply vector normalization to attributes attr1, attr2, attr3, where one or
more attributes must be specified

All attributes being transformed must be numeric data types. An output table is created that contains
appropriately modified attributes.

Examples

To illustrate the application of all the various types standardization and normalization, they are
applied to transform continuous attributes in the CensusIncome data set as follows:

► the age attribute is standardized

► the wage_per_hour attribute is normalized

► the dividends_from_stocks is unit-normalized

► the capital_gains and capital_losses attributes are row-normalized

► the num_persons_worked_for_employer and weeks_worked_in_year attributes are vector-
normalized

These operations are performed by the following call:

CALL nza..STD_NORM('intable=nza..CensusIncome,
 incolumn=age:S;
 wage_per_hour:N;

00X6331-01 Rev. 2 121

In-Database Analytics Developer's Guide

 dividends_from_stocks:U;
 capital_gains/capital_losses:C;
 num_persons_worked_for_employer/weeks_worked_in_year:V,
 id=id,
 outtable=ci_sn1');

The output table contains one column for each attribute being transformed, with a prefix attached to
the name indicating the type of transformation applied, std_, nrm_, nru_ or nrc_. For vector-
normalized attributes the output column name is created by concatenating the names of the input
columns used, separated by an underscore and prefixed by nrm_.

For a more practical example, consider the following calls requesting that all continuous attributes in
the CensusIncome data set be standardized. The operation is performed separately for the training,
validation, and test subsets, and their resulting standardized versions can be used for creating and
evaluating classification or clustering models.

CALL nza..STD_NORM('intable=nza..CensusIncome_train,
incolumn=age:S;

wage_per_hour:S;
capital_gains:S;
capital_losses:S;
dividends_from_stocks:S;
num_persons_worked_for_employer:S;

weeks_worked_in_year:S,
id=id, outtable=CensusIncome_train_std_num');

CREATE TABLE CensusIncome_train_std AS
SELECT N.*,

class_of_worker,
detailed_industry_recode,
detailed_occupation_recode,
education, enroll_in_edu_inst_last_wk,
marital_status,
major_industry_code,
major_occupation_code,
race,
hispanic_origin,
sex,
member_of_a_labor_union,
reason_for_unemployment,
full_or_part_time_employment_stat,
tax_filer_stat,
region_of_previous_residence,
state_of_previous_residence, detailed_household_and_family_stat,
detailed_household_summary_in_household,
migration_code_change_in_msa, migration_code_change_in_reg,
migration_code_move_within_reg,
live_in_this_house_1_year_ago,
migration_prev_res_in_sunbelt,
family_members_under_18,
country_of_birth_father,
country_of_birth_mother,
country_of_birth_self,
citizenship,
own_business_or_self_employed,

122 00X6331-01 Rev. 2

Examples

fill_inc_questionnaire_for_veterans_admin,
veterans_benefits,
year,
income

FROM CensusIncome_train_std_num N, nza..CensusIncome_train A
WHERE N.id=A.id;

CALL nza..STD_NORM('intable=nza..CensusIncome_val,
incolumn=age:S;

wage_per_hour:S;
capital_gains:S;
capital_losses:S;
dividends_from_stocks:S;
num_persons_worked_for_employer:S;

weeks_worked_in_year:S,
id=id, outtable=CensusIncome_val_std_num');

CREATE TABLE CensusIncome_val_std AS
SELECT N.*,

class_of_worker,
detailed_industry_recode,
detailed_occupation_recode,
education,
enroll_in_edu_inst_last_wk,
marital_status,
major_industry_code,
major_occupation_code,
race,
hispanic_origin,
sex,
member_of_a_labor_union,
reason_for_unemployment,
full_or_part_time_employment_stat,
tax_filer_stat,
region_of_previous_residence,
state_of_previous_residence, detailed_household_and_family_stat,
detailed_household_summary_in_household,
migration_code_change_in_msa, migration_code_change_in_reg,
migration_code_move_within_reg, live_in_this_house_1_year_ago,

 migration_prev_res_in_sunbelt,
family_members_under_18,
country_of_birth_father,
country_of_birth_mother,
country_of_birth_self,
citizenship,
own_business_or_self_employed,
fill_inc_questionnaire_for_veterans_admin,
veterans_benefits,
year,
income

FROM CensusIncome_val_std_num N, nza..CensusIncome_val A
WHERE N.id=A.id;

CALL nza..STD_NORM('intable=nza..CensusIncome_test,
incolumn=age:S;

wage_per_hour:S;

00X6331-01 Rev. 2 123

In-Database Analytics Developer's Guide

capital_gains:S;
capital_losses:S;
dividends_from_stocks:S;
num_persons_worked_for_employer:S;

 weeks_worked_in_year:S,
id=id, outtable=CensusIncome_test_std_num');

CREATE TABLE CensusIncome_test_std AS
SELECT N.*,

class_of_worker,
detailed_industry_recode,
detailed_occupation_recode,
education,
enroll_in_edu_inst_last_wk,
marital_status,
major_industry_code,
major_occupation_code,
race,
hispanic_origin,
sex,
member_of_a_labor_union,
reason_for_unemployment,
full_or_part_time_employment_stat,
tax_filer_stat,
region_of_previous_residence,
state_of_previous_residence, detailed_household_and_family_stat,
detailed_household_summary_in_household,
migration_code_change_in_msa, migration_code_change_in_reg,
migration_code_move_within_reg, live_in_this_house_1_year_ago,
migration_prev_res_in_sunbelt,
family_members_under_18,
country_of_birth_father,
country_of_birth_mother,
country_of_birth_self,
citizenship,
own_business_or_self_employed,
fill_inc_questionnaire_for_veterans_admin,
veterans_benefits,
year,
income

FROM CensusIncome_test_std_num N, nza..CensusIncome_test A
WHERE N.id=A.id;

124 00X6331-01 Rev. 2

C H A P T E R 1 0
Data Imputation

Background

Data imputation is a practical transformation that provides values for missing attribute fields so that
it is possible for algorithms that cannot process data sets with missing values to be used on the data
set.

Imputation is one of the most popular approaches to missing value handling in data mining. Other
possible approaches, each with their own limitations, include:

► ignoring—skipping instances with missing values of one or more attributes

► codomain extension—considering “missing” as an additional value added to an attributes
codomain

► internal processing—algorithm-specific techniques for internal missing value handling

The ignoring approach is not practical when instances with missing values constitute a large fraction
of the data set. Even if missing values are minimal, it may have negative impact on the quality of
analysis results.

The codomain extension is only applicable to discrete attributes, for which ”missing,” or any other
term used, can be considered an actual value. This approach can give good results with predictive
modeling algorithms as long as the distribution of missing values is the same in the training set used
to create a model as in the data to which the model is subsequently applied.

The third approach, possible with some data mining algorithms, is likely to yield superior results, but
typically adds considerable computational complexity.

Compared to the above mentioned alternatives, the data imputation approach can be considered a
useful general purpose solution that represents a good compromise between quality and complexity.
The idea is to provide missing attribute values with reasonable “guessed” values, which are usually:

► modes (the most frequent values) for discrete attributes

► means or medians for continuous attributes

00X6331-01 Rev. 2 125

In-Database Analytics Developer's Guide

Applications

Missing attribute values constitute the most widely encountered data quality issue that must be
faced when analyzing real-world data sets. Many data mining algorithms cannot work directly with
missing attribute values or require considerable additional computational effort to handle them
internally. Filling them by imputation is a one-time transformation that enables subsequent analysis
of the data set. It is worthwhile to consider for predictive modeling tasks—classification, regression,
and clustering—where the trivial approach of ignoring missing values is usually inappropriate and
refined internal missing value handling techniques are not available or are deemed too time-
consuming for large data sets.

Available Functionality

The IBM Netezza In-Database Analytics package offers the following imputation functionality via the
IMPUTE_DATA stored procedure:

► discrete attribute value imputation with modes (the most frequent values)

► continuous attribute value imputation with modes, means, or medians.

The imputation method is specified via the method argument.

Examples

To illustrate the application of data imputation, the following queries create an artificially corrupted
copy of the CensusIncome data set, specifically from the training, validation, and test subsets.), with
5% of the values of two selected attributes, one discrete and one continuous, replaced by NULL:

CREATE TABLE CensusIncome_train_miss AS SELECT * FROM
nza..CensusIncome_train;
CREATE TABLE CensusIncome_test_miss AS SELECT * FROM nza..CensusIncome_test;
CREATE TABLE CensusIncome_val_miss AS SELECT * FROM nza..CensusIncome_val;

UPDATE CensusIncome_train_miss SET capital_gains=NULL WHERE RANDOM()<0.05;
UPDATE CensusIncome_test_miss SET capital_gains=NULL WHERE RANDOM()<0.05;
UPDATE CensusIncome_val_miss SET capital_gains=NULL WHERE RANDOM()<0.05;

UPDATE CensusIncome_train_miss SET sex=NULL WHERE RANDOM()<0.05;
UPDATE CensusIncome_test_miss SET sex=NULL WHERE RANDOM()<0.05;
UPDATE CensusIncome_val_miss SET sex=NULL WHERE RANDOM()<0.05;

Now request that the imputation with medians is applied to the corrupted data:

CALL nza..IMPUTE_DATA('intable=CensusIncome_train_miss,
outtable=CensusIncome_train_imp, method=median');

CALL nza..IMPUTE_DATA('intable=CensusIncome_test_miss,
outtable=CensusIncome_test_imp, method=median');

126 00X6331-01 Rev. 2

Examples

CALL nza..IMPUTE_DATA('intable=CensusIncome_val_miss,
outtable=CensusIncome_val_imp, method=median');

This performs the imputation operation using the selected method only for attributes to which it is
applicable, that is, continuous attributes in the case of the median method. Attributes without
missing values are left unchanged, which results in modification of only the corrupted capital_gains
attribute. Now a second call can be used to perform imputation for the remaining corrupted discrete
attribute sex:

CALL nza..IMPUTE_DATA('intable=CensusIncome_train_imp, method=freq');

CALL nza..IMPUTE_DATA('intable=CensusIncome_test_imp, method=freq');

CALL nza..IMPUTE_DATA('intable=CensusIncome_val_imp, method=freq');

This replaces any remaining missing attribute values with the most frequent values, leaving any other
attributes unchanged. Note that no output table has been specified, which instructs the procedure to
modify the table passed as the input table produced by the previous call rather than create a new
copy. This results in training and test subsets of the CensusIncome data with values of the
capital_gains and sex attributes imputed with medians and modes, respectively.

00X6331-01 Rev. 2 127

C H A P T E R 1 1
Model Diagnostics

Model diagnostics algorithms are computational techniques used to provide reliable estimates of the
predictive utility of data mining models. Such estimates are necessary to select one out of several
models that can be generated for the same task using different algorithms or parameter setups, and
to decide whether the quality of a final model is sufficient for a particular application.

Background

Algorithms used for model quality assessment include:

► model quality indicators

► model evaluation procedures

Model quality indicators are measures calculated based on the predictions generated by a given
model on a given data set. They are task-specific, and different for different predictive modeling
tasks. Model evaluation procedures are responsible for making sure the calculated indicators can
serve as reliable model quality estimates on new, unseen data. They are task-independent and can be
used for both the classification and regression tasks.

Misclassification Error
The misclassification error is the most commonly-used quality indicator for classification models. It is
calculated for model h on data set S with respect to a target concept c (the true class labels of
which are known on S) as follows:

eS
c
h=

∣{ x∈S∣hx ≠c x  }∣
∣S∣

(50)

This is the ratio of the number of instances from S misclassified by model h to the total number of

00X6331-01 Rev. 2 129

In-Database Analytics Developer's Guide

instances in S . You may also consider 1− eS
c
h as the accuracy of a classification model.

Confusion Matrix
The misclassification error does not always adequately represent the quality of classification models.
In some applications, particularly with unbalanced classes or non-uniform misclassification costs, it
may be necessary to look deeper into predictions generated for instances of different classes. This is
possible using the confusion matrix, which for any pair of classes d 1 , d 2∈ C provides the number of
instances (from data set S used for the evaluation) of true class d 2 classified to class d 1 :

M S
c
h[d 1 , d 2] = ∣ { x∈S ∣ h x = d 1 , c x =d 2 }∣ (51)

The distribution of misclassification mistakes represented by the confusion matrix can be described
by a number of indicators, defined below. Assuming a two-class classification task with C={0,1}
where 1 denotes the “positive” class and 0 denotes the “negative” class, the notation can be
described by the following table:

Predicted h(x)

Negative
(0)

Positive
(1)

Actual
C(x)

Negative
(0)

TN FP

Positive
(1)

FN TP

The following table describes the terms used to refer to confusion matrix entries:

Table 9: Confusion matrix entries defined

Term Description

TN The number of true negatives, M S
c
(h) [0, 0]

FN The number of false negatives, M S
c
(h) [0, 1]

FP The number of false positives, M S
c
(h) [1, 0]

TP The number of true positives, M S
c
(h) [1,1]

130 00X6331-01 Rev. 2

Background

Table 10: Confusion matrix-based quality indicators

Term Description

True positive rate The ratio of instances correctly classified as positive to all

positive instances: TP
TP+FN

False positive rate The ratio of instances incorrectly classified as positive to all

negative instances:
FP

FP+TN

Positive predictive
value

The ratio of instances correctly classified as positive to all

instances classified as positive: TP
TP+FP

True negative rate The ratio of instances correctly classified as negative to all

negative instances: TN
TN+FN

False negative rate The ratio of instances incorrectly classified as negative to all

positive instances:
FP

FP+TP

Recall/
sensitivity

The same as the true positive rate.

Precision The same as the positive predictive value.

Specificity The same as 1 - false positive rate, which can also be stated as:
TN

TN+FP

Accuracy The ratio of the total number of correctly classified instances:
TN+TP

TN+FN+FN+TP

►

These indicators describe the level at which the evaluated classifier succeeds or fails to correctly
detect the positive class. Using all indicators is unnecessary as it results in redundant information;
however, no single indicator can be considered sufficient, either. The following performance
measures are usually used in complementary pairs:

► true positive rate and false positive rate

► precision and recall

► sensitivity and specificity

The true positive rate, also called recall or sensitivity, is a member of all these pairs, under those
names. It represents the share of positive instances correctly detected by the classifier. It should be
maximized, but a value of 1 results in a classifier that always predicts the positive class. Thus, it must

00X6331-01 Rev. 2 131

In-Database Analytics Developer's Guide

be accompanied by a complementary indicator. It could be the false positive rate, representing the
share of negative instances that are incorrectly reported as positive or “false alarms.” This, too,
should be minimized, and a trivial classifier achieving the perfect 0 false positive rate is the one
issuing no alarms at all.

Precision measures the share of all instances predicted as positive that are truly positive, which
should be maximized. Specificity is the same as the 1's complement of the false positive rate.

For classification tasks with more than two classes these indicators can be defined on a per-class
basis, with instances of one class considered positive and instances of all other classes considered
negative.

Mean Absolute Error
The mean absolute error (MAE) is used to evaluate the quality of regression models. For model h it
can be calculated on data set S with respect to target function f as follows:

1
∣S∣∑x∈S

∣ f  x −h  x ∣ (52)

Mean Square Error
A popular alternative quality measure for regression models is the mean square error (MSE):

1
∣S∣∑x∈S

 f  x −h  x  
2

 (53)

It increases the impact of large differences between predicted and true values and has favorable
analytical properties, due to its differentiability. It is also not uncommon to calculate the root mean
square error (RMSE) as:

 1
∣S∣
∑
x∈S

 f  x −h  x  
2

 (54)

which is sometimes more convenient because the error is expressed in the same units defined for
the target function.

Relative Absolute Error
For some applications a relative error measure for regression models is desired, which relates the
difference between predicted values and true target function values to the spread of the latter. This
is achieved by the relative absolute error (RAE), calculated as:

132 00X6331-01 Rev. 2

Background

∑ x∈S
∣ f  x −h  x ∣

∑ x∈S ∣ f  x −m f S ∣
 (55)

where m f (S) is the mean target function value in S .

Relative Square Error
The relative square error (RSE), a squared analog of the relative absolute error, is defined similarly as
follows:

∑ x∈S
(f (x)−h (x))

2

∑x∈ S (f (x)−m f (S))
2 (56)

It relates the mean square error to the variance of the target function values in the data set used for
the evaluation. It is also common to use the difference between 1 and this quantity, referred to as
the coefficient of determination.

Percentage Split
The percentage split evaluation procedure, also referred to as holdout or split sample, is the most
straightforward approach to model evaluation as it keeps the validation or test data separate from
the training data. The idea is to randomly split the available data set into two subsets, one is used for
model creation and the other used for model evaluation. It is common to use a 2:1 proportion for
this partitioning.

Although computationally inexpensive, the percentage split procedure is not always a sufficiently
reliable evaluation procedure. If too many instances are held out for evaluation, the reduced training
set size is likely to degrade the quality of the model to be evaluated, resulting in a pessimistic
evaluation bias. On the other hand, when the validation or test set becomes too small, the
evaluation variance increases. In both cases the reliability of the evaluation suffers, and it may be
difficult to balance the bias and variance tradeoff.

Despite these problems, the percentage split procedure remains the technique of choice whenever
the size of the data set and the corresponding computational cost of model creation or prediction—
whichever dominates for a particular algorithm—prevents the application of more refined
procedures. Note that for sufficiently large data sets the harmful effects of bias and variance are less
likely to be significant.

Cross-Validation
The k-fold cross-validation procedure makes it possible to reduce the evaluation bias while keeping
the evaluation variance acceptably low. It randomly splits the available data set D into k disjoint
subsets of roughly the same size D1 , D 2 , ... , D k , and then iterates over these subsets. On the i th
iteration a model is built using T i=∪ j≠i D j as the training set, and applied to generate predictions

00X6331-01 Rev. 2 133

In-Database Analytics Developer's Guide

on Di . Once all k iterations are completed, a predicted class label or target function value is
generated for each instance in the data set, using the model built without this instance in the training
set. The resulting vector of predictions can be compared to true class labels or target function values
using one or more selected quality indicators.

A single iteration of k -fold cross-validation is equivalent to the percentage split procedure, with
k−1

k of data selected for training and 1
k of data selected for evaluation. For sufficiently large k this

does not reduce the training set size to an extent that is be likely to impact model quality, since the
validation set is small, which accounts for reduced bias. Still, in k iterations all available instances
are used for model evaluation, which keeps the variance reasonably low unless k is set too high. In
practice, k values of 10, 5, and 20, in that order of popularity, are most commonly used, which
provide a good balance between bias, variance, and computational expense of model evaluation.

Cross-validation virtualizes the training and validation/test set, by permitting all available instances to
be used both for model creation and model evaluation—although not simultaneously. As long as the
cost of creating and applying multiple models is not prohibitive, it is the recommended evaluation
procedure.

Available Functionality
The IBM Netezza In-Database Analytics package provides implementations of the quality indicators
and evaluation procedures described in this section. The stored procedures to run to perform the
various calculations are:

► CERROR—misclassification error calculation

► CONFUSION_MATRIX—confusion matrix generation

► CMATRIX_STATS—derived indicators calculation for true positive rate, false positive rate, and
precision

► MSE—mean square error calculation

► MAE—mean absolute error calculation

► RAE—relative absolute error calculation

► RSE—relative square error calculation

► PERCENTAGE_SPLIT—the percentage split procedure for classification algorithms

► CROSS_VALIDATION—k-fold cross-validation for classification algorithms

The quality indicators can be applied to tables containing predicted and true class labels or target
function values. The evaluation procedures can be applied to arbitrary classification or regression
algorithms available in IBM Netezza In-Database Analytics and permit passing arbitrary parameters to
the selected modeling algorithms.

Examples

Examples for model quality indicators are demonstrated with the algorithms used to create
classification and regression models. The examples shown in this section are limited to the evaluation
procedures and are applied to evaluate decision tree models for the CensusIncome data set and

134 00X6331-01 Rev. 2

Examples

regression tree models for the WineQuality data set. These procedures generate tables with model
predictions on output, which can be used to calculate arbitrary quality measures. See the Decision
Trees and Regression Trees sections for more detailed information about the modeling algorithms.

The classification and regression algorithm examples in this guide typically partition data into training
and test sets, building models on the former and applying them to generate predictions on the latter
with two separate stored procedure calls. The model building task can be automated using the
TRAIN_TEST procedures. The procedure takes the training and test sets, as well as the algorithm
name, and any additional parameters as input. It then generates the resulting model and test set
predictions on output. The accuracy of these predictions is calculated and passed as the return value.
The following call demonstrates how it can be used with decision trees and the CensusIncome data
set:

CALL nza..TRAIN_TEST('modelType=dectree, traintable=nza..CensusIncome_train,
testtable=nza..CensusIncome_test, model=ci_tree1, id=id, target=income,
eval=gini, minsplit=1000, outtable=CensusIncome_income1');

The eval and minsplit arguments are passed to the DECTREE procedure, which is invoked by
TRAIN_TEST. The test set predictions stored in the created output table can now be evaluated using
any applicable quality measures, such as the misclassification error or confusion matrix-based
indicators. This is demonstrated below:

CALL nza..CERROR('pred_table=CensusIncome_income0,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income0, id=id, target=income,
matrixTable=ci_income0_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income0_cm');

The same procedure can be applied to evaluate a regression model, as demonstrated below for
regression trees and the WineQuality data set:

CALL nza..TRAIN_TEST('modelType=regtree, traintable=nza..WineQuality_train,
testtable=nza..WineQuality_test, model=wq_regtree1, id=id, target=quality,
minsplit=100, minimprove=0.05, outtable=WineQuality_quality1');

CALL nza..MSE('pred_table=WineQuality_quality0,
true_table=nza..WineQuality_test, pred_id=id, true_id=id, pred_column=class,
true_column=quality');

The test set accuracy, which is the return value of the TRAIN_TEST procedure, is not useful for
regression, but the mean square error or another appropriate quality measure can be calculated
externally, as in the example above.

To use random rather than predefined data partitioning in the training and test subsets, applying the
percentage-split evaluation procedure, you can issue a similar call:

CALL nza..PERCENTAGE_SPLIT('intable=nza..CensusIncome, modelType=dectree,
fraction=0.7, model=ci_tree_ps, id=id, target=income, eval=gini,

00X6331-01 Rev. 2 135

In-Database Analytics Developer's Guide

minsplit=1000, outtable=CensusIncome_income_ps');

Here the CensusIncome table is internally split at random into a 70% training set and a 30% test set.
The resulting model is stored under the name specified by the model argument, and the predictions
on the internally selected test subset are stored in the table specified by the outtable argument.
Their accuracy is passed as a return value.

This can be repeated for the WineQuality regression as follows:

CALL nza..PERCENTAGE_SPLIT(' intable=nza..WineQuality, modelType=regtree,
fraction=0.7, model=wq_regtree_ps, id=id, target=quality, minsplit=100,
minimprove=0.05, outtable=WineQuality_quality_ps');

CALL nza..MSE('pred_table=WineQuality_quality_ps,
true_table=nza..WineQuality, pred_id=id, true_id=id, pred_column=class,
true_column=quality');

Again, the test set accuracy returned by the procedure is not useful for regression, but any other
more appropriate quality indicator can be calculated for the generated predictions table.

The cross-validation procedure can be used in a similar manner, as demonstrated by this example:

CALL nza..CROSS_VALIDATION('modelType=dectree, intable=nza..CensusIncome,
folds=5, model=ci_tree_cv, id=id, target=income, eval=gini,
minsplit=1000, outtable=CensusIncome_income_cv');

Again, the eval and minsplit arguments are passed to the DECTREE procedure, which is invoked by
CROSS_VALIDATION. The complete CensusIncome data set is specified with the intable argument, to
be internally split into 5 subsets (as specified by the folds argument). The procedure creates 5
models, each using 4/5 of the data for training and the remaining 1/5 for testing. Notice that, since
for k-fold cross-validation each instance from the provided data set is used both as a training instance
(k-1 times) and as a test instance (once), predictions are generated for the complete data set. They
are stored in the output table and their accuracy is passed as the return value from the procedure.
Additionally, a model is created using the full data set and stored under a name specified by the
model argument. This is convenient for typical usage scenarios, where cross-validation is performed
to estimate the quality of the full-data model that is subsequently deployed.

The predictions stored in the created output table can now be evaluated by comparing them to
correct class labels for the full CensusIncome data set:

CALL nza..CERROR('pred_table=CensusIncome_income_cv,
true_table=nza..CensusIncome, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome,
resulttable=CensusIncome_income0, id=id, target=income,
matrixTable=ci_income0_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_cv_cm');

The final example shows how to perform 10-fold cross-validation for regression trees on the

136 00X6331-01 Rev. 2

Examples

WineQuality data set:

CALL nza..CROSS_VALIDATION('modelType=regtree,
intable=nza..WineQuality_train, folds=10, model=wq_regtree_cv, id=id,
target=quality, minsplit=100, minimprove=0.05,
outtable=WineQuality_quality_cv');

CALL nza..MSE('pred_table=WineQuality_quality1, true_table=nza..WineQuality,
pred_id=id, true_id=id, pred_column=class, true_column=quality');

00X6331-01 Rev. 2 137

C H A P T E R 1 2
Random Sampling

Random sampling procedures are a vital component of many analytical systems. They can be used to
select a test sample and a training sample for a model building process (machine learning). They can
also be used to get a smaller sample of the training set, which you may do because of learning
algorithm complexity considerations. In both cases, you would sample without replacement.

Another application of sampling is the learning methods based on bootstrapping. This requires many
independent samples from the same data, which are preferentially applied if the available data sets
are small or for other reasons where the sample independence is vital. Samples with replacement
are usually drawn in this case.

In application, sampling is used for promotion campaigns, for example when you want only a
representative set of customers to be subjects of an action.

In all cases, whether for use with scientific methods or business practices, uniform sampling is
important.

The random sampling procedure described in this section creates a random sample of the rows of a
table. Using it, you can obtain an exact number of rows in the sample or you can let the system
sample each row with a fixed probability. Sampling can be performed with or without replacement.

Available Functionality

The Random_Sample stored procedure, covers the following functionality:

► Creates random samples with a specified number of rows from a given table with replacement.

► Creates random samples with a specified number of rows from a given table without
replacement.

► Allows you to specify the probability of each row to be in the sample.

► Allows you to specify the input table columns to keep in the sample.

► Allows you to specify the name of the output table (and to overwrite an existing table, if
applicable).

00X6331-01 Rev. 2 139

In-Database Analytics Developer's Guide

Example

Consider three execution examples of the RANDOM_SAMPLE procedure on the Adult data set. The
first example illustrates the creation of a 1000-row random sample, with columns id and income, and
with replacement. Replacement means that some rows from the source data set can be duplicated)

CALL nza..RANDOM_SAMPLE('intable=nza..adult, size=1000, outtable=adult_size,
outsignature=id;income, outclear=true, replace=true, randseed=11213');

The second example shows creation of a random sample of the same size and the same output
columns, but without replacement (rows can not be duplicated).

CALL nza..RANDOM_SAMPLE('intable=nza..adult, num=1000, outtable=adult_num,
outsignature=id;income, outclear=true, replace=false, randseed=11213');

The last example shows creation of a random sample of a fixed faction equal to 0.3, without
replacement. This means that (approximately) 30 percent of the source data set will be copied to the
adult_frac table. Because the parameter outsignature is missing, all columns from the source data set
will be copied to the output table.

CALL nza..RANDOM_SAMPLE('intable=nza..adult, fraction=0.3,
outtable=adult_frac, outclear=true, replace=false, randseed=11213');

140 00X6331-01 Rev. 2

C H A P T E R 1 3
Naive Bayes

The naive Bayes classifier is a simpler classification algorithm than most, which makes it quick and
easy to apply. While it does not compete with more sophisticated algorithms with respect to
classification accuracy, in some cases it may be able to deliver similar results in a fraction of the
computation time.

Background

The naive Bayes classifier algorithm uses the Bayes theorem to calculate the conditional class
probability of the given attribute values, called the posterior class probability:

P  c  x  = d∣a1  x =v1 , a2  x =v2 , ... , an  x =v n

=
P c  x  = d ⋅P  a1  x =v1 ,a2  x =v 2 , ... , an  x =vn = v n∣c  x =d 

P  a1  x =v1 ,a2  x =v 2 , ... , an  x =vn = v n
 (57)

The numerator and denominator is referred to as the Bayes numerator and denominator,
respectively. The calculation is based on the prior class probabilities P c x =d  , which can be
directly estimated from the data, and on the joint inverse conditional attribute values probability
given the class:

P  a1  x =v1 , a2  x  = v2 , ... , an  x  = v n= vn∣c  x  = d  (58)

The joint inverse conditional attribute can be efficiently calculated as the product of per-attribute
conditional attribute value probabilities P a i x=vi∣c x=d  , directly estimated from the data,
assuming the conditional independence of attributes given the class. This assumption may be untrue
in practice, which is why the algorithm is called “naive”. While violations of the independence
assumption result in probability calculations yielding incorrect results, they may not directly affect

00X6331-01 Rev. 2 141

In-Database Analytics Developer's Guide

the accuracy of predictions, which may be correct even when using incorrect probabilities. The naive
Bayes classifier has been found to predict well in several domains where the independence
assumption is not satisfied.

A result of this approach is that whenever the estimated probability of one attribute value within a
class is 0, the posterior probability of this class is also calculated as 0. If this happens for all classes,
no prediction is possible. One way to prevent this problem is to always replace zero probabilities with
sufficiently small positive numbers. If there is no instance with the value of attribute a i equal v i in
class d , the probability P a i x=vi∣c x=d  can be set to half of the probability estimated
when there is one such instance. A more refined approach is to use a modified probability estimation
technique, known as the m -estimation, where the per-class attribute value frequencies observed for
training instances are augmented by the a priori assumed frequencies for a small number of
“hypothetical” instances. Without specific domain knowledge, these prior frequencies are assumed
to be equal for all attribute values within particular classes, and the number of included hypothetical
instances is usually equal to the number of possible attribute values.

Missing Value Support
Since Naive Bayes uses values of each attribute only for conditional probability calculations, assuming
the conditional independence of attributes given the class, it handles missing values during model
creation and prediction by ignoring them on a per-instance and per-attribute basis. More precisely,
when estimating a conditional attribute-value given the class probabilities of the following form
P a i x=vi∣c x=d  for each attribute a i , value v i , and class d , only instances with non-

missing values of a i are taken into account. Similarly, when the product of such probabilities needs
to be calculated during prediction for an instance x* :

∏
i=1

n

P(a i(x)=a i(x*)∣c(x)=d) (59)

factors corresponding to missing a i(x*) are skipped.

For data sets with no missing values the behavior remains unchanged. Data sets with missing values
can be used for both model creation and prediction.

Applications

While classification accuracy is not the strongest point of the naive Bayes classifier, its other
advantages make it well-suited to domains where classification models must be created quickly,
without a significant computational effort, without the need for parameter tuning, and without any
overfitting-prevention overhead. Similarly, it is well-suited to applications that require frequently
creating numerous classification models, either because they are quickly outdated or because new
classification tasks appear dynamically. There are some areas, however, where the naive Bayes
classifier may compete with much more refined algorithms not only in efficiency, but also in
accuracy. This may be the case for classification tasks with a large number of attributes, each of

142 00X6331-01 Rev. 2

Applications

which may have some marginal impact on the class, and where there are no strong relationship
patterns permitting prediction based on the values of a small number of the most influential
attributes. One such area where the naive Bayes classifier is among the most successful algorithms is
text classification.

Available Functionality

The Netezza implementation of the naive Bayes classifier, exposed as the NAIVEBAYES stored
procedure, covers the following functionality:

► naive Bayes model building by estimating probabilities

► support for discrete and continuous attributes

► all continuous attributes are automatically discretized using one of three algorithms:

▲ equal-width discretization—(the default) an unsupervised discretization algorithm using the
equal width criterion for interval bound setting (disc=ew)

▲ equal-frequency discretization—an unsupervised discretization algorithm using the equal
frequency, that is, equal data count, criterion for interval bound setting (disc=ef)

▲ minimum-entropy discretization—a supervised discretization algorithm that identifies the
most appropriate interval bounds by minimizing class distribution impurity (disc=em)

► support column properties definition mechanism

► two methods of conditional attribute-value probability estimation

▲ ordinary frequency-based estimation with replacing zero probabilities with small numbers
corresponding to ½ of an instance

▲ m -estimation with uniform priors and m set to the number of attribute values for each
attribute

► predicting most likely class labels and class probabilities for all classes

Examples

Consider the application of the naive Bayes classifier to the CensusIncome data set. Input data can
contain a mix of continuous and nominal attributes types. All types can be either detected
automatically or user-specified. To define types manually, use the incolumn and coldeftype
parameters (see Column Properties for more information). The naive Bayes classifier also allows you
to define a discretization algorithm, as well as the number of bins:

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=ew, bins=20, id=id,
target=income, model=ci_nb_ewd');

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=ef, bins=20, id=id,
target=income, model=ci_nb_efd');

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=em, id=id,
target=income, model=ci_nb_emd');

00X6331-01 Rev. 2 143

In-Database Analytics Developer's Guide

The created model is represented by a table containing one row for each attribute-value-class
combination and the following columns:

► attribute—the attribute

► val—the value

► class—the class

► classvalcount—the number of occurrences of the corresponding value of the corresponding
attribute within the given class in the training set

► classcount—the number of occurrences of the given class in the training set

► attrclasscount—the number of not null occurrences of the given class in the training set

► totalcount—the number of all instances in the training set

These are sufficient for calculating prior class probabilities and conditional attribute value
probabilities used for naive Bayes prediction.

The three resulting models can be used to generate test set predictions as follows:

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_ewd, intable=CensusIncome_test,
outtable=CensusIncome_income_nb_ewd, outtableprob =
CensusIncome_income_nb_ewd_prob');

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_efd, intable=CensusIncome_test,
outtable=CensusIncome_income_nb_efd, outtableprob =
CensusIncome_income_nb_efd_prob');

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_emd, intable=CensusIncome_test,
outtable=CensusIncome_income_nb_emd,outtableprob =
CensusIncome_income_nb_emd_prob');

Because the Netezza Analytics ID for the Predict procedure is optional, it is not necessary to define it
if its name in test data is the same as the name in training data.

Recall from the Discretization section that the test sets used for each model application have been
discretized using the same intervals that were determined on the corresponding training sets. The
specified output table contains the generated predictions and has two columns, id and class.
Another output table is also created, with the _prob suffix appended to the name, containing one
row for each instance and possible class, and the following columns:

► id—the instance identifier

► class—the class

► prob—the Bayesian numerator of the class for the instance, which is the product of the class
probability and the conditional instance attribute value probabilities

► lnprob—the natural logarithm of prob

The probabilities can be used to provide better insight into model predictions or modify model
operation. The Bayesian numerators can be converted to regular probabilities by normalization:
dividing by the sum of numerators for the same instance and all classes. This is demonstrated by the
following query that adds the class probability to each instance and its predicted class label for the
third model, obtained using the minimum-entropy discretization:

144 00X6331-01 Rev. 2

Examples

SELECT S.id, S.class, S.prob/S.sump as prob
FROM (SELECT id, class, prob, sum(prob) OVER (PARTITION BY id) AS sump FROM
CensusIncome_income_nb_emd_prob) S, CensusIncome_income_nb_emd P
WHERE S.id=P.id AND S.class=P.class;

The quality of the obtained predictions can be evaluated by calculating the misclassification error as
follows:

CALL nza..CERROR('pred_table=CensusIncome_income_nb_ewd,
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CERROR('pred_table=CensusIncome_income_nb_efd,
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CERROR('pred_table=CensusIncome_income_nb_emd,
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

The three models perform similarly; however, the first, which is based on equal-frequency
discretization, is slightly worse than the other two. With the misclassification error levels above 0.23
all three are considerably inferior to the models obtained in the examples presented in the Decision
Trees section. The naive Bayes classifier does not appear to be particularly well-suited to the
CensusIncome data set.

To enable the m -estimation technique for avoiding 0 probabilities during prediction, you can specify
the mestimation=TRUE argument for the PREDICT_NAIVEBAYES procedure, as demonstrated
below:

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_emd, intable=CensusIncome_test,
mestimation=TRUE, outtable=CensusIncome_income_nb_emd_mest');

CALL nza..CERROR('pred_table=CensusIncome_income_nb_emd_mest,
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

After analysis, it can be determines that the technique has little impact on the quality of predictions
generated for the CensusIncome data.

More in-depth prediction quality analysis can be performed using the confusion matrix and the
derived quality indicators, as demonstrated previously in the examples presented in the Decision
Trees section. For the third model, obtained using the minimum-entropy discretization, proceed as
follows:

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income_nb_emd, id=id, target=income,
matrixTable=ci_income_nb_emd_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_nb_emd_cm');

00X6331-01 Rev. 2 145

In-Database Analytics Developer's Guide

The result sheds new light on the quality of naive Bayes predictions for the CensusIncome data. The
large misclassification error translates to a high false positive rate of nearly 0.25, but also a
surprisingly high true positive rate of more than 0.9, with the high-income class considered positive.
While the false positive rate is poor, the true positive rate is significantly better than observed in the
Decision Trees section.

With Netezza Analytics 2.0 and later, all columns can be defined by types and roles.

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, id=id,
target=class');

is equal to:

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, incolumn= id:id;
class:target');

To define nominal and continuous attributes manually, you can use the nom and cont types:

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris,
incolumn=SEPALLENGTH:nom;SEPALWIDTH:cont;PETALLENGTH:cont;PETALWIDTH:cont;cla
ss:target,id=id');

It is also possible to create one-column properties definitions and pass them to the model multiple
times:

call nza..COLUMN_PROPERTIES('intable=nza..iris, outtable=iris_columns,
coldeftype=cont,
incolumn=PETALWIDTH:nom;PETALLENGTH:cont:ignore;class:nom:target;id:id');

select * from iris_columns;

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris,
colPropertiesTable=iris_columns');

146 00X6331-01 Rev. 2

C H A P T E R 1 4
Decision Trees

Background

In many classification applications it may be required or desirable not only to accurately classify
instances, but also to inspect the model. The inspection makes it possible to explain its decisions,
modify it, or combine with some existing background knowledge. In such applications, where both
the high classification accuracy and human-readability of the model are required, the method of
choice is typically going to be decision trees.

A decision tree is a hierarchical structure that represents a classification model using a “divide and
conquer” approach. Internal tree nodes represent splits applied to decompose the data set into
subsets, and terminal nodes, also referred to as leaves, assign class labels to sufficiently small or
uniform subsets. Splits are specified by logical conditions based on selected single attributes, with a
separate outgoing branch corresponding to each possible outcome.

The concept of decision tree construction is to select splits that decrease the impurity of class
distribution in the resulting subsets of instances, and increase the domination of one or more classes
over the others. The goal is to find a subset containing only or mostly instances of one class after a
small number of splits, so that a leaf with that class label is created. This approach promotes simple
trees, which typically generalize better.

Creating and using decision tree models involves three major algorithmic sub-tasks:

► decision tree growing

► decision tree pruning

► decision tree prediction

Growing
Decision tree growing consists of creating a decision tree from a given data set by appropriately
selecting splits and assigning class labels to leaves when no further splits are required or possible.

00X6331-01 Rev. 2 147

In-Database Analytics Developer's Guide

This is performed in a top-down fashion, starting from a single root node. A table representing a
training data set is used as input. This table contains a number of columns representing attributes as
well as a single column designated as the class attribute. The expected output is an appropriate
representation of a decision tree built based on the provided training set.

Decision tree growing starts from a single node, corresponding to the complete training set. When a
split is applied, each of the created descendant nodes corresponds to the appropriate subset of the
training set, determined by the split outcome. Further splits can be applied to these nodes, resulting
in new nodes corresponding to smaller subsets of instances, and so on. Nodes without further splits
remain leaves.

The decision tree growing process can be viewed as the repeated application of the following key
operations:

► stop criteria

► class label assignment

► split selection

The stop criteria determine whether a split is applied in a node, or if it remains a leaf. The decision is
based on the subset of training instances corresponding to the node. No split is applied when:

► all instances in the corresponding subset are of the same class

► the number of instances in the corresponding subset is less than a specified minimum

► the level of the current node is greater than a specified maximum, with the level of the root
node being 1, the level of its descendants being 2, and so on

► the improvement of class impurity due to the best available split is less than a specified
minimum

Class label assignment, although strictly necessary only for leaves, takes place for all nodes. The
majority class label in the corresponding set of training instances is always assigned. The class label
assignment is useful if the tree is subsequently pruned, which turns some nodes into leaves, and
facilitates the human inspection of the tree structure.

Split selection assigns minimum-impurity splits to nodes for which the stop criteria were not
satisfied. The set of candidate splits includes binary equality-based splits for all discrete attributes
and binary inequality-based splits for all continuous attributes. An impurity measure is applied to
subsets corresponding to split outcomes to evaluate candidate splits. One commonly used impurity
measure is the entropy, defined for node n as follows:

E (n) =∑
d ∈C

−P (d∣n) log2 P (d∣n) (60)

where d iterates over classes, and P (d∣n) =
∣T n

d
∣

∣T n∣
is the probability of class d based on T n , the

subset of training instances corresponding to node n , designated by T n , and the class in the
superscript denotes selecting instances of this class only. Another popular impurity measure is the
Gini index, calculated as:

148 00X6331-01 Rev. 2

Background

G(n)=1−∑
d∈C

P (d∣n)2 (61)

If a split is considered for node n that yields two descendant nodes, n1 and n2 , the selected
impurity measure is applied to these descendant nodes and then the weighted average of their
impurities is calculated to achieve the evaluation of the split, with the corresponding instance counts
used as weights. Using the entropy this can be written as follows:

E (n1 ,n2) = E (n1)
∣T n1
∣

∣T n∣
+E (n2)

∣T n 2
∣

∣T n∣
 (62)

The split that yields minimum impurity is selected.

In all phases of the tree growing process it is possible to use instance or class weights to make the
resulting decision tree model more sensitive to some instances or classes. Specifying a vector of
numerical weights wx for each instance x instructs the algorithm to weight the training instances
accordingly when creating the decision tree. Specifying per-class rather than per-instance weights is a
convenient way to assign the same weight to all instances of the same class. This does not actually
add any complexity to the algorithm. Note that all operations described above use training data only
to count instances in particular nodes satisfying some conditions. The effect of using weights is
replacing these counts by the corresponding sums of weights. For integer weights, this is equivalent
to replicating instance x from the training set wx times.

The most important application of class weights is to make the decision tree growing algorithm cost-
sensitive by assigning each class d∈C a weight wd=ρ[d] , where [d] is the misclassification
cost of predicting any class d '≠d for instances of true class d .

Pruning
The goal of decision tree pruning is to reduce the risk of overfitting by removing overgrown subtrees
that do not improve the expected accuracy on new data. While growing such subtrees may be
prevented by appropriately selected more aggressive stop criteria, a separate pruning process is
typically a more reliable approach. Decision tree pruning receives a decision tree on input and is
intended to produce a pruned version, ideally with less risk of overfitting.

There are two major categories of pruning algorithms:

► using a separate pruning data set to estimate the expected accuracy on new data

► using the training set for this estimate

A separate pruning data set is considered more reliable, although it has the disadvantage of
removing a large subset of data from the training set, which in turn may reduce the quality of the
grown tree. The result is a good pruning method applied to a mediocre tree. Using the training set
has the advantage of using the data economically, but must resort to heuristics to work around the
inability to estimate the true new data performance.

00X6331-01 Rev. 2 149

In-Database Analytics Developer's Guide

Reduced error pruning (REP) is the standard algorithm of the first category. It iterates over the
decision tree nodes in a bottom-up order and considers replacing each node and attached subtree
with a single leaf, with the majority training set class. If the accuracy of the replacement leaf on the
pruning set is more than that of the original subtree, the pruning operation is applied. The accuracy
estimation is based on the instances from the pruning set that have reached the point where the
node under consideration is located when propagated down the tree. The weighted accuracy may be
optionally used instead of the ordinary accuracy to better handle unbalanced classes, when high
accuracy values do not necessarily imply high predictive utility. It is calculated by averaging per-class
accuracies.

As with growing, instance or class weights can be taken into account in the pruning process, which
affects only the calculation of the accuracy of nodes and leaves. .

Prediction
Decision tree prediction consists of using a previously grown, and possibly pruned, decision tree to
generate class predictions for a data set. It is performed by applying the splits from the tree nodes to
propagate instances from the data set down to the corresponding leaves. Decision tree prediction
takes a decision tree and a data set on input and uses the tree to predict class labels for the data set.
It can be also used to predict class probabilities based on the class distribution of training instances in
leaves.

Missing Value Support
IBM Netezza In-Database Analytics supports the creation of decision trees for data sets that contain
missing values. Many real-world data sets suffer from missing attribute value, yet decision tree
growing is severely affected by missing values. In particular, the following operations cannot be
performed in the usual manner if the values of one or more attributes are missing for some
instances:

► class distribution calculation (class counts for each node-attribute-value)

► split evaluation (class impurity for each node-attribute-value)

► split application (splitting data based on equality- or inequality-based conditions)

which rely on the availability of attribute values. The fractional instance technique, applied to
overcome the problem, splits an instance with a missing value of some attribute used for a split into
appropriately weighted fractional instances, assuming that each split outcome is possible with a
corresponding probability.

The basic idea of the fractional instance technique is to virtually replace an instance by fractional
instances whenever a split is to be applied on an unknown attribute value. Each fractional instance
corresponds to one possible split outcome. In the Netezza Analytics implementation, instances with
an unknown attribute value are replaced by two fractional instances, corresponding to the left and
right outgoing tree branches. Each instance is assigned its copy count, initialized either to 1 or its
weight, if specified. Then, if the instance is fractionated it is multiplied by the corresponding split
outcome probabilities, determined based on those instances for which the values of the split
attribute are known.

150 00X6331-01 Rev. 2

Background

This technique is applied during all phases of decision tree processing: growing, pruning, and
prediction. Whenever the number of instances in a subset is needed for stop criteria or split selection
calculation during growing, the sum of the corresponding weights (copy counts) is used instead of
ordinary subset counts. Similarly instance weights are taken into account for pruning criteria
calculation. During prediction, whenever multiple fractions of the same instance arrive at multiple
leaves, the predicted class label is determined by probability-based voting.

Missing value handling via the fractional instance technique increases the computational complexity
of decision tree creation and application, but keeps the impact of missing values on model and
prediction quality as low as possible. If the additional computational expense is undesirable, missing
values may be imputed, as discussed in the Data Imputation section.

Applications

Decision trees are considered among the most accurate classifiers. Unlike some algorithms, they can
handle both discrete and numerical attributes by using them in symbolically-represented split
conditions. The human readability of decision tree models is an additional advantage that makes
them particularly well-suited to applications that require both high accuracy and interpretability of
the classification model. The latter makes it possible for a human expert to verify the model or to
combine it with some background knowledge. Application areas where this is likely to be needed
include customer classification, fraud detection, and diagnostics.

Available Functionality

The Netezza implementation of decision trees provided by the DECTREE, GROW_DECTREE,
PRUNE_DECTREE, PREDICT_DECTREE, and PRINT_MODEL stored procedures covers the following
functionality:

► top-down decision tree growing

► support for discrete and continuous attributes

► support for instance or class weights

► binary equality-based splits for discrete attributes (attribute = value)

► binary inequality-based splits for continuous attributes (attribute ≤ value)

► class labels and probabilities assigned to leaves and internal nodes

► split selection based on class impurity measures such as entropy or Gini index, with more
definable via UDAs

► several stop criteria: uniform class

▲ no candidate splits left

▲ not enough instances, that is, less than a specified minimum required for a split

▲ not enough improvement of class impurity (less than a specified minimum required for a
split)

▲ reaching the maximum allowed tree depth

00X6331-01 Rev. 2 151

In-Database Analytics Developer's Guide

► reduced error pruning using accuracy or weighted accuracy pruning criteria

► class label and probability prediction

► decision tree structure printing

If the input table contains NULL attribute values (i.e., instances with missing attribute values), the
fractional instance technique is automatically applied to handle them. The additional computational
expense depends on the particular data set and the number of missing values, but typically there is a
5-30% time increase compared to the same data sets with missing values removed or imputed. If this
computational expense is undesirable, instances with missing values should be removed or missing
values imputed. The Data Imputation section describes and demonstrates how the latter can be
accomplished.

The number of nodes that must be created, which is controlled by the stop criteria, determines the
computational effort required to grow (and subsequently prune or apply) the decision tree. Using
appropriate parameter settings for the minimum number of instances required for a split, the
minimum impurity improvement required for a split, or the maximum tree depth may save
computation time. Default settings result in moderately complex trees and should be usually
reasonable to start with, but may need adjusting for particular data sets.

Examples

Consider creating a decision tree model for the CensusIncome data set. The following call requests
growing a tree based on the CensusIncome_train table, using the id column as a unique instance
identifier, and the income column as the class:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id,
target=income,model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

The resulting decision tree is stored as the ci_tree1 model. The Gini index is used as a class impurity
measure for split evaluation, and no further splits are attempted when there are less than 1000
instances left or if the maximum available split does not improve the impurity by at least 0.005.

Although the tree was grown with stop criteria settings of minsplit=1000 and minimprove=0.005,
which may partially prevent overfitting, it is still likely to benefit from pruning. This is performed by
the following code, using the CensusIncome_val table as the pruning set:

CALL nza..PRUNE_DECTREE('model=ci_tree1, valtable=nza..CensusIncome_val');

If the id and target arguments are not specified in the call of the pruning procedure, as above, they
will default to those previously specified for tree growing. The pruning operation modifies the
specified decision tree in-place. The modified tree can be inspected using the same SQL call. Note
the substantial reduction in tree size, from several hundred nodes to just a few dozen. The tree can
be inspected as demonstrated before, by looking at the contents of the ci_tree1 table, but a more
readable printout is produced by calling the PRINT_DECTREE function:

CALL nza..PRINT_MODEL('model=ci_tree1');

The resulting output is presented below:

152 00X6331-01 Rev. 2

Examples

 -- decision tree model: "CI_TREE1" --
CAPITAL_GAINS <= 7298
| DIVIDENDS_FROM_STOCKS <= 0
| | if true then class -> - 50000.
| | WEEKS_WORKED_IN_YEAR <= 44
| | | if true then class -> - 50000.
| | | SEX = Female
| | | | DIVIDENDS_FROM_STOCKS <= 3750
| | | | | EDUCATION = Masters degree(MA MS MEng MEd MSW MBA)
| | | | | | if true then class -> - 50000.
| | | | | | EDUCATION = Doctorate degree(PhD EdD)
| | | | | | | if true then class -> 50000+.
| | | | | | | EDUCATION = Prof school degree (MD DDS DVM LLB JD)
| | | | | | | | if true then class -> 50000+.
| | | | | | | | if false then class -> - 50000.
| | | | | if false then class -> - 50000.
| | | | CAPITAL_LOSSES <= 1887
| | | | | DIVIDENDS_FROM_STOCKS <= 359
| | | | | | if true then class -> - 50000.
| | | | | | MAJOR_OCCUPATION_CODE = Professional specialty
| | | | | | | if true then class -> 50000+.
| | | | | | | MAJOR_OCCUPATION_CODE = Executive admin and managerial
| | | | | | | | if true then class -> 50000+.
| | | | | | | | if false then class -> - 50000.
| | | | | if false then class -> 50000+.
| CAPITAL_GAINS <= 9562
| | if true then class -> - 50000.
| | if false then class -> 50000+.

Each line in this textual tree representation corresponds to a node or a leaf, and the indentation
reflects the tree level. For a node, the split condition is printed; for each leaf, the assigned class label
is printed. Each node is followed by its left and right subtrees. For example, according to the printout
presented above, the root node splits on the capital_gains attribute by comparing it with a threshold
value of 7298. The left branch (capital_gains ≤ 7298) leads to a descendant node that splits on the
dividends_from_stocks attribute, and the right branch (capital_gains > 7298) to a node that uses
the capital_gains attribute again, comparing it with 9562. This node has two descendant leaves,
labeled with low (- 50000.) and high (50000+.) income class labels..

For convenience, the growing and pruning phases can be performed by a single call:

CALL nza..DECTREE('intable=nza..CensusIncome_train,
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree2,
eval=gini, minimprove=0.005, minsplit=1000');

This is equivalent to the separate grow and prune calls presented above. If the DECTREE
procedure is called without specifying the pruning set via the valtable argument, no pruning is
performed.

The accuracy quality measure is used for the pruning criterion by default, but the alternative
weighted accuracy measure may be requested by specifying the qmeasure=wacc argument for
PRUNE_DECTREE or DECTREE, as demonstrated below:

CALL nza..DECTREE('intable=nza..CensusIncome_train,
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree3,
eval=gini, minimprove=0.005, minsplit=1000, qmeasure=wacc');

00X6331-01 Rev. 2 153

In-Database Analytics Developer's Guide

It may be actually more appropriate for unbalanced classes, being equally sensitive to the accuracy
obtained for all classes.

The next two calls demonstrate the effect of other stop criteria that can be specified for decision tree
growing:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id,
target=income, model=ci_tree4, eval=gini, minimprove=0.0, maxdepth=5');

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id,
target=income, model=ci_tree5, eval=gini, minimprove=0.01, minsplit=1000');

The first limits the tree depth to 5 (the default maximum depth is 62) while setting the impurity
improvement needed for split to 0, and the other requests that a split must improve the class
impurity by at least 0.01 for at least 1000 instances to be accepted. The trees grown by these calls
are considerably smaller than those created before.

To evaluate the performance of the created decision tree on the CensusIncome test set, proceed as
follows:

CALL nza..PREDICT_DECTREE('model=ci_tree1, intable=nza..CensusIncome_test,
outtable=CensusIncome_income1, prob=TRUE');

This applies the ci_tree1 decision tree to generate predictions on the test set, which are stored in the
CensusIncome_income1 table. Both predicted class labels and their probabilities are generated. The
column used as a unique instance identifier does not need to be passed using the id argument if it is
the same as previously during tree creation, but otherwise it may be explicitly specified.

You can then calculate the misclassification error achieved by the tree on the test set:

CALL nza..CERROR('pred_table=CensusIncome_income1,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

The obtained error level may appear low, but subsequent inspection via the confusion matrix, using
the following call to the CONFUSION_MATRIX procedure:

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income1, id=id, target=income,
matrixTable=ci_income1_cm');

SELECT * FROM ci_income1_cm ORDER BY 1, 2;

This reveals that the tree’s performance may not be be very good. While it is successful at detecting
the low-income class, it usually fails to correctly predict the high-income class. This may not be
surprising given the sparser representation of the high income in the data. If you consider the high-
income class as positive and the low-income class as negative, you can describe the performance as
yielding a satisfactorily low false positive rate with a very low true positive rate. These indicators can
be calculated as follows, with the class argument used to specify which class is considered positive:

CALL nza..FPR('matrixTable=ci_income1_cm, class=50000+.');

154 00X6331-01 Rev. 2

Examples

Alternatively, a more extensive and comprehensible description of the model’s performance based
on the confusion matrix can be printed using the CMATRIX_STATS procedure:

CALL nza..CMATRIX_STATS('matrixTable=ci_income1_cm');

The output includes, in particular, the true positive rate and the false positive rate with each class
considered positive.

Similarly, examining the performance of the ci_tree3 model created with weighted accuracy-based
pruning, expected to handle unbalanced classes, better:

CALL nza..PREDICT_DECTREE('model=ci_tree3, intable=nza..CensusIncome_test,
outtable=CensusIncome_income3, prob=TRUE');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income3, id=id, target=income,
matrixTable=ci_income3_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income3_cm');

we may find some increase of the true positive rate for the high-income class.

Another way to look for improvement is to exploit the probabilistic prediction capability of decision
trees. When dealing with a two-class task, as in this example, you can predict class labels by explicitly
comparing estimated class probabilities against a cutoff value that is different from the default
implicit 0.5 cutoff corresponding to predicting the most probable class. This possibility is
demonstrated below using a cutoff value of 0.8 for the low-income class, which favors the high-
income class.

CREATE VIEW CensusIncome_income3p AS SELECT id, CASE WHEN class='- 50000.'
AND prob>=0.8 THEN '- 50000.' ELSE '50000+. ' END AS class FROM
CensusIncome_income3;

The modified predictions can be evaluated using the confusion matrix:

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income3p, id=id, target=income,
matrixTable=ci_income3p_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income3p_cm');

This evaluation reveals a further increase of the true positive rate, at the cost of some increase of the
false positive rate. These are more useful predictions, despite a slightly greater overall error. While
the default maximum-probability classification minimizes the misclassification error, by shifting the
probability cutoff value you effectively incorporate misclassification costs into the prediction process
and minimize the mean misclassification cost. The 0.8 cutoff for the low income class corresponds to
a 4:1 misclassification cost matrix—in which failing to detect the high-income class is 4 times more
costly than failing to detect the low-income class: 0.8=4 /45 .

00X6331-01 Rev. 2 155

In-Database Analytics Developer's Guide

Another approach to incorporating misclassification costs in decision tree classification is to
appropriately weight training instances during tree growing (and pruning instances during tree
pruning, if the latter is performed). This allows instances of the more important/harder to
predict/less frequent class, for which making mistakes is more costly, to receive more weight. An
appropriate class weight table, representing the same 4:1 cost matrix assumed above, can be created
and used for creating a decision tree model:

CREATE TABLE CensusIncome_weights AS SELECT DISTINCT income as class, CASE
WHEN income='50000+.' THEN 4 ELSE 1 END AS weight FROM
nza..CensusIncome_train;

CALL nza..DECTREE('intable=nza..CensusIncome_train,
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree1w,
weights=CensusIncome_weights, valweights=CensusIncome_weights, eval=gini,
minimprove=0.005, minsplit=1000');

The weights argument is used to specify the table containing class or instance weights for tree
growing, and the valweights argument specifies the weights table for pruning. For class weights
these are usually the same, but for instance weights they would be different if the training and
pruning sets were different (as they normally should). Class weights are specified using a table that
includes the class and weight columns, as demonstrated above, with the values of the former
matching the possible classes. To specify instance weights, a table including the id and weight
columns are required, with the values of the former matching instance identifiers from the training
or pruning set. This could be useful to make the model more sensitive to some particular instances,
but class weights are sufficient and more convenient to incorporate per-class misclassification costs.

The resulting decision tree – likely to be larger, as more splits yielding a sufficient impurity
improvemement may be found with more weight put to the less frequent class – can be evaluated in
the same way as before:

CALL nza..PREDICT_DECTREE('model=ci_tree1w, intable=nza..CensusIncome_test,
outtable=CensusIncome_income1w, prob=TRUE');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income1w, id=id, target=income,
matrixTable=ci_income1w_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income1w_cm');

and observed to exhibit indeed a substantially higher improvement of the true positive rate than
obtained previously by altering the prediction probability cutoff. In this case, the specified
misclassification costs were incorporated directly into the tree structure by the growing and pruning
process and not only into the prediction process, as with the probabilistic classification using the
minimum-cost rule.

The decision tree algorithm can be applied to data sets with missing attribute values either directly,
using the internal missing value handling capability, or after processing them with the data
imputation algorithm, as described in the Data Imputation section. There, corrupted versions of the
CensusIncome training, validation, and test set were created and then repaired by imputation. The

156 00X6331-01 Rev. 2

Examples

two attributes used for that demonstration, capital_gains and sex, are used by the trees generated
in this section and appear highly in the tree structure (the capital_gains attribute is used for the root
node split), as seen in the printout of ci_tree1 presented above. The following SQL code recreates
and evaluates the tree using the corrupted version of the training, pruning, and test data sets after
imputation:

CALL nza..DECTREE('intable=CensusIncome_train_imp,
valtable=CensusIncome_val_imp, id=id, target=income, model=ci_tree1imp,
eval=gini, minimprove=0.005, minsplit=1000');

CALL nza..PREDICT_DECTREE('model=ci_tree1imp, intable=CensusIncome_test_imp,
outtable=CensusIncome_income1imp, prob=TRUE');

CALL nza..CERROR('pred_table=CensusIncome_income1imp,
true_table=CensusIncome_test_imp, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=CensusIncome_test_imp,
resulttable=CensusIncome_income1imp, id=id, target=income,
matrixTable=ci_income1imp_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income1imp_cm');

The following sequence of calls repeats the same process directly using the corrupted data sets
without imputation:

CALL nza..DECTREE('intable=CensusIncome_train_miss,
valtable=CensusIncome_val_miss, id=id, target=income, model=ci_tree1miss,
eval=gini, minimprove=0.005, minsplit=1000');

CALL nza..PREDICT_DECTREE('model=ci_tree1miss,
intable=CensusIncome_test_miss, outtable=CensusIncome_income1miss,
prob=TRUE');

CALL nza..CERROR('pred_table=CensusIncome_income1miss,
true_table=CensusIncome_test_miss, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=CensusIncome_test_miss,
resulttable=CensusIncome_income1miss, id=id, target=income,
matrixTable=ci_income1miss_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income1miss_cm');

The quality of predictions clearly depends on the particular random distribution of missing values,
which were generated at random, but in general internal missing value handling takes somewhat
more time, but is likely to deliver better results in some situations.

00X6331-01 Rev. 2 157

In-Database Analytics Developer's Guide

Output Table Data Formats

The following tables are generated when you build decision trees:

► NZA_META_<model_name>_MODEL

► NZA_META_<model_name>_NODES

► NZA_META_<model_name>_PREDICATES

► NZA_META_<model_name>_COLUMNS

► NZA_META_<model_name>_COLUMN_STATISTICS

► NZA_META_<model_name>_DISCRETE_STATISTICS

► NZA_META_<model_name>_NUMERIC_STATISTICS

NZA_META_<model_name>_MODEL
The NZA_META_<model_name>_MODEL table contains information about the entire tree model.
The table contains only one line and has the following layout:

Table 11: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of tree model, always classification.

MAXSPLIT SMALLINT Maximal number of splits from a node.

DEPTH SMALLINT Depth of the tree.

MISSINGVALUE-
STRATEGY

VARCHAR(32) Strategy for handling the case where a
predicate evaluates to UNKNOWN. Possible
values are 'lastPrediction', 'nullPrediction',
'defaultChild', and 'weightedConfidence'.

MISSINGVALUE-
PENALTY

DOUBLE Factor to be applied to the confidence
every time the default child (or surrogate
node) strategy has to be applied.

NUMLEAVES BIGINT Number of leaf nodes contained in the
model.

NUMNODES BIGINT Number of nodes contained in the model.

NZA_META_<model_name>_NODES
The NZA_META_<model_name>_NODES table contains all tree nodes in the model together with
some explanatory information. The table further encodes the tree structure because it contains the
predecessor (parent) node for every node.

158 00X6331-01 Rev. 2

Output Table Data Formats

The table contains one line for each tree node and has the following layout:

Table 12: Columns of the NZA_META_<model name>_NODES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

NAME NVARCHAR(100) Name of the node (defaults to NODEID).

DESCRIPTION NVARCHAR(10000) Textual node description (defaults to
NULL).

SIZE DOUBLE Number of data records in the node.

RELSIZE DOUBLE Relative size of the node: Size of the
current node divided by the size of root
node (NODEID 1).

ISLEAF BOOLEAN Indicates whether the node is a leaf node.

PARENT BIGINT NODEID of parent node.

CLASS <target column type> Prediction made for records in this node.

IMPURITY DOUBLE The class impurity measure of this node.

DEFAULTCHILD BIGINT NODEID of default child node, which is
used as successor if the predicate cannot
be evaluated. If MISSINGVALUE-
STRATEGY is not ‘defaultChild‘ this value
is NULL.

NZA_META_<model_name>_PREDICATES
The NZA_META_<model_name>_PREDICATES table contains all simple predicates and all simple set
predicates in the model. The predicate of a given node indicates which condition must be true to be
reached from its parent. The predicate of the root node is true.

The table has the following layout:

Table 13: Columns of the NZA_META_<model name>_PREDICATES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model
having the predicate. The root node has

00X6331-01 Rev. 2 159

In-Database Analytics Developer's Guide

Column Data Type Purpose

NODEID 1.

COLUMNNAME NVARCHAR(128) Name of the column referenced by the
predicate. It is NULL when the predicate is
'true', 'false', 'isMissing' or 'isNotMissing'.

OPERATOR VARCHAR(16) Operator used by the predicate. Possible
operators are 'true' and 'false', 'equal',
'notEqual', 'lessThan', 'lessOrEqual',
'greaterThan', 'greaterOrEqual', 'isMissing',
and 'isNotMissing' for simple predicates,
and 'isIn' or 'isNotIn' for simple set
predicates.

VALUE NVARCHAR(16000) Column value referenced by the predicate.
It is NULL when COLUMNNAME is NULL.

NZA_META_<model_name>_COLUMNS
The NZA_META_<model_name>_COLUMNS contains all columns that are used by the data mining
algorithm. From this table, you can determine, which columns are required for the model
application.

The table contains one line for each model column and has the following layout:

Table 14: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME NVARCHAR(128) Name of an input column

DATATYPE VARCHAR(64) SQL data type of COLUMNNAME

OPTYPE VARCHAR(16) Operational type of COLUMNNAME:
possible values are ‘categorical‘, ‘ordinal‘
and ‘continuous‘.

USAGETYPE VARCHAR(16) Usage type: possible values are ‘ignored‘,
‘active‘, ‘predicted‘,
‘supplementary‘,‘frequencyWeight‘,
‘analysisWeight‘,and ‘group‘.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model
training process relative to other columns.
The default value is 1.0.

160 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

IMPORTANCE DOUBLE Indicates the column’s importance for the
data mining model as determined by the
algorithm. The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment: possible values are
‘asIs‘, ‘asMissingValues‘ and
‘asExtremeValues‘

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric
field. Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric
field. Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are
contained in the valid value range or not:
possible values are ‘openClosed‘,
‘openOpen‘, ‘closedOpen‘, and
‘closedClosed‘.

NZA_META_<model_name>_COLUMN_STATISTICS
The NZA_META_<model_name>_COLUMN_STATISTICS contains statistical information about the
active columns for each node. The contents and the existence of this table depend on the value of
the parameter statistics when the model is built.

The table has the following layout:

Table 15: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is null
if the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in
COLUMNNAME for NODEID.

MINIMUM DOUBLE Minimum value. The value is null if the
column is not numeric.

00X6331-01 Rev. 2 161

In-Database Analytics Developer's Guide

Column Data Type Purpose

MAXIMUM DOUBLE Maximum value. The value is null if the
column is not numeric.

MEAN DOUBLE Mean value. The value is null if the column
is not numeric.

VARIANCE DOUBLE Variance. The value is null if the column is
not numeric.

VALIDFREQ BIGINT Frequency of valid values.

MISSINGFREQ BIGINT Frequency of missing values.

INVALIDFREQ BIGINT Frequency of invalid values.

IMPORTANCE DOUBLE Importance of the column for data records
in NODEID towards predicting the target.

NZA_META_<model_name>_DISCRETE_STATISTICS
The NZA_META_<model_name>_DISCRETE_STATISTICS table contains statistical information about
the values of active categorical columns for each node. The contents of this table depend on the
value of the parameter statistics when the model is built.

The table has the following layout:

Table 16: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of input column.

VALUE NVARCHAR(16000) Value occurring in COLUMNNAME.
If the column is numeric, the value is a
string representation of the true column
value.

COUNT DOUBLE Number of occurrences of records with
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with
VALUE. The relative frequency is based on
all records, including those with invalid or

162 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID)
-RELFREQUENCY(1)

NZA_META_<model_name>_NUMERIC_STATISTICS
The NZA_META_<model_name>_NUMERIC_STATISTICS contains statistical information about the
values of active continuous columns for each node. The contents and the existence of this table
depend on the value of the parameter statistics when the model is built.

The table has the following layout:

Table 17: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of a numeric input column.

FROMVALUE DOUBLE Lower interval boundary; null indicates
negative infinity.

TOVALUE DOUBLE Upper interval boundary; null indicates
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are
contained. Possible values are
‘openClosed‘, ‘openOpen‘, ‘closedOpen‘,
and ‘closedClosed‘.

COUNT DOUBLE Number of occurrences of records in the
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the
interval. The relative frequency is based on
all records, including those with invalid or
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID)
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

00X6331-01 Rev. 2 163

In-Database Analytics Developer's Guide

Column Data Type Purpose

VARIANCE DOUBLE Variance of all values in the interval.

164 00X6331-01 Rev. 2

C H A P T E R 1 5
Nearest Neighbors

The nearest neighbor family of classification and regression algorithms is frequently referred to as
memory-based or instance-based learning, and sometimes also as lazy learning. These terms
correspond to the main concept of this approach, which is to replace model creation by memorizing
the training data set and using it appropriately to make predictions.

Background

The basic nearest neighbor (NN) algorithm makes classification or regression predictions for an
arbitrary instance x by identifying a training instance x NN∈T that is closest to x and returning its
class label c x NN  or target function value f x NN  as the predicted class label or target function
value for x .

The kNN algorithm extends this idea by permitting a specified number k≥1 of closest training
instances to be used rather than just one. For the classification task the predicted class label is
determined by the voting of these nearest neighbors, that is, the majority class label in the set of the
selected k instances is returned. For the regression task their target function values are averaged to
achieve the predicted value to return. The choice of k provides an opportunity to control the
tradeoff between overfitting prevention (which may be important particularly for noisy data) and
resolution (capability to yield different predictions for similar instances). It usually has to be
individually adjusted for a particular data set, with typical values ranging from 1 to several dozen.

The voting mechanism used in the kNN algorithm for the classification task makes it possible to
specify class weights, to make the prediction process more sensitive to some classes. Specifying a
vector of numerical weights for each class instructs the algorithm to weight the training instances of
particular classes accordingly when voting. In this manner, the kNN algorithm can be made cost-
sensitive by assigning each class d∈C a weight wd=[d] , where [d] is the misclassification
cost of predicting any class d '≠d for instances of true class d .

The kNN algorithms essentially make two decisions:

► memory representation—how to store the training set so that the search for the nearest

00X6331-01 Rev. 2 165

In-Database Analytics Developer's Guide

neighbors can be organized efficiently

► distance calculation—how to measure the distance (dissimilarity) between instances

Only the distance calculation is discussed here, as memory representation is an implementation issue
that for IBM Netezza In-Database Analytics is resolved by the database implementation environment.

The most commonly used distance measure for the kNN algorithm is the Euclidean distance,
calculated for instances x1 and x2 , described by attributes a1,a2 ,... , an , as follows:

 x1 , x2 = ∑i=1

n

a i  x1−a i  x2  
2

 (63)

This assumes continuous attributes, but can be also used with mixed sets containing some
continuous and some discrete attributes, by replacing the difference a ix1−a i x2 for discrete
attribute a i by 0 if a ix1=a i x2 or 1 otherwise. The Euclidean distance can be considered a
special case of the Minkowski metric for p=2 :

 px1 , x2 = ∑
i=1

n

∣ai  x1 −a i  x2 ∣
p

1
p

 (64)

The value of p can be used to control the relative impact of larger differences on the calculated
distance. Two other common special cases are obtained for p=1 and p=∞ :

1x1 , x 2=∑
i=1

n

∣a ix1−a ix2∣
 (65)

∞ x1 , x2=max i=1, ,n∣a i x1−a i x2∣ (66)

The latter is also known as the maximum distance and former is also known as the Manhattan
distance. The related Canberra distance uses a slightly different formula:

1 ' x1 , x2=∑
i=1

n ∣ai  x1−ai  x2∣

∣a i x1∣∣a i x2∣
 (67)

All these distance measures can be applied to instances described with discrete attributes in the
same way as the Euclidean distance.

Distance functions based on attribute value differences may yield misleading neighbor selection
when the attributes used to describe the data differ significantly in their ranges or dispersion. One or

166 00X6331-01 Rev. 2

Background

a few attributes with the largest range or dispersion may have the dominating impact on the
calculated distance and make other attributes negligible, which is not necessarily desirable. To
prevent this problem, it is recommended to apply standardization or normalization transformations
to continuous attributes before using them for the kNN algorithm with such distance functions.

In some applications it may be more appropriate to judge similarity or dissimilarity based on
correlations rather than differences of their attribute values. This is justified if instances considered
similar may have even substantially different attribute values which exhibit the same “low-high
pattern,” that is, the same attributes tend to have high or low values for the compared instances. This
is the case, for example, for text documents described by attributes defined as word frequencies,
where it is not the difference of word occurrence counts that matters, but the common subsets of
the most frequent and/or the least frequent words. Useful similarity measures in such situations are
the linear or rank correlation and the cosine distance of the attribute value vectors for the instances.
The latter is the cosine of the angle between the attribute value vectors, and is calculated as:

cos x1 , x2=
∑
i=1

n

ai x1⋅ai x2

∥a x1∥⋅∥a x2∥

 (68)

where ∥a x∥ designates the Euclidean norm of the vector of attribute values for instance x :

∥a  x∥= ∑
i=1

n

ai
2
x (69)

This is actually a closeness or similarity rather than distance measure, as it is maximized for the most
similar instances for which their attribute value vectors are nearly parallel, pointing to roughly the
same direction.

Searching for nearest neighbors is the computational bottleneck of the kNN algorithm that may
reduce its utility for large data sets. There are two major types of approaches to overcoming this
limitation:

► improved memory organization—using appropriate data structures for storing training
instances that permit efficient search, for example, k -d trees

► data set subsampling—using heuristic techniques to limit the number of instances for which the
distance function must be calculated

Improved memory organization is applicable for in-memory implementations and not applicable in
the case of in-database implementation. Data subsampling is therefore adopted, using the core set
subsampling technique. It reduces the amount of computation required for kNN prediction several
times without affecting the accuracy significantly.

00X6331-01 Rev. 2 167

In-Database Analytics Developer's Guide

Applications

The kNN algorithm often yields highly accurate predictions, competitive with the most accurate
models available. This accuracy potential makes it attractive for applications that demand high
accuracy but do not require the availability of an explicit human-readable model. Their quality,
however. depends largely on the distance measure. Therefore, the kNN algorithm is best suited to
applications where sufficient domain knowledge is available to support the selection of an
appropriate measure.

By following the lazy learning principle, the kNN algorithm postpones all computation needed to
generate predictions until they are required. This makes the prediction process much more expensive
computationally than for other algorithms since operating by creating a model is relatively cheap to
apply. This limits the effectiveness of using the nearest neighbor approach in applications that
demand frequent predictions based on large data sets, particularly online real-time prediction with a
stream of continuously arriving new instances. It is therefore a better choice for applications where
predictions are requested sparingly, but whose accuracy is of extreme importance. However, with
core set-based speedup techniques, the kNN algorithm may still be useful for large data sets and
frequently requested predictions as well.

Available Functionality

The implementation of the kNN algorithm provides the following functionality via the KNN and
PREDICT_KNN stored procedures:

► classification (voting) and regression (averaging) predictions

► support for class weights during classification

► optional standardization of continuous attributes (enabled by default)

► a choice of predefined distance measures: Euclidean, Manhattan, Canberra, maximum, and user
defined measures via UDFs

► support for both continuous and discrete attributes in difference-based distance calculation (the
difference between discrete values is 0 if equal and 1 otherwise)

► rows from the input table containing NULL values are ignored.

Examples

To illustrate the kNN algorithm, it is applied to the classification task on the CensusIncome data.
Although the actual work is performed by the algorithm only when predictions are requested, for
consistency with other algorithms the “model building” procedure must be called first as
demonstrated below:

CALL nza..KNN('intable=nza..CensusIncome_train, id=id, target=income,
model=ci_knn');

The model specified via the model argument contains a table with a copy of the provided input table,

168 00X6331-01 Rev. 2

Examples

with rows containing NULL values removed and an appropriate distribution applied. This is the model
representation for the kNN algorithm, that is the “memorized” training set. To apply such a model,
call the corresponding prediction procedure:

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id,
target=income, distance=euclidean, outtable=CensusIncome_income_eu3nn, k=3');

It is in the prediction procedure where the opportunity to specify the value of k and distance
measure is available. The above call uses k=3 and the Euclidean distance. Continuous attributes are
standardized before distance calculation. Standardization is recommended, so it is enabled by
default, but can be disabled using the stand=FALSE argument.

It may take a considerable time to generate kNN predictions, since for each test set instance the
training set is searched for its nearest neighbors. The amount of computation needed for this search
is greatly reduced using the fast mode. Fast mode is enabled by default but can be switched off by
specifying the fast=FALSE argument, which forces an exact, exhaustive nearest neighbor search
(recommended only for very small data sets).

The predictions can be evaluated by calculating the misclassification error:

CALL nza..CERROR('pred_table=CensusIncome_income_eu3nn,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

Optionally, the calculation can be sped up using core set subsampling (enabled by default) and the
confusion matrix:

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income_eu3nn, id=id, target=income,
matrixTable=ci_income_eu3nn_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_eu3nn_cm');

To compare, the predictions for k=5 instead of k=3 can be generated and evaluated:

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id,
target=income, distance=euclidean, outtable=CensusIncome_income_eu5nn, k=5');

CALL nza..CERROR('pred_table=CensusIncome_income_eu5nn,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income_eu5nn, id=id, target=income,
matrixTable=ci_income_eu5nn_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_eu5nn_cm');

and the predictions generated using the Manhattan instead of Euclidean distance:

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id,
target=income, distance=manhattan, outtable=CensusIncome_income_mh3nn, k=3');

00X6331-01 Rev. 2 169

In-Database Analytics Developer's Guide

CALL nza..CERROR('pred_table=CensusIncome_income_mh3nn,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income_mh3nn, id=id, target=income,
matrixTable=ci_income_mh3nn_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_mh3nn_cm');

Using all three parameter setups shows that the high-income class tends to be incorrectly detected,
resulting in a low true positive rate value, with the high-income class considered positive. Use class
weights to make the algorithm more sensitive to this class, as demonstrated for decision trees. The
following SQL query creates the weights table with the high-income class weighted 4 more times
than the low-income class:

CREATE TABLE CensusIncome_weights AS SELECT DISTINCT income as class, CASE
WHEN income='50000+.' THEN 4 ELSE 1 END AS weight FROM
nza..CensusIncome_train;

This weights table can then be used for kNN prediction as follows, assuming the second of the three
parameter setups demonstrated above:

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id,
target=income, weights=CensusIncome_weights, distance=manhattan,
outtable=CensusIncome_income_mh3nnw, k=3');

CALL nza..CERROR('pred_table=CensusIncome_income_mh3nnw,
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class,
true_column=income');

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test,
resulttable=CensusIncome_income_mh3nnw, id=id, target=income,
matrixTable=ci_income_mh3nnw_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_mh3nnw_cm');

The true positive rate is considerably increased, at the cost of increased false positive rate (decreased
precision).

To illustrate the application of the kNN algorithm to regression, the following sequence of calls use
the WineQuality data set to generate and evaluate predictions with k=3 and the Euclidean distance
measure:

CALL nza..KNN('intable=nza..WineQuality_train, model=wq_knn, id=id,
target=quality');

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id,
target=quality, distance=euclidean, k=3, outtable=WineQuality_quality_3nn');

170 00X6331-01 Rev. 2

Examples

CALL nza..MSE('pred_table=WineQuality_quality_3nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE('pred_table=WineQuality_quality_3nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

The same can be repeated with k=1 and k=5:

CALL nza..PREDICT_KNN ('model=wq_knn, intable=nza..WineQuality_test, id=id,
target=quality, distance=euclidean, k=1, outtable=WineQuality_quality_1nn');

CALL nza..MSE ('pred_table=WineQuality_quality_1nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE ('pred_table=WineQuality_quality_1nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..PREDICT_KNN ('model=wq_knn, intable=nza..WineQuality_test, id=id,
target=quality, distance=euclidean, k=5, outtable=WineQuality_quality_5nn');

CALL nza..MSE ('pred_table=WineQuality_quality_5nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE ('pred_table=WineQuality_quality_5nn, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

For easier comparison of the predicted and true target attribute value, the following SQL query
creates an auxiliary view:

CREATE VIEW WineQuality_knn_pred AS SELECT P3NN.class AS pred_value_3nn,
P1NN.class AS pred_value_1nn, P5NN.class AS pred_value_5nn, T.quality as
true_value
FROM WineQuality_quality_3nn P3NN, WineQuality_quality_1nn P1NN,
WineQuality_quality_5nn P5NN, nza..WineQuality_test T
WHERE P3NN.id=T.id AND P1NN.id=T.id AND P5NN.id=T.id;

The correlation between the predictions of each regression tree and the true target attribute values
can then be calculated:

CALL nza..CORR('intable=WineQuality_knn_pred, incolumn=pred_value_3nn;
true_value');

CALL nza..CORR('intable=WineQuality_knn_pred,
incolumn=pred_value_1nn;true_value');

00X6331-01 Rev. 2 171

In-Database Analytics Developer's Guide

CALL nza..CORR('intable=WineQuality_knn_pred,
incolumn=pred_value_5nn;true_value');

The results may appear disappointing, but better models may not result even with considerably more
refined algorithms since the quality attribute is not easily predictable in the WineQuality data set.

Finally, the following calls demonstrate the effects of disabling two useful and usually recommended
features of the kNN algorithm, attribute standardization and core set-based subsampling, also known
as fast mode. These experiments are performed with k=5 , which appeared to outperform k=3 and
k=1 according to the results obtained before.

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id,
target=quality, distance=euclidean, k=5, stand=FALSE,
outtable=WineQuality_quality_5nn_nostand');

CALL nza..MSE ('pred_table=WineQuality_quality_5nn_nostand,
pred_column=class, pred_id=id, true_table=nza..WineQuality_test,
true_column=quality, true_id=id');

CALL nza..MAE ('pred_table=WineQuality_quality_5nn_nostand,
pred_column=class, pred_id=id, true_table=nza..WineQuality_test,
true_column=quality, true_id=id');

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id,
target=quality, distance=euclidean, k=5, fast=FALSE,
outtable=WineQuality_quality_5nn_nofast');

CALL nza..MSE ('pred_table=WineQuality_quality_5nn_nofast, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE ('pred_table=WineQuality_quality_5nn_nofast, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

Disabling attribute standardization increases the error substantially, due to the considerable
differences in the ranges, means, and standard deviations of the attributes in the WineQuality data
set. Switching off fast mode, on the other hand, reduces the error marginally, which is also to be
expected. This improvement is achieved at the cost of increased computation time, which is
noticeable even for such a small data set. It takes about 3 times longer to generate predictions
without the fast mode enabled, and for larger data sets the effect is usually much more substantial.

172 00X6331-01 Rev. 2

C H A P T E R 1 6
Linear Regression

Background

Linear regression is a simple but very useful and commonly applied approach to the regression task,
even though it only performs direct modeling of linear relationships. It is the thing that limits its
applicability – a linear model representation – that makes it fast, efficient, and easy to use (compared
to more refined regression algorithms).

Linear regression adopts a particularly simple form of a parametric model representation, in which
the model's output for an instance x is calculated as:

h x =w0∑
i=1

n

w i a ix =∑
i=0

n

w i ai x

(70)

where w0 ,w1 ,... ,wn are model parameters (also called weights) and a 0 is an attribute defined as
constantly equal 1 , introduced for notational convenience. With this representation, the model
applied to any instance calculates the linear combination (or a dot product, more precisely speaking)
of its attribute values and parameter values. The parameter w i corresponding to attribute ai can be
interpreted as representing its impact on the model's prediction with all other attributes held fixed.

Creating a linear regression model based on a given data set, commonly referred to as fitting a model
to the data, consists of model parameter estimation, that is, identifying model parameters that
optimize an adopted quality measure, typically the mean square error. Linear regression algorithms
may differ in the particular technique applied to parameter estimation, with the least squares
method being the most common choice. It is based on linear algebra transformations of the training
set, represented by a matrix with ∣T∣ rows, corresponding to instances, and n1 columns,
corresponding to attributes a0 , a1 , , an (with the artificial attribute a0 constantly equal 1
included). To make it possible, all attributes have to be continuous. Any discrete attributes in the
original data need therefore to be numerically encoded via a number of binary attributes (treated as

00X6331-01 Rev. 2 173

In-Database Analytics Developer's Guide

continuous) indicating their different possible discrete values.

Let A denote such a numerical matrix training set representation, w denote the column vector of
model parameters w 0 ,w 1 , ,w n , and y denote the column vector of target function values for
training instances, corresponding to consecutive rows of A . Then the perfect parameter vector
would satisfy the following overdetermined matrix equation:

A⋅w= y (71)

A least mean squares solution of this equation, leading to a parameter vector that minimizes the
mean square error, can be obtained as follows:

AT
⋅A⋅w=AT

⋅y (72)

w=AT
⋅A−1

⋅AT
⋅y (73)

That is, by inverting the n1×n1  matrix AT
⋅A . The calculation of model parameters is

typically accompanied by testing the statistical significance of the model's fit to the data (using the F-
test) as well as the statistical significance of particular attributes (by using the t-test to verify whether
the corresponding model parameters significantly differ from 0).

Compared to more complex nonlinear regression, linear regression might appear inferior as being
capable of modeling linear or nearly-linear relationships only. While this limitation is important, the
following equally important advantages of linear regression still make it attractive for many
applications:

► efficiency: the parameter estimation process is computationally efficient

► ease of use: no complex algorithm setup is required

► interpretability: model parameters are (relatively) easy to interpret, at least compared to
nonlinear regression

► robustness: the parameter estimation process is not prone to false local minima of the mean
square error

Their common root is at the simplicity of the parameter estimation process for linear models, which
boils down to the minimization of a quadratic function (since the mean square error is quadratic with
respect to model parameters).

The limitation resulting from the linear representation can be partially alleviated by applying one of
the following two strategies, making it possible to approximate nonlinear relationships with linear
models:

► data decomposition: decompose the data set into a number of regions and fit separate linear
models to these regions, thus creating a piecewise-linear representation,

► data transformation: transform the data by creating a new set of attributes, nonlinearly
dependent on the original ones, which may make it possible to approximate the target function

174 00X6331-01 Rev. 2

Background

linearly.

Applications

Linear regression can be applied to all regression tasks as the first reasonable attempt to create a
regression model. For many real-world domains the quality of linear models may turn out to be
satisfactory, but otherwise it at least provides a solid baseline for further modeling attempts. It may
be particularly worthwhile to consider whenever its advantages (efficiency, easy of use,
interpretability, and robustness) are important and there is no strong evidence for the nonlinearity of
the relationship between the target function and attributes or other strategies (data decomposition
or data transformation) are used to overcome the nonlinearity. It is particularly common to see linear
models applied for financial prediction, demand forecasting, production volume prediction, etc.

Available Functionality

The Netezza Analytics implementation of linear regression provided by the LINEAR_REGRESSION,
PREDICT_LINEAR_REGRESSION stored procedures covers the following functionality:

► fitting linear model with or without the intercept term

► multiple regression

► fitting the model based on colinear or nearly-colinear attributes (using Moore-Penrose
pseudoinversion)

► standard LSE procedure using QR decomposition

► model diagnostics

► support for discrete and continuous attributes

The input table can contain NULL values, that is, instances with missing attribute values, but since all
such values are replaced by 0.0, it is highly recommended to remove or impute them prior to model
fitting or prediction. The Data Imputation section describes and demonstrates how the latter can be
accomplished. You can obtain similar functionality by using the Generalized Linear Models procedure
with the identity link setting and the Gaussian distribution setting. If you have data sets with few
attributes, the procedure might then work faster.

Examples

Consider creating a linear regression model for predicting the quality attribute from the WineQuality
data set. The following call builds a linear regression model and provides additional diagnostic
information:

CALL nza..LINEAR_REGRESSION('intable=nza..WineQuality_train, id=id,
target=quality, model=wq_lr, includeIntercept=TRUE,
calculateDiagnostics=TRUE, useSVDSolver=TRUE');

The linear regression model coefficients and the values of diagnostic measures can be inspected by
looking into the model table (the name of the model table takes the form nza_meta_<name of the

00X6331-01 Rev. 2 175

In-Database Analytics Developer's Guide

model>_model):

SELECT var_name, value, pval FROM nza_meta_wq_lr_model;

Apart from the values of model coefficients, the model table provides diagnostic measures when
these measures are requested by the caller.

Model coefficients are described by the following characteristics:

► the coefficient value (the VALUE column)

► the attribute (predictor variable) column (the VAR_NAME column)

► the target function (predicted variable) column name (the PREDICTED_NAME column)

► the identifier of the attribute (predictor variable) in the coefficient matrix (the VAR_ID column)

► the identifier of the target function (predicted variable) in the coefficients matrix (the
PREDICTED_ID column)

► the identifier of the attribute value (predictor variable level) for discrete attributes (the LEVEL_ID
column)

► the identifier of the target function value (predicted variable level) for discrete attributes (the
PREDICTED_LEVEL_ID column)

The following measures are diagnostic measures:

► the standard deviation of the fitted coefficients (the ST_DEV column)

► the t-test statistic (and corresponding p-value) for the hypothesis that a given coefficient is equal
to 0.0 (the TVAL and PVAL columns)

The constructed linear regression model can be applied to new data using following call:

CALL nza..PREDICT_LINEAR_REGRESSION('intable=nza..WineQuality_test, id=id,
model=wq_lr, outtable=wq_lr_pred');

provided that the table containing data has the same structure (attribute column names, not
necessarily in the same order as original set) as the table used for model construction.

The CensusIncome data set, which contains some nominal variables, provides an example of a more
complicated linear regression model:

 CREATE TABLE CensusIncome_restr AS
 SELECT * FROM nza..CensusIncome WHERE wage_per_hour>0;

 CALL nza..LINEAR_REGRESSION('intable=CensusIncome_restr,
 incolumn=CLASS_OF_WORKER;
 DETAILED_INDUSTRY_RECODE;
 DETAILED_OCCUPATION_RECODE;
 EDUCATION;
 ENROLL_IN_EDU_INST_LAST_WK;
 MARITAL_STATUS;
 MAJOR_INDUSTRY_CODE;
 MAJOR_OCCUPATION_CODE;
 RACE;
 HISPANIC_ORIGIN;
 SEX;
 MEMBER_OF_A_LABOR_UNION;

176 00X6331-01 Rev. 2

Examples

 REASON_FOR_UNEMPLOYMENT;
 FULL_OR_PART_TIME_EMPLOYMENT_STAT;
 TAX_FILER_STAT;
 REGION_OF_PREVIOUS_RESIDENCE;
 STATE_OF_PREVIOUS_RESIDENCE;
 DETAILED_HOUSEHOLD_AND_FAMILY_STAT;
 DETAILED_HOUSEHOLD_SUMMARY_IN_HOUSEHOLD;
 MIGRATION_CODE_CHANGE_IN_MSA;
 MIGRATION_CODE_CHANGE_IN_REG;
 MIGRATION_CODE_MOVE_WITHIN_REG;
 LIVE_IN_THIS_HOUSE_1_YEAR_AGO;
 MIGRATION_PREV_RES_IN_SUNBELT;
 COUNTRY_OF_BIRTH_FATHER;
 COUNTRY_OF_BIRTH_MOTHER;
 COUNTRY_OF_BIRTH_SELF;
 CITIZENSHIP;
 OWN_BUSINESS_OR_SELF_EMPLOYED;
 FILL_INC_QUESTIONNAIRE_FOR_VETERANS_ADMIN;
 VETERANS_BENEFITS;
 YEAR;
 INCOME;
 FAMILY_MEMBERS_UNDER_18;

 AGE:cont;
 WAGE_PER_HOUR:cont,

 coldeftype=nom,
 coldefrole=ignore,

 target=wage_per_hour,
 model=census_restr_wage,
 id=id,
 calculateDiagnostics=TRUE');

Output Table Data Formats

NZA_META_<model_name>_MODEL Table
The NZA_META_<model_name>_MODEL table contains details about linear model coefficients as
well as model diagnostic measures. The table contains one line for each continuous predictor and
one line for each level of nominal predictor, at a given predicted variable.

Table 18: Columns of the V_NZA_COMPONENTS view

Primary key columns: VAR_ID, LEVEL_ID, PREDICTED_ID

Column Name Column Type Description

VAR_ID INTEGER Index of the attribute in table used for model
construction. Special variables are encoded using
negative values:

► 1: model intercept

► 2: R^2

► 3: RSS (Residual Sum of Squares)

00X6331-01 Rev. 2 177

In-Database Analytics Developer's Guide

Column Name Column Type Description

► 4: estimator of variance of predicted variable

VAR_NAME NVARCHAR Name of the attribute in input table, or name of
the special variable: (Intercept), [R^2], [RSS], or
[Y_VAR_EST].

LEVEL_ID INTEGER Identifier of predictor level in the dictionary
created for nominal attributes. For continuous
attributes it is always set to 1. For model
diagnostics variable it is set to 0.

LEVEL_NAME Name of the nominal variable level.

PREDICTED_ID Index of the predicted variable (distinguishes
groups of coefficients in case of multiple
regression).

PREDICTED_NAME Name of the predicted variable.

LEVEL_NAME Name of the nominal variable level.

PREDICTED_ID Index of the predicted variable (distinguishes
groups of coefficients in case of multiple
regression).

PREDICTED_NAME Name of the predicted variable.

PREDICTED_LEVEL_ID Always 1.

PREDICTED_LEVEL_NA
ME

Not used.

VALUE Value of the coefficient or special variable.

ST_DEV Standard deviation of given model coefficient
value (when calculation of diagnostics was
requested, -1 otherwise).

TVAL The value of the T test statistics for a given model
coefficient (when calculation of diagnostics was
requested, -1 otherwise).

PVAL The p-value of the two sided T test for a given
model coefficient (when calculation of diagnostics
was requested, -1 otherwise).

178 00X6331-01 Rev. 2

00X6331-01 Rev. 2 179

C H A P T E R 1 7
Regression Trees

Regression trees are decision trees adapted to the regression task, which store numeric target
attribute values instead of class labels in leaves, and use appropriately modified split selection and
stop criteria.

Background

As with decision trees, regression tree nodes decompose the data into subsets, and regression tree
leaves correspond to sufficiently small or sufficiently uniform subsets. Splits are selected to decrease
the dispersion of target attribute values, so that they can be reasonably well predicted by their mean
values at leaves. The resulting model is piecewise-constant, with fixed predicted values assigned to
regions to which the domain is decomposed by the tree structure.

Creating and using regression tree models involves three major algorithmic subtasks:

► regression tree growing

► regression tree pruning

► regression tree prediction

Since they are direct analogs of their decision tree counterparts, only the differences are highlighted
here.

Growing
The purpose of growing is to create a regression tree from a given data set by appropriately selecting
splits to minimize the target attribute dispersion and assigning target values to leaves when no
further splits are required or possible. The three key operations performed when growing regression
trees are the same as for decision trees:

► stop criteria

► target value assignment

00X6331-01 Rev. 2 181

In-Database Analytics Developer's Guide

► split selection

Stop criteria for regression trees prevent applying further splits when:

► the number of instances in the corresponding subset is less than a specified minimum

► the level of the current node is greater than a specified maximum

► the improvement of target value dispersion to the best available split is less than a specified
minimum

Target values, assigned to both leaves and internal nodes, are mean target function values for the
corresponding subsets of instances. Candidate splits, as with decision splits, are evaluated based on
the average dispersion in the subsets obtained after the split.

A natural target value dispersion measure, used for both stop criteria and split selection, is the
variance. For node n it is calculated as:

s f n =
1
∣T n∣
∑
x∈T n

 f  x −m f n  
2

 (74)

where T n denotes the subset of training instances associated with node n , and:

m f (n)=
1
∣T n∣
∑
x∈T n

f (x) (75)

is the mean target function value in node n .

Pruning
Regression tree pruning may be used for overfitting prevention, just like for decision trees. The
predictive utility of all nodes of a previously grown regression tree is verified and those that do not
improve the expected prediction quality on new data are replaced by leaves. The decision is based on
pruning criteria. The same reduced error pruning (REP) algorithm as for decision trees is employed,
with a separate pruning set used to compare the predictive quality of nodes and leaves that could
replace them. The mean square error is the most commonly used quality indicator, but other
regression quality measures discussed in the Model Diagnostics section could be also adopted for
this purpose, including the linear or rank correlation.

Prediction
Regression tree prediction consists of using a previously grown regression tree to generate
predictions for a data set. It is performed by applying the splits from the tree nodes to propagate
instances from the data set down to the corresponding leaves. Regression tree prediction takes a
regression tree and a data set on input and uses the tree to predict the target attribute values for the
data set.

182 00X6331-01 Rev. 2

Background

Missing Value Support
Missing value support for regression trees is implemented using the same fractional instance
technique described in the Missing Value Support section of Decision Trees. For data sets with no
missing values, the behavior remains unchanged. Data sets with missing values that could not be
processed can be used for both regression tree model creation and prediction. This increases
computational expense, but keeps the impact of missing values on model and prediction quality as
low as possible.

Applications

The main advantage of regression trees as regression models is their human-readability. The tree
structure not only predicts target function values, but also explains which attributes are used and
how they are used to arrive at these predictions. Regression trees are usually applied when this
advantage is important and outweighs the disadvantage related to the piecewise-constant
approximation that they provide to the target function. One consequence of the model’s output
being a step function is that small changes of attribute values may yield no changes of the model’s
output at all as long as the change is within a single “step,” or substantial changes when moving to a
neighboring “step.” This is inconvenient in some applications, where the regression model is
expected to gently respond to input changes.

Available Functionality

The implementation of regression trees provided by the REGTREE, PREDICT_REGTREE, and
PRINT_MODEL stored procedures covers the following functionality:

► top-down regression tree growing

► support for discrete and continuous attributes

► binary equality-based splits for discrete attributes where attribute = value

► binary inequality-based splits for continuous attributes (attribute ≤ value),

► split selection based on target attribute dispersion (variance, with more definable via UDFs)

► several stop criteria

▲ sufficiently small target attribute dispersion

▲ not enough instances, less than a specified minimum required for a split

▲ not enough improvement of target attribute dispersion, less than a specified minimum
required for a split

▲ reaching a maximum allowed tree depth

► regression tree pruning using the reduced error pruning algorithm with the mean square error,
coefficient of determination, linear correlation, or rank correlation as quality indicators,

► target attribute mean and variance prediction

► regression tree structure printing

00X6331-01 Rev. 2 183

In-Database Analytics Developer's Guide

If the input table contains NULL attribute values (for example, in instances with missing attribute
values), the fractional instance technique is automatically applied to handle them. The additional
computational expense depends on the particular data set and the number of missing values, but
typically there is a 5-30% time increase compared to the same data sets with missing values removed
or imputed. If this computational expense is undesirable, instances with missing values should be
removed or missing values imputed. The Data Imputation section describes and demonstrates how
the latter can be accomplished.

Consider that the computational effort needed to grow a regression tree depends on the number of
nodes that must be created, which is controlled by the stop criteria. Using appropriate parameter
settings for the minimum number of instances required for a split, the minimum dispersion
improvement required for a split, or the maximum tree depth may save computation time. Default
settings result in moderately complex trees.

Examples

Consider creating regression trees for predicting the quality attribute from the WineQuality data set.
The following calls build three regression trees, differing in the applied stop criteria and pruning.

CALL nza..REGTREE('intable=nza..WineQuality_train, id=id, target=quality,
model=wq_regtree1, minsplit=200, minimprove=0.025');

CALL nza..REGTREE('intable=nza..WineQuality_train, id=id, target=quality,
model=wq_regtree2, maxdepth=8, minimprove=0.025');

CALL nza..REGTREE('intable=nza..WineQuality_train,
valtable=nza..WineQuality_prune, id=id, target=quality, model=wq_regtree3,
minimprove=0.025');

In each case the algorithm was instructed to stop when the variance reduction due to the best split
fell below 0.025. Additionally, for the first tree, no splitting was attempted after reaching less than
200 instances. For the second tree a maximum depth of 8 was specified. This yields a somewhat
larger tree. The third tree was grown without restrictions for the number of instances being split or
tree depth, but with pruning applied (which turns out to yield a tree that is actually quite similar to
the first). This was achieved by specifying the pruning data set via the valtable argument. With this
argument specified, the REGTREE procedure calls both GROW_REGTREE and PRUNE_REGTREE,
whereas the previous calls are equivalent to GROW_REGTREE alone.

More readable output is produced by the PRINT_REGTREE procedure:

CALL nza..PRINT_MODEL('model=wq_regtree1');

CALL nza..PRINT_MODEL('model=wq_regtree2');

CALL nza..PRINT_MODEL('model=wq_regtree3');

The printout obtained for the last tree is presented below:

184 00X6331-01 Rev. 2

Examples

 -- regression tree: "WQ_REGTREE3" --
ALCOHOL <= 10.8
| VOLATILE_ACIDITY <= 0.25
| | VOLATILE_ACIDITY <= 0.205
| | | DENSITY <= 0.99784
| | | | if true then class value -> 5.9153094462541
| | | | CITRIC_ACID <= 0.3
| | | | | if true then class value -> 7.0357142857143
| | | | | if false then class value -> 6.0333333333333
| | | if false then class value -> 5.6896551724138
| | if false then class value -> 5.3559748427673
| ALCOHOL <= 11.733333333333
| | FREE_SULFUR_DIOXIDE <= 13
| | | if true then class value -> 5.125
| | | VOLATILE_ACIDITY <= 0.47
| | | | if true then class value -> 6.2088452088452
| | | | if false then class value -> 4.25
| | FREE_SULFUR_DIOXIDE <= 10
| | | if true then class value -> 5.7727272727273
| | | PH <= 3.29
| | | | RESIDUALSUGAR <= 1.7
| | | | | VOLATILE_ACIDITY <= 0.58
| | | | | | DENSITY <= 0.99035
| | | | | | | if true then class value -> 6.3636363636364
| | | | | | | if false then class value -> 5.85
| | | | | | if false then class value -> 5.25
| | | | | FREE_SULFUR_DIOXIDE <= 20
| | | | | | if true then class value -> 6.2666666666667
| | | | | | VOLATILE_ACIDITY <= 0.15
| | | | | | | if true then class value -> 7.8
| | | | | | | ALCOHOL <= 12.4
| | | | | | | | if true then class value -> 6.5752212389381
| | | | | | | | if false then class value -> 6.8989898989899
| | | | if false then class value -> 6.967032967033

Each line in this textual tree representation corresponds to a node or a leaf, and the indentation
reflects the tree level. For a node the split condition is printed; for a leaf, the assigned class label is
printed. Each node is followed by its left and right subtrees. This is exactly the same representation
as for decision trees.

The following calls apply all the three regression trees created above to the test set, storing
predictions in the WineQuality_quality1, WineQuality_quality2, and WineQuality_quality3 tables:

CALL nza..PREDICT_REGTREE('model=wq_regtree1, intable=nza..WineQuality_test,
outtable=WineQuality_quality1, var=TRUE');

CALL nza..PREDICT_REGTREE('model=wq_regtree2, intable=nza..WineQuality_test,
outtable=WineQuality_quality2, var=TRUE');

CALL nza..PREDICT_REGTREE('model=wq_regtree3, intable=nza..WineQuality_test,
outtable=WineQuality_quality3, var=TRUE');

If the id argument skipped in calls to PREDICT_REGTREE, as above, the column specified during
model creation is used as the unique instance identifier. The achieved prediction quality can be

00X6331-01 Rev. 2 185

In-Database Analytics Developer's Guide

evaluated using the MSE and MAE errors:

CALL nza..MSE('pred_table=Winequality_quality1, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE('pred_table=WineQuality_quality1, pred_column=class,
pred_id=id, true_table=nza..Winequality_test, true_column=quality,
true_id=id');

CALL nza..MSE('pred_table=WineQuality_quality2, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE('pred_table=WineQuality_quality2, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MSE('pred_table=WineQuality_quality3, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE('pred_table=WineQuality_quality3, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

Despite size differences, the quality of predictions generated using the trees does not differ
substantially, although the pruned tree appears to outperform the other two.

For easier comparison of the predicted and true target attribute value, the following SQL query
creates an auxiliary view:

CREATE VIEW WineQuality_regtree_pred AS SELECT P1.class AS pred_value1,
P2.class AS pred_value2, P3.class AS pred_value3, T.quality as true_value
FROM WineQuality_quality1 P1, WineQuality_quality2 P2, WineQuality_quality3
P3, nza..WineQuality_test T WHERE P1.id=T.id AND P2.id=T.id AND P3.id=T.id;

Using this view, you can calculate the correlation between the predictions of each regression tree
and the true target attribute values:

CALL nza..CORR('intable=WineQuality_regtree_pred,
incolumn=pred_value1;true_value');

CALL nza..CORR('intable=WineQuality_regtree_pred,
incolumn=pred_value2;true_value');

CALL nza..CORR('intable=WineQuality_regtree_pred,
incolumn=pred_value3;true_value');

The predictions do not correlate very strongly with the true values, which indicates that these
regression trees failed to fully capture the relationship between the wine quality and

186 00X6331-01 Rev. 2

Examples

physicochemical features. This result indicates that the relationship is not sufficiently strong in the
available data set. Of the three trees, again the last one (pruned) turns out the best, and the second
one (the largest tree) is the worst, although the differences are rather minor.

The same evaluation process can be repeated using the training set only:

CALL nza..PREDICT_REGTREE('model=wq_regtree1, intable=nza..WineQuality_train,
outtable=WineQuality_train_quality1, var=TRUE');

CALL nza..PREDICT_REGTREE('model=wq_regtree2, intable=nza..WineQuality_train,
outtable=WineQuality_train_quality2, var=TRUE');

CALL nza..PREDICT_REGTREE('model=wq_regtree3, intable=nza..WineQuality_train,
outtable=WineQuality_train_quality3, var=TRUE');

CREATE VIEW WineQuality_regtree_train_pred AS SELECT P1.class AS pred_value1,
P2.class AS pred_value2, P3.class AS pred_value3, T.quality as true_value
FROM WineQuality_train_quality1 P1, WineQuality_train_quality2 P2,
WineQuality_train_quality3 P3, nza..WineQuality_train T WHERE P1.id=T.id AND
P2.id=T.id AND P3.id=T.id;

CALL nza..CORR('intable=WineQuality_regtree_train_pred,
incolumn=pred_value1;true_value');

CALL nza..CORR('intable=WineQuality_regtree_train_pred,
incolumn=pred_value2;true_value');

CALL nza..CORR('intable=WineQuality_regtree_train_pred,
incolumn=pred_value3;true_value');

Clearly, the obtained training set-based quality estimates are in no way reliable estimates of the
expected new data prediction quality, but they show how well the models actually fit the training
data. Not surprisingly, their predictions are somewhat (but not vastly) better than those of the test
set. For example, the second tree, which was the worst in the previous example, now appears to be
the best. This is a clear indication that it is actually overfitted.

The following example creates corrupted copies of the training, pruning, and test subsets of the
WineQuality data set to demonstrate the missing value handling capability of the Netezza regression
tree algorithm. In each case, 5% of values for two selected attributes of the WineQuality data set are
removed:

CREATE TABLE WineQuality_train_miss AS SELECT * FROM nza..WineQuality_train;
UPDATE WineQuality_train_miss SET alcohol=NULL WHERE random()<0.05;
UPDATE WineQuality_train_miss SET volatile_acidity=NULL WHERE random()<0.05;

CREATE TABLE WineQuality_prune_miss AS SELECT * FROM nza..WineQuality_prune;
UPDATE WineQuality_prune_miss SET alcohol=NULL WHERE random()<0.05;
UPDATE WineQuality_prune_miss SET volatile_acidity=NULL WHERE random()<0.05;

CREATE TABLE WineQuality_test_miss AS SELECT * FROM nza..WineQuality_test;
UPDATE WineQuality_test_miss SET alcohol=NULL WHERE random()<0.05;

00X6331-01 Rev. 2 187

In-Database Analytics Developer's Guide

UPDATE WineQuality_test_miss SET volatile_acidity=NULL WHERE random()<0.05;

The two affected attributes are those most frequently used by the previously created trees, so the
modifications will definitely degrade the model and prediction quality.

The following call creates a regression tree using the modified training and pruning data set, with
same parameter setup as previously for the last, most successful tree:

CALL nza..REGTREE('intable=WineQuality_train_miss,
valtable=WineQuality_prune_miss, id=id, target=quality,
model=wq_regtree3miss, minimprove=0.025');

It takes slightly longer than before for the original data with no missing values. Here is how the
resulting tree can be applied to the modified test set:

CALL nza..PREDICT_REGTREE('model=wq_regtree3miss,
intable=WineQuality_test_miss, outtable=WineQuality_quality3miss, var=TRUE');

You can verify this by printing the tree:

CALL nza..PRINT_REGTREE('model=wq_regtree3');

You will see that it still uses the alcohol and volatile_acidity attributes. Evaluating the predictions
using the mean square error and the mean absolute error reveals some degradation of prediction
quality (as expected):

CALL nza..MSE('pred_table=WineQuality_quality3miss, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

CALL nza..MAE('pred_table=WineQuality_quality3miss, pred_column=class,
pred_id=id, true_table=nza..WineQuality_test, true_column=quality,
true_id=id');

Output Table Data Formats

The following tables are generated when you build regression trees:

► NZA_META_<model_name>_MODEL

► NZA_META_<model_name>_NODES

► NZA_META_<model_name>_PREDICATES

► NZA_META_<model_name>_COLUMNS

► NZA_META_<model_name>_COLUMN_STATISTICS

► NZA_META_<model_name>_DISCRETE_STATISTICS

► NZA_META_<model_name>_NUMERIC_STATISTICS

NZA_META_<model_name>_MODEL
The NZA_META_<model_name>_MODEL table contains information about the entire tree model.

188 00X6331-01 Rev. 2

Output Table Data Formats

The table contains only one line and has the following layout:

Table 19: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of tree model, always regression.

MAXSPLIT SMALLINT Maximal number of splits from a node.

DEPTH SMALLINT Depth of the tree.

MISSINGVALUE-
STRATEGY

VARCHAR(32) Strategy for handling the case where a
predicate evaluates to UNKNOWN. Possible
values are 'lastPrediction', 'nullPrediction',
'defaultChild', and 'weightedConfidence'.

MISSINGVALUE-
PENALTY

DOUBLE Factor to be applied to the confidence
every time the default child (or surrogate
node) strategy has to be applied.

NUMLEAVES BIGINT Number of leaf nodes contained in the
model.

NUMNODES BIGINT Number of nodes contained in the model.

NZA_META_<model_name>_NODES
The NZA_META_<model_name>_NODES table contains all tree nodes in the model together with
some explanatory information. The table further encodes the tree structure because it contains the
predecessor (parent) node for every node.

The table contains one line for each tree node and has the following layout:

Table 20: Columns of the NZA_META_<model name>_NODES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

NAME NVARCHAR(100) Name of the node (defaults to NODEID).

DESCRIPTION NVARCHAR(10000) Textual node description (defaults to
NULL).

SIZE DOUBLE Number of data records in the node.

RELSIZE DOUBLE Relative size of the node: Size of the

00X6331-01 Rev. 2 189

In-Database Analytics Developer's Guide

Column Data Type Purpose

current node divided by the size of root
node (NODEID 1).

ISLEAF BOOLEAN Indicates whether the node is a leaf node.

PARENT BIGINT NODEID of parent node.

CLASS <target column type> Prediction made for records in this node.

IMPURITY DOUBLE The class impurity measure of this node.

DEFAULTCHILD BIGINT NODEID of default child node, which is
used as successor if the predicate cannot
be evaluated. If MISSINGVALUE-
STRATEGY is not ‘defaultChild‘ this value
is NULL.

NZA_META_<model_name>_PREDICATES
The NZA_META_<model_name>_PREDICATES table contains all simple predicates and all simple set
predicates in the model. The predicate of a given node indicates which condition must be true to be
reached from its parent. The predicate of the root node is true.

The table has the following layout:

Table 21: Columns of the NZA_META_<model name>_PREDICATES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model
having the predicate. The root node has
NODEID 1.

COLUMNNAME NVARCHAR(128) Name of the column referenced by the
predicate. It is NULL when the predicate is
'true', 'false', 'isMissing' or 'isNotMissing'.

OPERATOR VARCHAR(16) Operator used by the predicate. Possible
operators are 'true' and 'false', 'equal',
'notEqual', 'lessThan', 'lessOrEqual',
'greaterThan', 'greaterOrEqual', 'isMissing',
and 'isNotMissing' for simple predicates,
and 'isIn' or 'isNotIn' for simple set
predicates.

VALUE NVARCHAR(16000) Column value referenced by the predicate.

190 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

It is NULL when COLUMNNAME is NULL.

NZA_META_<model_name>_COLUMNS
The NZA_META_<model_name>_COLUMNS contains all columns that are used by the data mining
algorithm. From this table, you can determine, which columns are required for the model
application.

The table contains one line for each model column and has the following layout:

Table 22: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME NVARCHAR(128) Name of an input column

DATATYPE VARCHAR(64) SQL data type of COLUMNNAME

OPTYPE VARCHAR(16) Operational type of COLUMNNAME:
possible values are ‘categorical‘, ‘ordinal‘
and ‘continuous‘.

USAGETYPE VARCHAR(16) Usage type: possible values are ‘ignored‘,
‘active‘, ‘predicted‘,
‘supplementary‘,‘frequencyWeight‘,
‘analysisWeight‘,and ‘group‘.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model
training process relative to other columns.
The default value is 1.0.

IMPORTANCE DOUBLE Indicates the column’s importance for the
data mining model as determined by the
algorithm. The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment: possible values are
‘asIs‘, ‘asMissingValues‘ and
‘asExtremeValues‘

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric
field. Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric
field. Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are

00X6331-01 Rev. 2 191

In-Database Analytics Developer's Guide

Column Data Type Purpose

contained in the valid value range or not:
possible values are ‘openClosed‘,
‘openOpen‘, ‘closedOpen‘, and
‘closedClosed‘.

NZA_META_<model_name>_COLUMN_STATISTICS
The NZA_META_<model_name>_COLUMN_STATISTICS contains statistical information about the
active columns for each node. The contents and the existence of this table depend on the value of
parameter statistics when the model is built.

The table has the following layout:

Table 23: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is null
if the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in
COLUMNNAME for NODEID.

MINIMUM DOUBLE Minimum value. The value is null if the
column is not numeric.

MAXIMUM DOUBLE Maximum value. The value is null if the
column is not numeric.

MEAN DOUBLE Mean value. The value is null if the column
is not numeric.

VARIANCE DOUBLE Variance. The value is null if the column is
not numeric.

VALIDFREQ BIGINT Frequency of valid values.

MISSINGFREQ BIGINT Frequency of missing values.

INVALIDFREQ BIGINT Frequency of invalid values.

192 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

IMPORTANCE DOUBLE Importance of the column for data records
in NODEID towards predicting the target.

NZA_META_<model_name>_DISCRETE_STATISTICS
The NZA_META_<model_name>_DISCRETE_STATISTICS table contains statistical information about
the values of active categorical columns for each node. The contents and the existence of this table
depend on the value of the parameter statistics when the model is built.

The table has the following layout:

Table 24: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of input column.

VALUE NVARCHAR(16000) Value occuring in COLUMNNAME.
If the column is numeric, the value is a
string representation of the true column
value.

COUNT DOUBLE Number of occurrences of records with
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with
VALUE. The relative frequency is based on
all records, including those with invalid or
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID)
-RELFREQUENCY(1)

NZA_META_<model_name>_NUMERIC_STATISTICS
The NZA_META_<model_name>_NUMERIC_STATISTICS contains statistical information about the
values of active continuous columns for each node. The contents and the existence of this table
depend on the value of the parameter statistics when the model is built.

The table has the following layout:

00X6331-01 Rev. 2 193

In-Database Analytics Developer's Guide

Table 25: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model.
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of a numeric input column.

FROMVALUE DOUBLE Lower interval boundary; null indicates
negative infinity.

TOVALUE DOUBLE Upper interval boundary; null indicates
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are
contained. Possible values are
‘openClosed‘, ‘openOpen‘, ‘closedOpen‘,
and ‘closedClosed‘.

COUNT DOUBLE Number of occurrences of records in the
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the
interval. The relative frequency is based on
all records, including those with invalid or
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID)
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

VARIANCE DOUBLE Variance of all values in the interval.

194 00X6331-01 Rev. 2

C H A P T E R 1 8
K-Means Clustering

Background

The k-means algorithm is the most widely-used clustering algorithm that uses an explicit distance
measure to partition the data set into clusters.

The main concept behind the k-means algorithm is to represent each cluster by the vector of mean
attribute values of all training instances assigned to that cluster, called the cluster’s center. There are
direct consequences of such a cluster representation:

► the algorithm handles continuous attributes only, although workarounds for discrete attributes
are possible

► both the cluster formation and cluster modeling processes can be performed in a
computationally efficient way by applying the specified distance function to match instances
against cluster centers

The algorithm operates by performing several iterations of the same basic process. Each training
instance is assigned to the closest cluster with respect to the specified distance function, applied to
the instance and cluster center. All cluster centers are then re-calculated as the mean attribute value
vectors of the instances assigned to particular clusters. The cluster centers are initialized by randomly
picking k training instances, where k is the desired number of clusters. The iterative process should
terminate when there are either no or sufficiently few changes in cluster assignments. In practice,
however, it is sufficient to specify the number of iterations, typically a number between 3 and 36.

The range of reasonable distance (or dissimilarity) measures is the same as discussed for the kNN
algorithm in the Nearest Neighbors section, including all the standard difference-based measures:
Euclidean, Manhattan, Canberra, and Maximum. For k-means, two additional distance measures are
available--Norm_Euclidean and Mahalanobis. The Norm_Euclidean is the default measure used for k-
means clustering.

00X6331-01 Rev. 2 195

In-Database Analytics Developer's Guide

Normalized Euclidean Distances
For clustering data when the variables of input data have different scales, the normalized Euclidean
distance option is better suited than Euclidean distance. The normalized Euclidean distance is:

d n(x , y)=√ (∑ (x i− yi)
2
/σ i

2
) (76)

where, s
i
 is standard deviations for categorical variables, (xi-yi) is 0 if xi=yi and 1 otherwise with s

i
= 1.

Mahalanobis Distances
The Mahalanobis Distance (MD) is a useful distance measure for cluster analysis and classification.
Unlike the Euclidean distance, the MD takes the correlations of the input data into account and is
scale-invariant. However, calculation of the MD can be expensive, especially if there is a large
number of dimensions, due to the calculation of inverse covariance matrices and matrix
multiplications.

The MD is an abstract distance between two entities.

► MD with same set of variables

For a group of observations with the same set of (possibly correlated) variables, the MD between
an observation x=(x 1, x2, x 3,... , xn)

T and the center of a group G with mean u=(u1, u2, u3,... , un)
T

and covariance matrix S is defined as:

DM (x ,G)=√ (x – u)T S−1(x – u) (77)

For categorical variable values, (xi−ui) is a generalized deviation of categorical variable xi .

Automatic Transformation
For k-means, distances are applied to a pair consisting of an instance and a cluster center rather than
two instances. Beyond that, it may be necessary to transform continuous attributes by
standardization or normalization for difference-based distance measures, to avoid the potentially
misleading effect of substantially different ranges or dispersions. A transform option is available in
the NZA..KMEANS algorithm to automatically transform one or more columns of input data when the
input variables have different scales. The following auto_transform options are supported:

► L – leave as is

► S – standardize

► N – normalize

Discrete Attributes
As with nearest neighbors, handling discrete attributes requires appropriate distance measures. The
standard difference-based measures can be modified for this purpose by replacing the value
difference used for continuous attributes by a discrete difference: 0 when the compared values are

196 00X6331-01 Rev. 2

Background

equal and 1 otherwise. The cluster representation must be modified, as well. Instead of mean
attribute values the most frequent values (modes) can be used for discrete attributes in cluster
centers.

The randomness of cluster initialization may yield different results in several independent runs, and it
is a widespread practice to invoke the algorithm several times to choose the most satisfactory
clustering with respect to quality criteria or preferences for a given application.

The clustering model created by the k-means algorithm is fully specified by the list of created cluster
centers as well as with the distance measure used.

Statistics
Statistical information may not be necessary for certain applications. To save space and time,
statistics are not collected by default. An additional parameter is supported by all model building
procedures that support collection of enriched statistics. This parameter governs the level of detail of
the statistics.

Regardless of the statistics settings, all information needed to score the model is stored. For the k-
means algorithm, this includes the distance function, mean values for each cluster and continuous
column, and modal values for each categorical column.

If statistics=all[:N] or statistics=values:N, then all statistical information is stored down to the
individual column value level. Discrete statistics are limited to at most N distinct values. The default
value of N is 100. The default statistics parameter is none.

If statistics=columns, all statistical information is stored down to the individual column level, omitting
value level statistics. NZA_META_<model_name>_DISCRETE_STATISTICS and
NZA_META_<model_name>_NUMERIC_STATISTICS are not created.

If statistics=none, only statistical information necessary for scoring is stored.

Applications

The k-means algorithm usually compares well to more refined and computationally expensive
clustering algorithms with respect to the quality of results. Its capability to work with arbitrary
distance functions, which may, if necessary, incorporate domain-specific knowledge, makes it
convenient for many applications. For practical applications of the algorithm, the range of possible
values of the k parameter is sufficiently small to be examined by running the algorithm several times
with different values of k. The extreme situations of partitioning the data into more than a dozen
clusters, or a few dozen is not useful. A given application is likely to narrow down the range to a few
k values.

Available Functionality

The IBM Netezza In-Database Analytics package contains the implementation of the k -means
algorithm and are exposed as the KMEANS and PREDICT_KMEANS stored procedures with the
following features:

00X6331-01 Rev. 2 197

In-Database Analytics Developer's Guide

► support for both continuous and discrete attributes

▲ in difference-based distance calculation—the difference between discrete values is
assumed to be 0 if they are equal and 1 otherwise

▲ in cluster center representation—modes (the most frequent values) are used instead of
means for discrete attributes

► a choice of predefined distance functions: Normalized Euclidean (the default), Euclidean,
Manhattan, Canberra, Mahalanobis, maximum, and other user-defined functions via UDFs

► stop criterion satisfied on convergence or after a specified maximum number of iterations
performed

► a choice to auto-transform a list of columns of input data

► cluster membership prediction for new data

Rows from the input table containing NULL values are ignored.

Examples

To illustrate the k-means algorithm, apply it to create a clustering model for the CensusIncome data
set. The income attribute, representing the class, is not used for clustering. This is achieved by the
following call, specifying it as the target attribute to be ignored by the algorithm:

CALL nza..KMEANS('intable=nza..CensusIncome_train, id=id, target=income, k=5,
maxiter=3, distance=euclidean, model=ci_km5c, outtable=ci_km5m_out');

This call uses the Euclidean as a distance measure and creates 5 clusters within at most 3 iterations.
Five output tables are created. One output table is specified via the outtable argument, which
contains cluster membership information for each instance from the 'intable' training data set with
the distance from the cluster’s center. Four meta tables are specified via the model argument:

NZA_META_<model>_MODEL
NZA_META_<model>_CLUSTERS
NZA_META_<model>_COLUMNS,
NZA_META_<model>_COLUMN_STATISTICS

The NZA_META_<model>_MODEL contains information pertaining to the entire clustering model.
The NZA_META_<model_name>_CLUSTERS contains all clusters in the model together with some
cluster information (cluster centers, which are mean attribute values for each cluster, along with the
cluster size and the sum of squared distances between cluster members and the center). The
NZA_META_<model>_COLUMNS contains all columns used by the Kmeans clustering and scoring.
The NZA_META_<model>_COLUMN_STATISTICS contains column statistics information.

You can use the PRINT_KMEANS procedure to inspect the built model. For example:

CALL nza..PRINT_KMEANS('model=ci_km5c, mode=clusters');
Sample output might be:

| CLUSTERID | NAME | SIZE | RELSIZE | WITHINSS | DESCRIPTION |
+-----------+------+--------+--------------------+-----------------+-------------+
| 1 | 1 | 3603 | 0.025733508556409 | 89551928909.02 | |
| 2 | 2 | 6650 | 0.047495928920378 | 3965395356.2001 | |

198 00X6331-01 Rev. 2

Examples

3	3	464	0.0033140016570008	1430862970383	
4	4	126396	0.90275119275491	15122880034.032	
5	5	2899	0.020705368111305	307725114544.09	

The created cluster model can be inspected by directly looking into the ci_km5c cluster table:

SELECT * FROM nza_meta_ci_km5c_clusters ORDER BY clusterid;

The table contains one row for each cluster and one column for each attribute used for clustering
with the mean attribute value for continuous attributes and the most frequent value for discrete
attributes. The following additional diagnostic columns are also included:

► clusterid—the cluster identification number

► size—the number of training instances in the cluster

► withinss—the sum of squared distances between training instances assigned to the cluster and the
cluster center

A more readable cluster description can be obtained by selecting only the diagnostic columns and
skipping the columns representing cluster centers:

SELECT clusterid, size, withinss FROM nza_meta_ci_km5c_clusters ORDER BY
clusterid;

The ci_km5m_out members table contains one row for each training instances and the following
columns:

► id—the instance identifier

► cluster_id—the identifier of the cluster to which the instance is assigned

► distance—the distance between the instance and the cluster center, according to the distance
measure used for the clustering

It can be used to calculate additional indicators based on the assignment of training instances to
clusters. For example, the following query can be used to determine the distribution of the income
attribute, not used for clustering, within the obtained clusters:

SELECT cluster_id, income, count(*)
FROM ci_km5m_out O, nza..CensusIncome_train T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income;

The following example demonstrates how to describe the distribution of the continuous age
attribute within the clusters by moments:

CREATE VIEW ci_km5m_age AS
SELECT cluster_id, age
FROM ci_km5m_out O, nza..CensusIncome_train T
WHERE O.id=T.id;

CALL nza..MOMENTS('intable=ci_km5m_age, incolumn=age, by=cluster_id,
outtable=ci_km5m_age_moments');

00X6331-01 Rev. 2 199

In-Database Analytics Developer's Guide

SELECT * FROM ci_km5m_age_moments;

Refer to the section on data exploration algorithms for more details on distribution moments:

Since the cluster sizes of the clustering obtained with k=5 are extremely unbalanced, with one very
large cluster dominating the others, it may be reasonable to consider a smaller value of k. The
following code repeats the example presented above for k=2.

CALL nza..KMEANS('intable=nza..CensusIncome_train, id=id, target=income, k=2,
maxiter=3, distance=euclidean, model=ci_km2c, outtable=ci_km2m_out');

SELECT clusterid, size, withinss FROM nza_meta_ci_km2c_clusters ORDER BY
clusterid;

SELECT cluster_id, income, count(*) FROM ci_km2m_out O,
nza..CensusIncome_train T WHERE O.id=T.id GROUP BY cluster_id, income ORDER
BY cluster_id, income;

CREATE VIEW ci_km2m_age
AS SELECT cluster_id, age
FROM ci_km2m_out O, nza..CensusIncome_train T
WHERE O.id=T.id;

CALL nza..MOMENTS('intable=ci_km2m_age, incolumn=age, by=cluster_id,
outtable=ci_km2m_age_moments');

SELECT * FROM ci_km2m_age_moments ORDER BY cluster_id;

After adjusting the k value, the clusters are much more balanced.

The clustering model created based on the training set can be applied to new data. This is
demonstrated by the following call, using the same distance and transform options from the model,
which generates cluster membership assignments for the CensusIncome test set using the clustering
created for k=5.

The k-means clustering options used to build the k-means model (distance, transform, etc.), and
statistics of columns and clusters (cluster’s variance and covariance information, cluster’s mean
values, etc.) are saved in meta tables NZA_META_<model>_CLUSTERS,
NZA_META_<model>_COLUMNS, and NZA_META_<model>_COLUMN_STATISTICS for k-means
scoring, regardless of whether the statistics collection is enabled or not. The same measures used for
building the clusters are used to score and predict new clusters.

Note: The distance option is no longer required when calling PREDICT_KMEANS. The same distance
option used to build the model is used for scoring. The distance option is accepted, for compatibility
reasons, but the value specified is ignored.

CALL nza..PREDICT_KMEANS('intable=nza..CensusIncome_test, id=id,
outtable=ci_km5m_test, model=ci_km5c');

The output table contains one row for each instance from the specified data set and the same

200 00X6331-01 Rev. 2

Examples

columns described above. It can be used to determine the distribution of the income attribute within
the obtained clusters on the test set as follows:

SELECT cluster_id, income, count(*)
FROM ci_km5m_test O, nza..CensusIncome_test T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income;

As discussed previously, it may be reasonable to standardize or normalize continuous columns when
applying the k-means algorithm with difference-based distance functions. Use transform=S to
standardize all continuous columns; use transform=N to normalize all continuous columns. For
example, entering transform=age:N;income:N normalizes only age and income columns and leaves
the other columns as is.

CALL nza..KMEANS('intable=CensusIncome_train, id=id, target=income, k=2,
maxiter=3, distance=euclidean, model=ci_std_km2c, outtable=ci_std_km2m_out,
transform=S');

SELECT clusterid, size, withinss
FROM nza_meta_ci_std_km2c_clusters
ORDER BY clusterid;

SELECT cluster_id, income, count(*)
FROM ci_std_km2m_out O, nza..CensusIncome_train T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income;

Note: Columns with constant values do not contribute to clustering. These columns cannot be
transformed because the variance value is 0. Auto-transformation may generate an error message if
one or more columns cannot be transformed due to its variance or a mean value close to 0. The error
message includes column name, column's mean value, and column's variance value. For example:

NOTICE: WARNING: Transformation of column 'BONUS' failed, mean(BONUS)=1000,
variance(BONUS)=0.

You can either selectively list each transformed column individually or preprocess the intable to
exclude columns that cannot be transformed.

Output Table Data Formats

NZA_META_<model name>_MODEL Table
The NZA_META_<model name>_MODEL contains information pertaining to the entire clustering
model. The table contains one line. Note that information common to all model types, such as
OWNERID can be found in NZA_META_MODELS. Following are the table columns.

00X6331-01 Rev. 2 201

In-Database Analytics Developer's Guide

Table 26: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of clustering model, either center-
based or distribution-based.

COMPARISONTYPE VARCHAR(16) Type of record comparison, either distance
or similarity.

COMPARISONMEASURE VARCHAR(32) Function used to aggregate individual
column distances (or similarities), for
example, squaredEuclidean.

NUMCLUSTERS INTEGER Number of clusters contained in the model.

NZA_META_<model name>_CLUSTERS Table
The NZA_META_<model name>_CLUSTERS table contains a list of all clusters in the model and some
cluster information. The table contains one line for each cluster. Following are the table columns.

Table 27: Columns of the NZA_META_<model name>_CLUSTERS table

Column Data Type Purpose

CLUSTERID (primary
key column)

INTEGER Index value of the cluster in the cluster
model. If CLUSTERID is 0, the row pertains
to all input records.

NAME NVARCHAR(100) Name of the cluster. The default value is
CLUSTERID. Use the function
set_ClusterName to change the value of
this field

DESCRIPTION NVARCHAR(10000) Textual cluster description. The default
value is NULL. Use the function
set_ClusterName to change the value of
this field

SIZE BIGINT Number of data records in the cluster.

RELSIZE DOUBLE Relative size of the cluster: SIZE/SIZE(0).

WITHINSS DOUBLE A measure of the cluster homogeneity: the
sum of squared distances between records
of the cluster and the cluster center.

202 00X6331-01 Rev. 2

Output Table Data Formats

NZA_META_<model name>_COLUMNS Table
The NZA_META_<model name>_COLUMNS table contains all columns used by the data mining
algorithm: the user can determine from this table which columns are required for model application.
The table contains one line for each model column.

Note that the table may contain both columns from the original user input table and columns
internally created by the auto-transform option. For model application, only the original columns are
required because the transformed values are determined by the scoring algorithm. Parameter values
for the transformations, such as the mean value of a column, can be found in NZA_META_<model
name>_COLUMN_STATISTICS. For some mining functions only a subset of the usage types is possible.

Following are the table columns.

Table 28: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME (primary
key column)

NVARCHAR(128) Name of an input column.

DATATYPE VARCHAR(64) SQL data type of the column.

OPTYPE VARCHAR(16) Operational type of the column. Possible
values are: categorical, ordinal, and
continuous.

USAGETYPE VARCHAR(16) Usage type. Possible values are ignored,
active, predicted, supplementary,
frequencyWeight, analysisWeight,and group.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model
training process relative to other columns. The
default value is 1.0.

AUTOTRANSFORM CHAR(1) Method of column transformation applied
automatically by the KMEANS procedure.
Possible values are: 'S' for standardization, 'N'
for normalization, and 'L' or null for leave as is.

TRANSFORMEDCOLUMN NVARCHAR(128) Column name after transformation, Value is
null if the column has not been transformed.

COMPAREFUNCTION VARCHAR(16) Function used to compare a pair of column
values. Possible values are: absDiff, delta, and
equal.

IMPORTANCE DOUBLE Indicates the column’s importance for the data
mining model as determined by the algorithm.

00X6331-01 Rev. 2 203

In-Database Analytics Developer's Guide

Column Data Type Purpose

The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment. Possible values are: asIs,
asMissingValues, and asExtremeValues.

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric field.
Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric field.
Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are
contained in the valid value range or not.
Possible values are: openClosed, openOpen,
closedOpen, and closedClosed.

STATISTICSTYPE VARCHAR(16) Indicates which type of statistics are available
for the column. Possible values are:
► discrete--statistics available from

NZA_META_<model
name>_DISCRETE_STATISTICS,

► numeric--statistics available from
NZA_META<model
name>_NUMERIC_STATISTICS,

► column--statistics available only from
NZA_META_<model name>_COLUMNS

► null--no statistics available

NZA_META_<model name>_COLUMN_STATISTICS Table
The NZA_META_<model name>_COLUMN_STATISTICS contains one line for each cluster. Following
are the table columns.

Table 29: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

CLUSTERID (primary
key column)

INTEGER Index value of the cluster in the cluster model.
If CLUSTERID is 0, the row pertains to all input
records.

COLUMNNAME
(primary key column)

NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is NULL if

204 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in the column for
CLUSTERID.

MINIMUM DOUBLE Minimum value. The value is NULL if the
column is not numeric.

MAXIMUM DOUBLE Maximum value. The value is NULL if the
column is not numeric.

MEAN DOUBLE Mean value. The value is NULL if the column is
not numeric.

VARIANCE DOUBLE Unbiased sample variance. The value is NULL if
the column is not numeric.

VALIDFREQ BIGINT Number of valid values.

MISSINGFREQ BIGINT Number of missing values.

INVALIDFREQ BIGINT Number of invalid values.

IMPORTANCE DOUBLE Normalized chi-square value, which indicates
if the column distribution in the cluster is
significantly different from the overall column
distribution. The normalized chi-square value
is the factor by which the chi-square value
differs from the chi-square value that is
sufficient for 99.99% significance (considering
degrees of freedom). This field is currently not
supported. Value: null

NZA_META_<model name>_COVARIANCES Table
The NZA_META_<model name>_COVARIANCES table represents the covariance matrix and its
inverse. These matrices are symmetric, that is, cov(c1, c2) = cov(c2, c1). Therefore, only one of the
two combinations is stored. Note that if one of the columns is categorical (or both), covariance is not
defined, and the values of COVARIANCE and INVERSE pertain to a generalized covariance. The table
has one line for each cluster. Following are the table columns.

00X6331-01 Rev. 2 205

In-Database Analytics Developer's Guide

Table 30: Columns of the NZA_META_<model name>_COVARIANCES table

Column Data Type Purpose

CLUSTERID (primary
key column)

INTEGER Index value of the cluster in the cluster model.
If CLUSTERID is 0, the row pertains to all input
records.

COLUMNNAME1
(primary key column)

NVARCHAR(128) Name of a first input column.

COLUMNNAME2
(primary key column)

NVARCHAR(128) Name of a second input column.

COVARIANCE DOUBLE If COLUMNAME1 = COLUMNNAME2, the
variance of the first input column. Otherwise,
the covariance of the first and the second
input column.

INVERSE DOUBLE Values of the inverse of the covariance matrix.

NZA_META_<model name>_DISCRETE_STATISTICS Table
The NZA_META_<model name>_DISCRETE_STATISTICS table provides statistics about a cluster.
Following are the table columns.

Table 31: Columns of the NZA_META_<model name>_DISCRETE_STATISTICS table

Column Data Type Purpose

CLUSTERID (primary
key column)

INTEGER Index value of the cluster in the cluster model.
If CLUSTERID is 0, the row pertains to all input
records.

COLUMNNAME NVARCHAR(128) Name of an input column.

VALUE NVARCHAR(16000) Value occurring in the input column. Note that
the column may be numeric, in which case the
value is a string representation of the true
column value.

COUNT BIGINT Number of occurrences of records with
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with
VALUE. The relative frequency is based on all
records, including those with invalid or null

206 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

values.

DEVIATION DOUBLE RELFREQUENCY(CLUSTERID)
-RELFREQUENCY(0)

NZA_META_<model name>_NUMERIC_STATISTICS Table
The NZA_META_<model name>_NUMERIC_STATISTICS table provides statistics about a cluster.
Following are the table columns.

Table 32: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

CLUSTERID (primary
key column)

INTEGER Index value of the cluster in the cluster model.
If CLUSTER_ID is 0, the row pertains to all
input records.

COLUMNNAME
(primary key column)

NVARCHAR(128) Name of a numeric input column.

FROMVALUE (primary
key column)

DOUBLE Lower interval boundary. NULL indicates
negative infinity.

TOVALUE (primary key
column)

DOUBLE Upper interval boundary. NULL indicates
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are
contained. Possible values are openClosed,
openOpen, closedOpen, and closedClosed.

COUNT BIGINT Number of occurrences of records in the
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the
interval. The relative frequency is based on all
records, including those with invalid or NULL
values.

DEVIATION DOUBLE RELFREQUENCY(CLUSTERID)
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

VARIANCE DOUBLE Variance of all values in the interval.

00X6331-01 Rev. 2 207

C H A P T E R 1 9
Divisive Clustering

The divisive clustering algorithm is a computationally efficient, top-down approach to creating
hierarchical clustering models. Conceptually, it can be thought of as a wrapper around the k -means
algorithm (with a specialized method for initial centroid setting), running the algorithm several times
to divide clusters into subclusters. The internal k-means algorithm assumes a fixed k=2 value.

The divisive clustering algorithm may return different results for the same data set and the same
random generator seed when you use different input data distribution or a different number of
dataslices. This is due to the behavior of the random number generator, which generates random
sequences depending on the number of dataslices and data distribution. The algorithm returns the
same model when you use the same machine, the same input data distribution, and the same
random seed.

Background

The cluster formation process of the divisive clustering algorithm begins with a single cluster
containing all training instances, then the first invocation of k -means divides it into two subclusters
by creating two descendant nodes of the clustering tree. Subsequent invocations divide these
clusters into more subclusters, and so on, until a stop criterion is satisfied. Stop criterion can be
specified by the maximum clustering tree depth or by the minimum required number of instances for
further partitioning. The resulting hierarchical clustering tree can be used to classify instances by
propagating them down from the root node, and choosing at each level the best matching sub-
cluster with respect to the instance’s distance from sub-cluster centers.

The internal k-means process of the divisive clustering algorithm operates using the ordinary k-
means algorithm (with the modified initial centroid generation), discussed in the K-Means Clustering
section, using a fixed value of k=2 and working with the subset of data from the parent cluster. The
initial centroid generation consists two steps: random generation n>>k candidates and then selection
of outermost pair of candidates. The cluster center representation and distance measures remain the
same. The numbering scheme for clusters in a clustering tree is the same as decision trees: the root
node is number 1, and the descendants of node number i have numbers 2 i and 2 i1 .

00X6331-01 Rev. 2 209

In-Database Analytics Developer's Guide

Additionally, leaves, which are clusters with no subclusters, are designated by negative numbers.

Applications

The divisive clustering algorithm is primarily designed for applications where a cluster hierarchy is
required for large data sets, for which the alternative agglomerative clustering approach is
impractical. The need for a hierarchical clustering model may result from two needs.

► To discover and symbolically represent the similarity patterns in the data more completely and in
more detail than with flat clustering. Divisive clustering makes it possible to see what similarity-
based cluster can be identified as well as also how diverse they are internally, and how they can
be further decomposed. This is useful for applications where the clustering model is intended to
represent some knowledge about the domain, derived from the analyzed data set. Consider, for
example, hierarchical customer segmentation that provides more insight into different customer
profiles, or hierarchical document clustering, which roughly represents a topic hierarchy with
different levels of generality and specificity.

► To enable using a single clustering model with varying “resolution.” Divisive clustering makes it
possible to dynamically choose the clustering level of interest, separately for particular instances.
This is particularly important when clustering is used to make inference about new instances,
such as in hidden attribute prediction and anomaly detection applications, where adjusting the
clustering level is a means of balancing the specificity and reliability of predictions.

Available Functionality

The implementation of the divisive clustering algorithm available in IBM Netezza In-Database
Analytics via the DIVCLUSTER and PREDICT_DIVCLUSTER stored procedures provides the following
functionality:

► cluster formation via repetitive application of the k-means algorithm with k=2

► stop criteria for hierarchy creation specified by the maximum clustering tree depth (number of
cluster levels) or by the minimum number of instances in a cluster required for further
partitioning

► seed for random generator setting

► stop criteria for a single k-means division satisfied on convergence or reaching a specified
maximum number of iterations

► a choice of predefined distance functions: Euclidean, Manhattan, Canberra, maximum, with
more user-definable measures available via UDFs

► cluster membership prediction for new data

Rows from the input table containing NULL values are ignored.

210 00X6331-01 Rev. 2

Examples

Examples

To illustrate the divisive clustering algorithm, follow the pattern of the k-means examples and
exclude the income attribute, representing the class, which can be achieved by specifying it as the
target attribute. The following call creates a 3-level clustering tree, using the Euclidean distance
measure and performing no more than 10 k-means iterations to divide each cluster into subclusters.

CALL nza..DIVCLUSTER('intable=nza..CensusIncome_train, id=id, target=income,
maxiter=10, distance=euclidean, maxdepth=3, model=ci_dc3t,
outtable=ci_dc3m');

The model specified via the model argument is stored in one table (named
NZA_META_<model>_MODEL) and consists of a cluster table NZA_META_CI_DC3T_CLUSTERS,
containing cluster centers for each cluster from the created clustering tree. There is one column for
each attribute with the mean attribute value for continuous attributes and the most frequent value
for discrete attributes and the following additional columns:

► clusterid—the cluster identification number

► size—the number of training instances in the cluster

► withinss—the sum of squared distances between training instances assigned to the cluster and
the cluster center

You can view the contents of this table ordered with respect to the absolute value of the clusterid
column, due to the convention of negating leaf numbers:

SELECT * FROM NZA_META_ci_dc3t_MODEL ORDER BY abs(cluster_id);

The other output table, specified via the outtable argument, provides cluster membership
information for training instances for the leaves of the tree. It contains the following columns for
each instances from the training set:

► id—the instance identifier

► cluster_id—the identifier of the leaf cluster to which the instance is assigned

► distance—the distance between the instance and the cluster center, according to the distance
measure used for the clustering

The resulting clustering tree is heavily unbalanced, with the majority of training instances assigned to
a single leaf:

SELECT cluster_id, count(*)
FROM ci_dc3m
GROUP BY cluster_id
ORDER BY abs(cluster_id);

As demonstrated for the k-means algorithm, the cluster membership table can be used to calculate
various indicators based on attribute distribution within clusters, meaningful for particular
applications. The following example demonstrates how the mutual information can be calculated and
how the 2 test can be performed to verify the relationship between cluster membership and the
income attribute, which was not used for clustering. For details on the mutual information and the

00X6331-01 Rev. 2 211

In-Database Analytics Developer's Guide


2 test, refer to the Data Exploration section.

CREATE VIEW ci_dc3m_income AS SELECT cluster_id, income FROM ci_dc3m M,
nza..CensusIncome_train T WHERE M.id=T.id;

CALL nza..MUTUALINFO('intable=ci_dc3m_income, incolumn=income;cluster_id,
outtable=ci_dc3m_income_mutinf');

SELECT * FROM ci_dc3m_income_mutinf;

CALL nza..CHISQ_TEST('intable=ci_dc3m_income, incolumn=cluster_id;income,
outtable=ci_dc3m_income_chisq');

SELECT * FROM ci_dc3m_income_chisq;

The results indicate a strong dependency between cluster membership and income.

The resulting hierarchical clustering model can be used for making predictions for new instances. This
predicts cluster membership on a selected level of the clustering tree. Unless explicitly specified via
the level argument, it defaults to the bottom level. The following call generates cluster membership
predictions on the test set using the second level of the previously created 3-level clustering tree
model:

CALL nza..PREDICT_DIVCLUSTER('model=ci_dc3t, level=2,
intable=nza..CensusIncome_test, id=id, outtable=ci_dc3m_test');

The format of the output table is the same as the training set cluster membership table created
during model creation and can be used to calculate various indicators in the same way.

212 00X6331-01 Rev. 2

C H A P T E R 2 0
TwoStep Clustering

TwoStep clustering is a data mining algorithm for large data sets. It is faster than traditional methods
because it typically scans a data set only once before it saves the data to a clustering feature (CF)
tree. TwoStep clustering can make clustering decisions without repeated data scans, whereas other
clustering methods scan all data points, which requires multiple iterations. Non-uniform points are
not gathered, so each iteration requires a reinspection of each data point, regardless of the
significance of the data point. Because TwoStep clustering treats dense areas as a single unit and
ignores pattern outliers, it provides high-quality clustering results without exceeding memory
constraints.

The TwoStep algorithm has the following advantages:

► It automatically determines the optimal number of clusters. You do not have to manually create
a different clustering model for each number of clusters.

► It detects input columns that are not useful for the clustering process. These columns are
automatically set to supplementary. Statistics are gathered for these columns but they do not
influence the clustering algorithm.

► The configuration of the CF tree can be granular, so that you can balance between memory usage
and model quality, according to the environment and needs.

Background

To cluster data, the TwoStep clustering algorithm does the following actions:

1. The algorithm scans all data and builds a clustering feature (CF) tree. This tree is built by
arranging the input records in a way that similar records become part of the same tree node. If
there is a memory issue, the tree is rebuilt with an increased threshold and outliers are
removed.

2. The leaves of the CF tree are clustered hierarchically in memory. The clustering is done by
calculating the n * (n-1) / 2 distances between each pair of leaves and merging the two clusters
with the smallest distance. The process of calculating distances between clusters and merging

00X6331-01 Rev. 2 213

In-Database Analytics Developer's Guide

the closest two is repeated until the root of the tree is reached. All data is contained in one
cluster, thus forming a binary tree.

Starting with the root node of the binary tree, the child node with the worst quality is added.
The process of adding child nodes continues until the number of clusters that is determined
automatically or that is specified by the user is reached. The number of clusters that is
determined automatically is also the optimal number of clusters.

3. The clustering result is refined by a final pass over the data where each record is assigned to
the closest cluster. This behavior is similar to the behavior of the K-means algorithm.

Applications

The TwoStep algorithm takes the following steps:

1. In the preprocessing step, a CF-tree is built with a limited number of intermediate clusters. The
build is controlled by the maxleaves parameter. Thus, you can exchange model quality with a
high maxleaves value for good performance with a low maxleaves value according to your
needs.

2. In the refinement step, the final model is built. For this reason, TwoStep is especially suitable
for large data sets.

Unlike the K-Means and divisive clustering algorithms, the TwoStep algorithm can determine an
optimal number of clusters. Furthermore, it supports log-likelihood distance. This distance is a
distribution-based distance measure that is suitable for nominal and numerical attributes.

Available Functionality

The implementation of the TwoStep clustering algorithm is available in IBM SPSS In-Database
Analytics through the TWOSTEP, PREDICT_TWOSTEP, PRINT_TWOSTEP, EXPORT_PMML or
PMML_MODEL stored procedures.

TwoStep procedure
The TwoStep procedure generates a clustering model.

This model has the following elements:

► Support for nominal and numerical attributes

► Support for missing values

► Predefined distance measures: Log-likelihood (the default), Euclidean, Norm_Euclidean

PREDICT_TWOSTEP Procedure
The PREDICT_TWOSTEP procedure applies a TwoStep clustering model on an input table.

This model has the following elements:

214 00X6331-01 Rev. 2

Available Functionality

► Cluster membership prediction for new data

► Support for missing values

PRINT_TWOSTEP Procedure
The PRINT_TWOSTEP procedure prints details of a TwoStep clustering model.

PMML-related Procedures
The EXPORT_PMML and PMML_MODEL convert a TwoStep clustering model to PMML format.

Examples

To illustrate the TwoStep algorithm, a clustering model for the Iris data set is created in the following
example.

The example uses the following assumptions and settings:

► Norm_Euclidean distance is the distance measure.

► For nominal attributes, statistics are limited to the 25 most frequent values.

► For numerical attributes, discrete statistics are calculated only for attributes with 25 or fewer
different values. If the number of values is greater than 25, continuous statistics are calculated by
building buckets.

In this example, the following call is issued:

CALL nza..TWOSTEP('model=irisb, intable=nza..iris,
distance=norm_euclidean, id=id, statistics=values:25');

Unlike K-Means, you do not have to specify the wanted number of clusters to be found.

The call generates a clustering model that is represented by the following tables:

► NZA_META_IRISB_MODEL

► NZA_META_IRISB_CLUSTERS

► NZA_META_IRISB_COLUMNS

► NZA_META_IRISB_COLUMN_STATISTICS

► NZA_META_IRISB_DISCRETE_STATISTICS

► NZA_META_IRISB_NUMERIC_STATISTICS

Based on these tables, you can convert the "irisb" model to the PMML format and write it to the
file /tmp/irisb.pmml by issuing the following call:

CALL nza..EXPORT_PMML('model=irisb, file=/tmp/irisb.pmml');

You can extract information about centers of cluster 1 and cluster 2 regarding attributes "CLASS" and
"PETALLENGTH" by issuing the following call:

CALL nza..PRINT_BIRCH('model=irisb, mode=centers,
clusters=1;2,columns=class;petallength');

00X6331-01 Rev. 2 215

In-Database Analytics Developer's Guide

The call issues the requested information in tabular form, similar to the following table:

| CLUSTERID | COLUMNNAME | CARDINALITY | MODE | MINIMUM | MAXIMUM
| MEAN | VARIANCE | COUNT |
+-----------+-------------+-------------+------------+---------+---------
| 1 | CLASS | 3 | versicolor | |
| | | 50 |
| 1 | PETALLENGTH | | | 1 | 1.9
1.464	0.028364102564103	50		
2	CLASS	3	setosa	
		100		
2	PETALLENGTH			3
4.906	0.671688	100		
+-----------+-------------+-------------+------------+---------+---------

You can predict cluster affiliation for the new iris_test data set, by issuing the following call:

CALL nza..PREDICT_TWOSTEP('model=irisb, intable=nza..iris_test, id=id,
outtable=irisb_out');

The call generates the irisb_out outtable that has one record for each record from the iris_test in-
table. The iris_test intable is identified by the ID.

The table looks as follows:

 ID | CLUSTER_ID | DISTANCE
-----+------------+-----------------
 2 | 1 | 1.4026800339739
 30 | 1 | 1.1851532469099
 58 | 2 | 2.5620498130415
 66 | 2 | 1.3337242870809

You can read the table as follows:

The record from the iris_test intable with the ID 2 is assigned to cluster 1 of the irisb model. Its
distance to the center of cluster 1 is 1.4026800339739. The distance was measured with the
Norm_Euclidean measure, which was also used to generate the irisb model.

Output Table Data Formats

The models that are created by the TwoStep algorithm are stored in several tables, in the same
manner as the K-Means models. For details of the TwoStep models, see the descriptions in the K-
Means section as shown in the following tables.

TwoStep Procedure Output Tables
Table 33: Columns of the NZA_META_<model name>_MODEL table

Table Name (Link) Description

NZA_META_<model name>_MODEL Table Generic information on the model

NZA_META_<model name>_CLUSTERS Generic information on the clusters

216 00X6331-01 Rev. 2

Output Table Data Formats

Table Name (Link) Description

NZA_META_<model name>_COLUMNS
Table

Generic information on the input columns that are
used to build the model

NZA_META_<model
name>_COLUMN_STATISTICS Table

Statistics on the input columns that are used to
build the model

NZA_META_<model
name>_DISCRETE_STATISTICS Table

Statistics on the values of the discrete input
columns (nominal or numeric) that are used to
build the model

NZA_META_<model
name>_NUMERIC_STATISTICS Table

Statistics on the intervals of the numeric input
columns that were discretized due to their num-
ber of values bigger than <n>
This table is only filled in when parameter statist-
ics is set to all or values:<n>, and there are nu-
meric input columns containing more than <n>
values.

PRINT_TWOSTEP Procedure
The PRINT_TWOSTEP procedure returns the following output, depending on the setting of the mode
parameter:

Table 34: Columns of the NZA_META_<model name>_MODEL table

If mode is... Output is of a SELECT statement on the...

clusters NZA_META_<model name>_CLUSTERS Table

centers NZA_META_<model name>_COLUMN_STATISTICS Table

statistics Joined tables:
• NZA_META_<model name>_DISCRETE_STATISTICS Table

• NZA_META_<model name>_NUMERIC_STATISTICS Table
This mode displays a complete result only if the model was
built with statistics=values or statistics=all.

00X6331-01 Rev. 2 217

C H A P T E R 2 1
Association Rules

Association rules mining is a popular method for discovering interesting and useful patterns in a large
scale transaction database. The database contains transactions which consist of a set of items and a
transaction identifier (e.g., a market basket). Association rules are implications of the form X -> Y
where X and Y are two disjoint subsets of all available items. X is called the antecedent or LHS (left
hand side) and Y is called the consequent or RHS (right hand side). Discovered association rules have
to satisfy user-defined constraints on measures of significance and interest.

Background

The Apriori algorithm organizes the search for frequent itemsets by systematically considering
itemsets of increasing size in consecutive iterations. Due to its method of calculation, the number of
candidates identified by the Apriori algorithm may be overwhelming for extremely large data sets or
a low support threshold. Because of this limitation, the FP-growth algorithm is provided in the IBM
Netezza In-Database Analytics package instead.

The FP-growth algorithm avoids candidate generation as well as multiple passes through the data by
creating a data structure called a frequent pattern tree, or FP-tree. This tree is a compact
representation of the data set contents sufficient for finding frequent itemsets. Nodes of the tree
represent single items and store their occurrence counts. Only items with sufficiently high support,
frequent item-sets of size 1, are represented. Branches, called node-links, in the FP-tree connect
nodes that represent items co-occurring for some instances in the data set. There is also a frequent
item header table that points to nodes corresponding to particular items.

The tree is built by identifying all frequent items and their counts, then consecutively “inserting”
each transaction to the tree. This requires exactly two scans of the data set, regardless of its size or
support threshold level. The FP-tree is used to identity frequent itemsets using a frequent pattern
growth process, which traverses the tree by following node-links in an appropriate way.

By avoiding explicit candidate generation, the FP-growth algorithm reduces the number of data set
scans. It can also perform efficiently, regardless of the threshold support.

00X6331-01 Rev. 2 219

In-Database Analytics Developer's Guide

Applications

Unlike most other data mining tasks, algorithms used for association rule mining do not differ in their
output for the same data and support threshold, since they find all sufficiently supported association
rules. There is no space for an inductive bias as in classification, regression, or clustering algorithms.
Where association rule mining algorithms differ is computational efficiency. The FP-growth
algorithm, more efficient than the Apriori algorithm in most cases, is therefore applicable to all
practical instantiations of the association rule mining tasks. It is particularly well-suited to
applications where large data sets must be mined or many rules must be created, even with relatively
low support values. This is where its efficiency advantages are most likely to manifest themselves and
considerably reduce the computational time needed for frequent itemset and rule discovery.
Although for small data sets its performance advantage over the Apriori algorithm may be small, it is
still applicable and sufficiently fast, since such small data sets require minimal computation.

Available Functionality

The Netezza implementation of association rules mining algorithm is available through the ARULE
stored procedure and the PREDICT_ARULE stored procedure that provide the following functionality:

► association rules mining (including frequent itemset generation)

► multiple transaction groups analysis at a time

► a minimum support threshold specified via an absolute or relative value

► a minimum confidence threshold

► a user-specified maximum itemset size (the maximum length of association rule)

► a user-specified data decomposition/parallelization level

► application of existing association rules for new data

Examples

Consider creating significant and interesting association rules on exemplary RETAIL and RETAILG data
sets. The RetailG table comes from retail table and is extended by one column grp which divides
transactions into 3 groups. The support greater than 100 examples determines measure of
significance and confidence greater than 0.5 measure of interestingness.

The following calls discover mentioned rules.

CALL nza..ARULE('model=ASSOC_A1K_05,intable=nza..Retail,
supporttype=absolute, support=100, maxsetsize=6, confidence=0.5');

CALL nza..ARULE('model=ASSOC_A1K_05_G,intable=nza..RetailG,
supporttype=absolute, support=100, maxsetsize=6, confidence=0.5, by=grp');

The call runs the algorithm on the Retail data set, requesting that frequent item-sets and rules
(generated based on frequent item-sets) with absolute support of 100 or more, rules confidence of

220 00X6331-01 Rev. 2

Examples

0.5 and more, and maximum number of rule's items (maxsetsize) of 6 and less, with instructions to
store output model in the few tables described below.

To inspect the built model, the PRINT_ARULE procedure could be used. For example:

CALL nza..PRINT_ARULE('model=ASSOC_A1K_05, minsize=3, minconf=0.8,
minlift=1.2, minconv=1.2');

CALL nza..PRINT_ARULE('model=ASSOC_A1K_05_G, minsize=3, minconf=0.8,
minlift=1.2, minconv=1.2');

In the example above, the additional rule selection filter is used to limit the number of presented
rules. The minimum number of a rule's items (minsize), confidence (minconf), lift (minlift), and
conviction are applied. This allows you to decrease the number of presented rules from 100 to 12 for
the most interesting ones for the ASSOC_A1K_05 model and from 51 to 5 for the ASSOC_A1K_05_G
model.

The demonstrations above do not include advanced use of the lvl argument of the algorithm, which
controls the level of data decomposition and computation parallelization within distinct groups. It is
set to 1 by default. However, if out of memory problems are encountered, it can be adjusted
appropriately to the data set size and machine architecture. Note that a value of 0 performs no
decomposition, which may yield the best performance for small data sets or high number of distinct
groups.

Note: The examples for the PRINT_ARULE stored procedure do not contain all available parameters.
For example, to replace item names by meaningful product names, you can use the namemap
parameter. To generate an output table in addition to textual output, you can use the outtable
parameter. For a detailed description of all parameters, see the IBM Netezza In-Database Analytics
Reference Guide.

Output Table Data Formats

As a result, when the ARULE algorithms run, the following tables are generated:

► NZA_META_<model_name>_GROUP Table

► NZA_META_<model_name>_RULE Table

► NZA_META_<model_name>_ITEM Table

► NZA_META_<model_name>_ITEMSET Table

NZA_META_<model_name>_GROUP Table
The NZA_META_<model_name>_GROUP table contains parameters used for rules generation for a
group. The table contains the following columns.

00X6331-01 Rev. 2 221

In-Database Analytics Developer's Guide

Table 35: Columns of the NZA_META_<model name>_GROUP table

Column Data Type Purpose

GID (primary key
column)

BIGINT The group unique identifier.

GROUP_NAME <type from intable> Group name coming from intable.

NUMBEROFTRANSACTI
ONS

BIGINT Number of transactions (baskets of items)
contained in the input data.

MAXNUMBEROFITEMS
PERTA

BIGINT Number of items contained in the largest
transaction.

AVGNUMBEROFITEMSP
ERTA

DOUBLE Average number of items contained in a
transaction.

NUMBEROFITEMS BIGINT Number of different items contained in the
input data.

NUMBEROFITEMSETS BIGINT Number of itemsets contained in the model.

NUMBEROFRULES BIGINT Number of rules contained in the model.

MINIMUMSUPPORT BIGINT Minimum relative support value (#supporting
transactions / #total transactions) satisfied by
all rules.

NZA_META_<model_name>_RULE Table
The NZA_META_<model_name>_RULE table contains discovered association rules as well as a set of
“interestingness” measures. The table contains the following columns.

Table 36: Columns of the NZA_META_<model name>_RULE table

Column Data Type Purpose

GID (primary key
column)

BIGINT The group unique identifier.

RHS_SID BIGINT Right-hand side itemset ID (refers to ITEMSETS table)

LHS_SID BIGINT Left-hand side itemset ID (refers to ITEMSETS table).

RHS_SIZE INTEGER Size of right-hand side itemset.

LHS_SIZE INTEGER Size of left-hand side itemset.

222 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

SUPPORT DOUBLE Support of the rule, that is, the relative frequency of
transactions that contain A and C:

[support(A->C)= support(A+C)]

CONFIDENCE DOUBLE Confidence of the rule:

[confidence(A->C) = support(A+C) / support(A)]

LIFT DOUBLE Lift value of the rule. If the XML attribute is specified
explicitly in the rule, the following equation must hold
true:

[lift(A->C) = confidence(A->C) / support(C)

CONVICTION DOUBLE Conviction value of the rule. The frequency that the
rule makes an incorrect prediction:

[conviction(A->C) = (1-support(C))/(1-confidence(A-
>C))

AFFINITY DOUBLE Affinity of the rule, a measure of the transactions that
contain both the antecedent and consequent,
compared to those that contain the antecedent or the
consequent (union).

[affinity(A->C) = support(A+C) / [support(A) +
support(C) - support(A+C)]

LEVERAGE DOUBLE Leverage value of the rule, a measure of the
difference between the observed frequency of A+C
and the frequency that would be expected if A and C
were independent:

[leverage(A->C) = support(A->C) -
support(A)*support(C)]

NZA_META_<model_name>_ITEM Table
The NZA_META_<model_name>_ITEM table contains a dictionary of items. The table contains the
following columns.

Table 37: Columns of the NZA_META_<model name>_ITEM table

Column Data Type Purpose

ITEM (primary key
column)

BIGINT The item unique identifier.

ITEM_NAME <type from the
intable>

Item name coming from original input table, defined by
intable parameter.

00X6331-01 Rev. 2 223

In-Database Analytics Developer's Guide

NZA_META_<model_name>_ITEMSET Table
The NZA_META_<model_name>_ITEMSET table contains frequent itemsets that are discovered by
the FPGrowth algorithm and that are limited by the support and maxsetsize parameters. The number
of item columns depends on the maxsetsize parameter. The default value of this parameter is 6, the
maximum value is 64. The table contains the following columns.

Table 38: Columns of the NZA_META_<model name>_ITEM table

Column Data Type Purpose

SID (primary key
column)

BIGINT An identifier to uniquely identify an itemset

GID BIGINT An identifier to uniquely identify a group

ITEM1 BIGINT First item identifier

ITEM2 to ITEM<n> BIGINT N item identifier, depending on the specified max rule
size

SIZE INTEGER The number of items contained in this itemset

SUPPORT DOUBLE The relative support of the itemset

LIFT DOUBLE A positive number indicating the ratio between the
actual support of the itemset and its expected or
predicted support

224 00X6331-01 Rev. 2

C H A P T E R 2 2
Time Series Forecasting

Background

Many types of business-relevant or scientific data have values that change over time. Some typical
examples are:

► Daily sales figures for a store

► Energy consumption readings from household electric meters

► Price per gallon at a local gas station

It is often useful to analyze the behavior of such changes, both to describe the development over
time, specifically for a particular trend and seasonality, as well as to predict unknown values of the
series, usually for the future. A typical area of application is supply chain management, where future
needs may be predicted based on past trends.

A time series is a sequence of numerical data values, measured at successive—but not necessarily
equidistant—points in time. Examples are daily stock prices, monthly unemployment counts, or
annual changes in global temperature. The two main goals of time series analysis are to understand
the underlying patterns which are represented by the observed data and to make forecasts.

Time Series Types

There are two different types of time series:

► Distinct Time Series—Values belong to exact points in time, for example a time series of
individual temperature readings

► Aggregated Time Series—Values are aggregated across some interval in time, for example a
time series of monthly average temperatures or daily sales figures

Aggregated time series can be considered as distinct time series, where the aggregated values belong
to a specified point within the time interval. The interval typically chosen is either the beginning, the

00X6331-01 Rev. 2 225

In-Database Analytics Developer's Guide

middle, or the end. In the following example, aggregated time series are arbitrarily considered as
distinct time series with values at the beginning of the interval. The time series of monthly average
temperatures might be, for example:

2011-11-30 0:00 52.7
2010-12-31 0:00 null
2011-01-31 0:00 45.0
2011-02-28 0:00 44.3
2011-03-31 0:00 51.2
2011-04-30 0:00 55.3
2011-05-31 0:00 69.7
2011-06-30 0:00 68.8

Time series can be in general decomposed into a trend, seasonality and random noise.

► A trend is a linear or nonlinear function of time that does not repeat in time. An example of this
is the increase of the annual average world temperature during the last 150 years.

► The seasonality is a periodic function, that is, a function that regularly repeats itself in time. An
example is the cyclic behavior in monthly recorded temperature data in Germany.

► The random noise is attributed to unpredictable fluctuations in the data.

Time Series Algorithms

NZ Analytics provides three independent time series modeling algorithms:

► Exponential Smoothing

► ARIMA

► Seasonal Trend Decomposition

In addition to these modeling algorithms, Spectral Analysis determines seasonal behavior of time
series.

The implemented algorithms decompose a time series into a trend and a seasonal component and
analyze them in order to build a descriptive model. This model is used for prediction.

Unlike other data mining algorithms, the time series algorithm does not include separate modeling
and scoring phases. Typically, a time series is extrapolated into the future for some period of time, or
up to some future point in time that is known at the time of model creation, referred to as the
forecast horizon. Later, when forecasts are needed for other, unforeseen points in time, there are
typically more historic time values available due to continued data collection. Therefore, a new, more
accurate model should be created. Since a typical time series consist of relatively small numbers of
time values, creating a new model should not take much time.

Data Requirements
All time series algorithms in IBM Netezza Analytics are based on equidistant input time series. If the
data provided by the user is not equidistant it is preprocessed to establish a set of equidistant time
values.

226 00X6331-01 Rev. 2

Time Series Algorithms

A time series of length n is equidistant if it contains values at all of the following points in time and
none other:

t i= t0 i∗s for i=0,… ,n−1 with a fixed step size s .

In general, s does not need to be a fixed interval in real time, but any two subsequent values in the
series must be “logically” equidistant, that is, they are equidistant in terms of the business semantics.
A time series might, for example, capture monthly airline passengers arriving at an airport:

2010-11-30 12:00 3,500,000
2010-12-31 12:00 3,900,000
2011-01-31 12:00 3,700,000
2011-02-28 12:00 3,400,000
2011-03-31 12:00 4,500,000
2011-04-30 12:00 3,900,000
2011-05-31 12:00 5,800,000
2011-06-30 12:00 6,000,000

These time values can be considered equidistant, even if not all months have the same duration,
since each one is measuring data for a calendar month, which is considered an equidistant
measurement. If the times are converted to integers, for example counting the number of months
since January 1970, the transformed time series now looks like this:

503 3,500,000
504 3,900,000
505 3,700,000
506 3,400,000
507 4,500,000
508 3,900,000
509 5,800,000
510 6,000,000

In a similar example, assume the daily price of the IBM stock is recorded. There is no data recorded
on Saturdays, Sundays, or public holidays. Logically, the Monday value comes immediately after the
Friday value and is the same distance as Monday is to Tuesday. Mapping real time to logical time is
not supported, so for such scenarios, the user must perform a transformation before calling the
TIMESERIES procedure. If the data is not transformed, it is interpolated as described in the
Interpolation section.

Interpolation
If a time series is equidistant with the exception of some missing values, interpolation is used to
estimate those values that are missing.

Using the example of of airline passengers arriving in a given month, where the month value is an
integer counted from January 1970:

503 3,500,000
504 3,900,000
505 3,700,000
506 3,400,000
507 4,500,000
508 3,900,000

00X6331-01 Rev. 2 227

In-Database Analytics Developer's Guide

509 5,800,000
510 6,000,000

If, for instance, the value at time 505 were missing, it could be estimated as 3,650,000 using linear
interpolation. In this case, interpolation results in the required equidistant time series.

Further, consider a time series consisting of time values at irregular points in time, for example the
following series of temperature readings:

2011-07-24 7:00 57
2011-07-24 14:00 75
2011-07-24 21:00 72
2011-07-25 7:15 59
2011-07-25 14:00 77
2011-07-25 20:55 74
2011-07-27 7:00 60
2011-07-27 14:00 78
2011-07-27 22:00 74

There are two possible ways of dealing with this situation. One is for the application to calculate
aggregates, in this case probably daily aggregates according to a formula based on semantic
knowledge of the data. This might result in

2011-07-24 24:00 69
2011-07-25 24:00 71
2011-07-26 24:00 null
2011-07-27 24:00 72

Alternatively, the algorithm can treat the series as a distinct series and determine a suitable step size
s . In this case, the step size determined by the algorithm might be 8 hours, so that the following

points in time “belong” to the equidistant series.

2011-07-24 6:00
2011-07-24 14:00 75
2011-07-24 22:00
2011-07-25 6:00
2011-07-25 14:00 77
2011-07-25 22:00
2011-07-26 6:00
2011-07-26 14:00
2011-07-26 22:00
2011-07-27 6:00
2011-07-27 14:00 78
2011-07-27 22:00 74

Only a small number of values are known. However, by using other known values at off times the
missing values can be generated using interpolation.

At the end of this process, the result is always an equidistant time series. Once the time series is
created, exact values for points in time are no longer needed. They are internally replaced by index
values starting at 1. Thus, for the Time Series algorithms, a time series is described as a sequence v i ,
where i=1,… ,n .

228 00X6331-01 Rev. 2

Time Series Algorithms

Exponential Smoothing
Exponential Smoothing uses an approach whereby the influence of observations decreases over
time, exponentially. Similarly, addition, trend and seasonality are taken into account.

The basic form of the formula, used for stationary series without seasonality, calculates a smoothed
value si for each element in the series as:

(ES-N;N) si= vi1− si−1 with smoothing constant 

If this is inserted recursively, the result is a formula that shows the exponential decay of historic
influence:

si= [v i1−v i−11−
2 vi−21−

3vi−31−
4v i−4...]

If seasonality with period p is taken into account, still assuming no trend, the formula becomes:

(ES-N;A)
si=v i−oi− p1− si−1 with ok being the seasonal oscillations
oi=v i−si1− oi−p with seasonal smoothing constant 

If seasonal oscillations change over time, the seasonal smoothing constant  ensures that older
values are considered less than more recent ones. The time series model records the most recent
“smoothed” oscillations.

Multiplicative seasonality is treated in the same way, dividing by rather than subtracting the
oscillation:

(ES-N;M)

s
i
= v i

oi− p 1− si−1

o
i
= vi

si 1−oi− p

The Multiplicative, or exponential, trend without seasonality is handled in the following way:

(ES-M;N)

si= vi1− si−1t i−1 with t i being the smoothed trend

t i= si

si−1 1− ti−1 with trend smoothing constant 

Analogous to seasonal treatment, if the trend changes over time, the trend smoothing constant 
ensures that older values are considered less than more recent ones. The time series model records
the most recent “smoothed” trend.

When the damped trend is modeled, the algorithm tries to learn a systematic change of trend. In the
case of damped additive trend, the formulas are:

(ES-DA;N) si= vi1− si−1 t i−1 with trend damping parameter 

00X6331-01 Rev. 2 229

In-Database Analytics Developer's Guide

t i=si−si−11− t i−1

The other combinations of trend and seasonality are performed similarly. As an example, these are
the formulas for the most frequently used damped additive model with multiplicative seasonality:

(ES-DA;M)

s
i
= v i

oi− p 1− si−1
 t

i−1


t i=si=si−11− t i−1

o
i
= vi

si 1−oi− p

Predictions are made by application of f
imax+H

=(s
imax

+∑
k=1

H

ϕk t
t max) o

imax− p+k .

The special case of additive trend is often referred to as Holt-Winters method.

ARIMA
AutoRegressive Integrated Moving Average (ARIMA) is a three-part model, with an autoregressive,
and integrative and a moving average term.

The autoregressive portion of the model determines how v i linearly depends on past observations
v i−1 , vi−2 ,... , v p . AR(p) models, that is, autoregressive models of order p, are defined as:

(AR) v
i
=∑

j=1

p


j
v

i− j with weights  j used to minimize the forecast error

The moving average portion of the model is the weighted sum of past errors. MA(q) models, that is,
autoregressive models of order q are defined as:

(MA) v
i
=∑

j=1

q


j


i− j

where i denotes the difference between the estimated and the observed values at time i . Again,
the coefficients  j are used to minimize the forecast error.

Combining AR(p) and MA(q) yields models known as ARMA models:

(ARMA) v
i
=∑

j=1

p


j
v

i− j
∑

j=1

q


j


i− j

To model seasonality with periodicity S , the seasonal AR-polynomial and the seasonal MA-
polynomial are included in the ARMA(p,q) model. The resulting model is referred to as ARMA(p,q)
(P,Q)S in the literature. However, for disambiguation and to avoid case sensitivity, this document uses
ARMA(p,q)(SP,SQ)S.

230 00X6331-01 Rev. 2

Time Series Algorithms

(SAR) A
SP
=1−∑

j=1

SP

a
j
v

i− j with seasonal weights a j

(SMA) B
SQ
=1−∑

j=1

SQ

b
j
v

i− j with seasonal weights b j

Since ARMA(p,q)(SP,SQ)S models can be applied only to stationary time series, it must be determined
whether the time series is actually stationary. If it is not, it is differentiated d times for the non-
seasonal part and SD times for the seasonal part until it becomes stationary. The transformed time
series does not contain a trend. The values for p , d , q , SP , SD and SQ are chosen based on
statistical tests and the evaluation of BIC. Using the stationary derivatives, the ARMA(p,q)(SP,SQ)S
model is estimated using the Levenberg-Marquardt-algorithm. This approach minimizes the sum of
squares of the one-step-forecast errors (residuals).

Seasonal Trend Decomposition
Seasonal Trend Decomposition removes periodic behavior and selects a basic shape for the trend, for
example a quadratic function. Basic shapes have a number of parameters, or coefficients, whose
values are determined so that the mean squared error of the residuals, that is, the differences
between the fitted and the observed values of the time series, are minimized.

Consider the following models to capture seasonality using period p :

Additive Seasonality Y t=trend t  st mod p

Multiplicative Seasonality Y t=trend t  st mod p

To model the trend, one of the following functions trend t  is fitted as shown in Table 39.

Table 39: Trend types and formulas

Trend Name Formula

Linear Trend trend t =coc1 t

Quadratic Trend trend t =coc1 tc2 t2

Cubic Trend trend t =coc1tc2 t2c3 t3

Logarithmic Trend trend (t)=co+c1 ln (t)

Exponential Trend trend t =coc1e
c
2

t

Hyperbolic Trend trend t =co
1

c1 t

00X6331-01 Rev. 2 231

In-Database Analytics Developer's Guide

Optimization of the sum of squared errors is used to determine the best combination of seasonality
model and trend function with its coefficients.

For the evaluation of time series models, two criteria are used.

The Akaike Information Criterion (AIC) is defined as:

(AIC) AIC=ln  u' u
n 2 p

n

The Schwartz Information Criterion (BIC)is defined as:

(BIC) BIC=ln u ' u
n ln n p

n

In both cases, u t  is the function giving the residuals, that is, the differences between fitted and
observed values, and p is the number of parameters of the model.

Spectral Analysis
Spectral analysis detects the frequencies of periodic behavior by performing a Fourier
Transformation, which transforms the series from the time domain into a distribution of frequencies.
This transformed series, called a periodogram, shows the contribution of the different frequency
components: If there is a “peak” at some frequency f , that is, the periodogram has a local
maximum at f , the series probably contains an f -frequency oscillation.

The periodogram is partitioned into sections with one significant peak each, disregarding very high
and very low frequencies. The relative weight of each section is calculated as a sum of periodogram
values in that section divided by the sum of all periodogram values. Consequently, all relative weights
sum to 100% and each section is represented by one frequency value, the weighted average of
frequencies in the section.

If there is a peak at frequency f , it is likely to reappear at frequencies 2f, 3f, and so on. The
algorithm adds the weights of these multiples to the respective base frequency and deletes the
higher frequencies.

Sections with less than 5% weight are removed to reduce noise.

Unless provided by the user, the frequency with the largest weight is taken into account as the
seasonality of the time series. The highest frequency corresponds to a period of m values in the
time series.

Building a Time Series Model

You build a time series model by executing the TIMESERIES stored procedure. This stored procedure
invokes the time series forecasting process and, based on the specified algorithm, performs the
calculations and writes the data out to the appropriate tables. The stored procedure requires an
input table with a specific format. During processing, the stored procedure creates a number of

232 00X6331-01 Rev. 2

Building a Time Series Model

algorithm-specific tables that store data resulting from the time series analysis. Finally, if specified,
user-named output tables are created that contain forecast data or seasonally adjusted data.

TIMESERIES Procedure
The following examples illustrate use of the TIMESERIES stored procedure to build time series
models.

Examples
To illustrate the timeseries algorithm, build a timeseries model for the curves data set. The curves
data set contains six different curves defined by their coordinates (x,y) and identified uniquely by a
name in the column curve.

CALL nza..TIMESERIES('model=curves_es, intable=nza..curves, by=curve,
time=x, target=y');

This call, by default, uses the Exponential Smoothing algorithm and automatically determines the
best parameters for each curve. No output table is created; you can explore the model either by
calling the PRINT_TIMESERIES or PRINT_MODEL stored procedures (see Printing a Time Series
Model), or by looking directly in the model tables.

The next call can be used when an experienced user wants to force the Exponential Smoothing
algorithm to use a given parameter, in this case the damped additive trend. Additionally to the
previous call, this call creates a user output table, curves_esda_adjusted, that contains the six curves
of the curves data set after they have been seasonally adjusted. Seasonally adjusted data can be
useful for graphically displaying the data trend after the seasonal influence has been removed.

CALL nza..TIMESERIES('model=curves_esda, intable=nza..curves, by=curve,
time=x, target=y, seasadjtable=curves_esda_adjusted, algorithm=esmoothing,
trend=DA');

The next call indicates how an experienced user calls the ARIMA algorithm with given parameters,
either as value (d=2) or as limit (p<=5). Additionally, the call creates a user output table,
curves_arima_forecast, that contains the future predictions of the six curves of the curves data set.

CALL nza..TIMESERIES('model=curves_arima, intable=nza..curves, by=curve,
time=x, target=y, outtable=curves_arima_forecast, algorithm=ARIMA, p<=5, d=2,
q<=5');

Input Table Data Format

Most data mining algorithms require an input table containing one row per entity under
investigation. When performing customer segmentation, one row for each customer is required as
input to the clustering algorithm. In most cases such a format must be generated as a preprocessing
step, for example by aggregation.

However, a time series is an object that cannot easily be stored in a single row. It consists of a
number of time value pairs, numeric values belonging to particular points in time. Such time-value

00X6331-01 Rev. 2 233

In-Database Analytics Developer's Guide

pairs can be stored in a single row of a table.

In many instances, large numbers of related time series are analyzed. In order to capture many time
series in a single input table, an additional column is used to contain a time series ID.

Therefore, the input table contains up to three columns; the <ts id> column may not exist if the table
contains a single time series.

Column names are arbitrary and must be provided when the algorithm is called.

Table 40: Input table column summary

Column Data Type Purpose

<ts id> <ts id type> Time series ID

<time> <ts time type> Time value

<value> <ts value type> Value of time series <ts id> at time <time>

Detailed Column Descriptions
► <ts id>—A column containing time series ids; it can be of any type referenced as <ts id type> in

this document. It is recommended that <ts id> is used as a distribution key, so that the complete
data forming a time series is stored on the same SPU.

► <time>—A column containing time values. The datatype of the value must be either time-related
or one of the accepted numeric types. Valid datatypes are TIME, TIME WITH TIME ZONE (alias
TIMETZ), DATE, or TIMESTAMP, SMALLINT, INTEGER, BIGINT, FLOAT(p) with 1≤ p≤15 , or
NUMERIC(p, s) with 1≤ p≤ 38 and 0≤ s≤ p . These datatypes are referred to as <ts time type>
elsewhere in this document.

Note that values of type TIMETZ are processed internally in the order in which they occur in real
time. If time exists as separate date and time columns, the user must create a view in which they
are combined as timestamps.

► <value>—A column containing time series values at times <time>; The datatype of the value
must be one of the following numeric types: SMALLINT, INTEGER, BIGINT, FLOAT(p) with
1≤ p≤15 , or NUMERIC(p, s) with 1≤ p≤ 38 and 0≤ s≤ p and is referred to as <ts value type>

elsewhere in this document.

Since only a single value is allowed at any one time, the <ts id> and <time> columns together form a
primary key. If <time> has type TIMETZ, no two values can indicate identical times, for example. 2:00
PM GMT and 3:00 PM CET.

In addition, the user may provide a table describing the time series. This table consists of three
columns with primary key <ts id>:

Table 41: User-defined time series table columns

Column Data Type Purpose

<ts id> <ts id type> The time series ID.

234 00X6331-01 Rev. 2

Input Table Data Format

Column Data Type Purpose

TSNAME NVARCHAR(100) The name of the time series.

DESCRIPTION NVARCHAR(10000) The description of the time series.

Output Table Data Formats

The following information is stored by the time series algorithm:

► Information pertaining to the entire time series model

▲ Generic model information independent of the model type, such as the algorithm used or
the creation date

► Information pertaining to individual time series

▲ Time series name and, optionally, a description

▲ First and last time value used to model the time series

▲ Number of equidistant steps in the time series

▲ Global forecasting accuracy measures

▲ Seasonality, periods and their strengths

▲ Trend information

▲ For some algorithms, several algorithm-specific measures

► Information for particular points in time

▲ Interpolated time series value

▲ Seasonally adjusted value

▲ Forecast value and standard deviation of forecast error

As a result, when the Time Series Algorithms run, one or more of the following tables are generated,
depending on which algorithm is used and the parameter values.

This table holds information about the entire time series model, including all time series:

► NZA_META_<model_name>_MODEL Table

These tables are independent of the algorithm used and hold information pertaining to entire time
series:

► NZA_META_<model_name>_SERIES Table

► NZA_META_<model_name>_PERIODS Table

► NZA_META_<model_name>_SEASONALITYDETAILS Table

These tables contain algorithm-specific details pertaining to entire time series:

► NZA_META_<model_name>_EXPODETAILS Table

► NZA_META_<model_name>_ARIMADETAILS Table

► NZA_META_<model_name>_ARMADETAILS Table

00X6331-01 Rev. 2 235

In-Database Analytics Developer's Guide

► NZA_META_<model_name>_STDDETAILS Table

These tables are independent of the algorithm used and hold information for individual points in
time:

► NZA_META_<model_name>_INTERPOLATED Table

► NZA_META_<model_name>_FORECAST Table

NZA_META_<model_name>_SERIES Table
The NZA_META_<model_name>_SERIES contains information pertaining to the entire time series.
The table contains one line for each time series in the input data with the following columns.

Table 42: Columns of the NZA_META_<model name>_SERIES table

Column Data Type Purpose

TSID (primary key column) <ts id type> The time series ID.

NAME NVARCHAR(100) The name of the time series.

DESCRIPTION NVARCHAR(10000) The description of the time series.

FROMTIME <ts time type> Time of the earliest time value used.

TOTIME <ts time type> Time of the latest time value used.

INTERPOLATIONMETHOD VARCHAR(32) The method of interpolation used, either
'linear', 'cubicspline' or 'exponentialspline'.
The value is NULL if no interpolation was
performed.

STEPS INTEGER The number of equidistant time points used
between from and to

SEASONS INTEGER The number of seasons in a period or NULL
if no seasonality was used.

SEASONALITYTYPE VARCHAR(32) Either 'additive', 'multiplicative' or NULL if
no seasonality was used.

STEPSIZE DOUBLE Difference between two steps or two
seasons. The value is provided in the unit
given in UNIT.

UNIT VARCHAR(32) The unit of the stepsize, either
'MILLISECOND', 'SECOND', 'MINUTE', 'HOUR'
(if <ts time type> is TIME), 'DAY', 'WEEK',
'MONTH', 'QUARTER', 'YEAR' (if <ts time

236 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

type> is DATE), or all of the above if <ts time
type> is TIMESTAMP. For numeric types, it is
NULL.

PHASE INTEGER The season index of the last point in history.
This value may be interpolated. It is NULL if
no seasonality was used.

STDERROR DOUBLE The global standard deviation of the forecast
error.

RMSE DOUBLE The root mean squared error of the
forecasts.

ERRORCODE CHAR(10) The error code for the series, with a prefix
ANL- for analytics and a 5-digit number for
the particular condition, null, if the time
series was successfully processed. For a
description of error codes, see the Events
and Error Conditions section.

NZA_META_<model_name>_PERIODS Table
The NZA_META_<model_name>_PERIODS table contains information pertaining to periodic behavior
of the time series found by spectral analysis; the table contains one line for each time series and
period with the following columns.

Table 43: Columns of the NZA_META_<model name>_PERIODS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

PERIOD (primary key
column)

DOUBLE The detected period of seasonality.

SEASONS INTEGER The number of equidistant steps in a period in
interpolated series.

FREQUENCY DOUBLE The detected frequency of seasonality.

UNIT VARCHAR(32) The unit of the PERIOD and FREQUENCY, either
'MILLISECOND', 'SECOND', 'MINUTE', 'HOUR' (if
<ts time type> is TIME), 'DAY', 'WEEK', 'MONTH',

00X6331-01 Rev. 2 237

In-Database Analytics Developer's Guide

Column Data Type Purpose

'QUARTER', 'YEAR' (if <ts time type> is DATE), or
all of the above if <ts time type> is TIMESTAMP,
for numeric types, NULL.

WEIGHT DOUBLE The weight of periodic behavior with frequency
FREQUENCY. The value is between 0 and 1.

HARMONICWEIGHT DOUBLE The contribution of the harmonic peaks within
WEIGHT, calculated as the area under the
harmonic peaks divided by the total area under
the Fourier spectrum; the part of WEIGHT
contributed by the higher harmonics.

NZA_META_<model_name>_SEASONALITYDETAILS Table
The NZA_META_<model_name>_SEASONALITYDETAILS table contains details about the periodic
behavior of the time series used by the exponential smoothing algorithm. The table contains one line
for each time series and season with the following columns.

Table 44: Columns of the NZA_META_<model name>_SEASONALITYDETAILS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

SEASON (primary key
column)

INTEGER The season index, from 1 to SEASONS as
contained in table
NZA_META_<model_name>_SERIES

OSCILLATION DOUBLE The oscillation at SEASON; depending on
the type of seasonality, the oscillation can
be either a value that is added, for
example, an additive term, or a value that
is multiplied, for example, a factor.

NZA_META_<model_name>_EXPODETAILS Table
The NZA_META_<model_name>_EXPODETAILS table contains information pertaining to exponential
smoothing models. The table contains one line for each time series with the following columns.

238 00X6331-01 Rev. 2

Output Table Data Formats

Table 45: Columns of the NZA_META_<model name>_EXPODETAILS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

SMOOTHEDVALUE DOUBLE The smoothed value of the time series at the last
point in history. This value may be interpolated.

ALPHA DOUBLE The smoothing parameter for the level.

TRENDTYPE VARCHAR(32) The trend type. Valid values are 'none', 'additive',
'dampedadditive', 'multiplicative', and
'dampedmultiplicative'.

SMOOTHEDTREND DOUBLE The smoothed trend of the time series at the last
point in history. This point may be interpolated.
The value is NULL if TRENDTYPE is 'none'.

GAMMA DOUBLE The smoothing parameter for the trend. The
value is NULL or 0 if TRENDTYPE is 'none'.

PHI DOUBLE The damping parameter for the trend. The value
is NULL or 0 if TRENDTYPE is not 'dampedadditive'
or 'dampedmultiplicative'.

DELTA DOUBLE The smoothing parameter for the seasonality. The
value is NULL or 1 if no seasonality was used.

NZA_META_<model_name>_ARIMADETAILS Table
The NZA_META_<model_name>_ARIMADETAILS table contains information pertaining to ARIMA
models. The table contains one line for each time series with the following columns.

Table 46: Columns of the NZA_META_<model name>_ARIMADETAILS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

INTERCEPT DOUBLE The constant additive offset of the original time
series.

P SMALLINT The AR(p) degree of the ARIMA model.

D SMALLINT The differentiation degree of the ARIMA(p,d,q)

00X6331-01 Rev. 2 239

In-Database Analytics Developer's Guide

Column Data Type Purpose

model.

Q SMALLINT The MA(Q) degree of the ARIMA model.

SP SMALLINT The seasonal AR degree of the ARIMA model.

SD SMALLINT The seasonal differentiation degree of the
ARIMA model. The value is either 0 or 1.

SQ SMALLINT The seasonal MA degree of the ARIMA model.

AIC DOUBLE The value of the Akaike information criterion.

BIC DOUBLE The value of the Bayesian information criterion,
which is also known as the Schwarz information
criterion.

LJUNGBOX DOUBLE The Ljung-Box statistics value.

LJUNGBOXP DOUBLE The Ljung-Box statistics p-value.

NZA_META_<model_name>_ARMADETAILS Table
The NZA_META_<model_name>_ARMADETAILS table contains information about the ARMA portion
of ARIMA models. The table contains one line for each time series and autoregressive, moving
average or autocorrelation coefficient, with the following columns.

Table 47: Columns of the NZA_META_<model name>_ARMADETAILS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

TYPE (primary key
column)

CHAR(4) The lag type. Valid values are 'AR', 'MA', 'SAR',
'SMA', 'ACF' or 'PACF'.

INDEX (primary key
column)

SMALLINT The positive integer value of lag
<= P (if 'AR'), <= Q (if 'MA'),
<= SP (if 'SAR'), <= SQ (if 'SMA')

COEFFICIENT DOUBLE The numeric value of the correlation coefficient
for type TYPE and INDEX. The range is [-1, 1].

CRITICALVALUE DOUBLE For models of type 'ACF' or 'PACF', the critical

240 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

value of the correlation coefficient.

STANDARDERROR DOUBLE The incertitude for the value of the coefficient.

NZA_META_<model_name>_STDDETAILS Table
The NZA_META_<model_name>_STDDETAILS table contains information pertaining to seasonal trend
decomposition models. The table contains one line for each time series with the following columns.

Table 48: Columns of the NZA_META_<model name>_STDDETAILS table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID.

FITFUNCTION VARCHAR(32) The best-fitting fit function. Possible values
are 'linear', 'quadratic', 'cubic',
'logarithmic', 'exponential' and
'hyperbolic'.

INTERCEPT DOUBLE The constant term in the fit function

COEFFICIENT1 DOUBLE The multiplicative coefficient of the first
non-constant term of the fitting function

COEFFICIENT2 DOUBLE The multiplicative coefficient of the second
non-constant term of the fitting function.
This value is used only for quadratic and
cubic functions.

COEFFICIENT3 DOUBLE The multiplicative coefficient of the third
non-constant term of the fitting function.
This value is used only for cubic functions.

EXPONENT DOUBLE The exponent constant of the first non-
constant term of the fitting function. This
value is used only for exponential
functions.

NZA_META_<model_name>_INTERPOLATED Table
The NZA_META_<model_name>_INTERPOLATED table contains interpolated time series values. The
table contains one row for each time series and interpolated point in time with the following
columns.

00X6331-01 Rev. 2 241

In-Database Analytics Developer's Guide

Table 49: Columns of the NZA_META_<model name>_INTERPOLATED table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID

INDEX (primary key
column)

INTEGER The index value of a logically equidistant
time series.

TIME <ts time type> The corresponding time value in the format
of the input TIME column.

INTERPOLATED <ts value type> The interpolated value of the time series.

For the interpolation method, see the NZA_META_<model_name>_MODEL Table.

NZA_META_<model_name>_FORECAST Table
The NZA_META_<model_name>_FORECAST table holds forecast values. The table contains one line
for each time series and point in time for which a forecast has been made, with the following
columns.

Table 50: Columns of the NZA_META_<model name>_FORECAST table

Column Data Type Purpose

TSID (primary key
column)

<ts id type> The time series ID

TIME (primary key
column)

<ts time type> Time value at which forecast is made

FORECAST <ts value type> Expected value of time series

STANDARDERROR DOUBLE Standard deviation of forecast error

The table may include TIME values at times before the last time in history, that is the value of the to
parameter, if these were contained in the parameter forecasttimes, but the corresponding FORECAST
values are NULL. STANDARDERROR may be NULL if it is not possible to estimate the expected error.
This is usually an indication of low confidence in the FORECAST value.

If <ts time type> is TIME, the maximum value of TIME is 23:59:59.999999, if it is TIMETZ, the
maximum value is 23:59:59.999999-12:59+13:00.

<output> Table
If the user supplied a table name in the outtable parameter when the TIMESERIES stored procedure
was executed, a copy of the NZA_META_<model_name>_FORECAST table is created in a table

242 00X6331-01 Rev. 2

Output Table Data Formats

bearing the specified name. The table contains forecast values, and contains one line for each time
series and point in time for which a forecast has been made. Columns are as follows.

Table 51: Columns of the <output> table

Column Data Type Purpose

<ts id> (unique key
column)

<ts id type> The time series ID.

<time> (unique key
column)

<ts time type> The time value at which the forecast is
made.

<value> <ts value type> The expected value of the time series.

STANDARDERROR DOUBLE The standard deviation of the forecast
error.

Note that the first column is omitted if a value for the by parameter was not specified.

<seasadjtable> Table
If the user supplied a table name in the seasadjtable parameter when the TIMESERIES stored
procedure was executed, an additional table is created bearing the specified name. The table
contains seasonally adjusted time series values, and contains one line for each time series and point
in time. Columns are as follows.

Table 52: Columns of the <seasadjtable> table

Column Data Type Purpose

<ts id> (unique key
column)

<ts id type> The time series ID.

<time> (unique key
column)

<ts time type> The time value in the format of the input
TIME column.

ADJUSTEDVALUE <ts value type> The seasonally adjusted value of the time
series.

Note that the first column is omitted if a value for the by parameter has not been supplied. Note
further that time points may be different from the original time points.

Printing a Time Series Model

Use the PRINT_TIMESERIES stored procedure to display a time series model.

00X6331-01 Rev. 2 243

In-Database Analytics Developer's Guide

PRINT_TIMESERIES Procedure
The PRINT_TIMESERIES stored procedure displays a time series model.

Example
You created different time series models for the curves data set in the section Building a Time Series
Model. Use the following call to display those models as tables of the original data and the forecast
values of the curve “linear”:

CALL nza..PRINT_TIMESERIES('model=curves_arima, history=true,
series=linear');

Sample output could be:

| TSID | TIME | HISTORY | FORECAST |
|--------+------+---------+----------|
linear	1	2	
linear	2	4	
linear	3	6	
linear	4	8	
linear	5	10	
linear	6	12	
linear	7	14	
linear	8	16	
linear	9	18	
linear	10	20	
linear	11	22	
linear	12	24	
linear	13	26	
linear	14	28	
linear	15	30	
linear	16	32	
linear	17	34	
linear	18	36	
linear	19	38	
linear	20	40	
linear	21	42	
linear	22	44	
linear	23	46	
linear	24	48	
linear	25	50	
linear	26	52	
linear	27	54	
linear	28	56	
linear	29	58	
linear	30	60	
linear	31	62	
linear	32	64	
linear	33	66	
linear	34	68	
linear	35	70	
linear	36	72	
linear	37	74	
linear	38	76	
linear	39	78	

244 00X6331-01 Rev. 2

Printing a Time Series Model

linear	40	80	
linear	41	82	
linear	42	84	
linear	43	86	
linear	44	88	
linear	45	90	
linear	46	92	
linear	47	94	
linear	48	96	
linear	49	98	
linear	50	100	
linear	51		102
linear	52		104
linear	53		106
linear	54		108
linear	55		110
linear	56		112
linear	57		114
linear	58		116
linear	59		118
linear	60		120
linear	61		122
linear	62		124
linear	63		126

The PRINT_TIMESERIES procedure also offers a basic plotter function to graphically display the
original data and the forecast values. The time axis points to the bottom of the page, and the target
axis points to the right. The following call displays the curve “sinus” as a plotted graph:

CALL nza..PRINT_TIMESERIES('model=curves_arima, history=true, series=sinus,
plot=true');

Sample output could be:

===
sinus
===
 |0 40.10^-1
 |+---------+---------+---------+---------+|->
1 | +
2 | +
3 | +
4 | +
5 | +
6 | +
7 | +
8 | +
9 |+
10 | +
11 | +
12 | +
13 | +
14 | +
15 | +
16 | +
17 | +

00X6331-01 Rev. 2 245

In-Database Analytics Developer's Guide

18 | +
19 | +
20 | +
21 |+
22 | +
23 | +
24 | +
25 | +
26 | +
27 | +
28 | +
29 | +
30 | +
31 | +
32 | +
33 |+
34 | +
35 | +
36 | +
37 | +
38 | +
39 | +
40 | +
41 | +
42 | +
43 | +
44 | +
45 |+
46 | +
47 | +
48 | +
49 | +
50 | +
51 | x
52 | x
53 | x
54 | x
55 | x
56 | x
57 |x
58 | x
59 | x
60 | x
61 | x
62 | x
 |
 V time

(+) history data (i) interpolated value (x) forecast value

Events and Error Conditions

The following errors might occur during time series analysis. Some errors pertain only to a subset of
the time series, in which case the other time series are processed normally. The resulting model table
NZA_META_<model_name>_SERIES may contain an error code for each individual time series.

246 00X6331-01 Rev. 2

Events and Error Conditions

The following table shows the possible error codes.

Table 53: Time series error codes

Return Code Event or Error
Condition / Description

Response

NZATS-0100 The time series contains duplicate time
values. Times in a time series must be
unique.

The user must remove all
duplicates.

NZATS-0101 The time series contains too many missing
values. No more than 90% of the values of
a time series may be missing.

The user should supply values
for some of the missing data
or remove some of the time
points having missing values.

NZATS-0102 The time series is too short for analysis. A
time series must contain at least 2 values.

The user should provide more
values, for example by
increasing the span between
“from” and “to.”

NZATS-0103 The time series is too short to be
differentiated. After the differentiation step
of the ARIMA algorithm, a time series must
still be longer than the number of seasons.
The minimum required value is d + (SD+1)*
(number of seasons).

The user should provide more
values of the time series.

NZATS-0104 The time series is too short to be
differentiated. After the differentiation step
of the ARIMA algorithm, a time series must
still contain enough values. The minimum
required value is d+2.

The user should provide more
values of the time series.

NZATS-0105 The time series is too short to be
differentiated. After the seasonal
differentiation step of the ARIMA
algorithm, a time series must still be longer
than the number of seasons. The minimum
required value is (SD+1)*(number of
seasons).

The user should provide more
values of the time series.

NZATS-0106 The time series is too short for seasonal
analysis, that is, the time series is shorter
than the number of seasons. The minimum
required value is the number of seasons.

The user should provide more
values of the time series.

NZATS-0107 The time series is too short for exponential The user should provide more

00X6331-01 Rev. 2 247

In-Database Analytics Developer's Guide

Return Code Event or Error
Condition / Description

Response

smoothing analysis with seasonality. That
is, the time series is shorter than twice the
number of seasons. The minimum required
value is twice the number of seasons.

values of the time series.

NZATS-0108 The time series is too short for ARIMA
analysis. The minimum required value is 8.

The user should provide more
values of the time series.

NZATS-0109 The time series contains too many time
points that are close together. The average
distance between two time points is below
the precision of a double and the calculated
interpolation step is 0.

The user should provide time
values that are further apart.

NZATS-0110 The time series is too short for spectral
analysis. The minimum required value is 10.

The user should provide more
values of the time series.

NZATS-0112 The time series is too long for Seasonal
Trend Decomposition analysis. There can be
at most 2^32 / (number of seasons) values.

The user should provide fewer
values of the time series, for
example by decreasing the
span between “from” and
“to.”

NZATS-0113 A damped multiplicative trend cannot be
used for these data. The data contain a
negative trend and a damp factor less than
1. This does not allow using a damped
multiplicative trend.

The user should use a
different value of the trend
parameter or omit the
parameter to have the system
determine a suitable value.

NZATS-0114 A multiplicative trend is applied to 0 or
negative data. The data contain 0 or
negative values. A multiplicative trend can
only be applied to positive time series.

The user should use a
different value of the trend
parameter or omit the
parameter to have the system
determine a suitable value.

NZATS-0115 Seasonality and period are inconsistent.
Seasonality none can only be used with a
period of 0. Seasonality additive or
multiplicative can only be used when
period is greater than one stepsize.

The user should use a
consistent combination of the
period and seasonality
parameters.

248 00X6331-01 Rev. 2

C H A P T E R 2 3
Generalized Linear Models

Background

Linear models have been found useful for modeling many real-world phenomena due to their
simplicity for training and for model application. True linear models assume a Gaussian distribution
of the response variable and a linear impact of the control variables on the response variable.
However, in practice, these assumptions cannot always be met.

An extension called Generalized Linear Models (GLM) has therefore been developed to handle these
issues. The non-linear relationship is modeled via the link function, while a set of diverse
distributions is allowed for the response variable. Of special interest here are the heavy-tailed and
nominal (discrete-valued) distributions that are not covered by linear models.

GLM has application in areas such as biology, biopharmaceuticals, engineering, actuarial science and
quality assurance.

Using Generalized Linear Models

Assume that the user has a set of records, each of them describing a separate event, independent of
the other events. Within an event (a record) is a set of predictor variables and a response variable.
The goal is to find a model that allows the user to predict the value of the response variable based on
the known values of the predictor variables.

The GLM framework assumes that the predictor variables influence the response variable in the
following way: The predictor variables are transformed by a transformation principle to factors.
These can be used directly as “factors” or they can be transformed to factors using a transformation
matrix.

The factors combined linearly, using the beta parameter vector, provide a value called theta (θ). This
θ , transformed by the inverted link function, provides a mean value of the response variable under

the given value of predictor variables. This means that it can be assumed that the response variable

00X6331-01 Rev. 2 249

In-Database Analytics Developer's Guide

is influenced both by the predictor variables and a non-observable noise process for which only the
distribution type it follows is known. The distribution type is assumed to be parameterized by the
mean value. So the actual value of the response variable is a value randomly selected under this
distribution parameterized by the aforementioned mean, produced via the inverted link function.

To use the algorithm, the user must specify:

► which variables are the predictor variables

► what are the principles of transformation from predictor variables to factors

► which is the response variable

► which is the link function (from the predefined set)

► which is the distribution type that the response variable follows

The algorithm iteratively seeks the best-fitting model that is the beta vector. Eventually, if the link
function and/or distribution are generic, and the user did not specify the respective generic
parameters, the link function parameters/distribution parameters may be also sought. The error is
represented by the sum of squares of differences between the prediction and the real value of the
response variable. Therefore, the maximum number of iterations should also be specified.

The results are coefficients (beta) combining the predictors to the quantity θ . If necessary, the
missing parameters of generic distribution/link function may also be returned.

GLM Algorithms

IBM Netezza In-Database Analytics makes two independent GLM algorithms available:

► Iteratively Reweighted Least Square (IRLS)

► Parallel Stochastic Gradient Descent (PSGD)

Iteratively Reweighted Least Square Algorithm
The Iteratively Reweighted Least Square (IRLS) algorithm is currently considered a de facto industry
standard.

Initial values of the linear coefficients combining the factors to the θ value are calculated by
performing the traditional linear regression on the factors and the value of the link function applied
to the response. Once the initial values are known, an iterative process is then run to compute the
final values.

First a working response is computed, which is equal to the θ obtained from the current coefficients
and the predictors. This value is increased or decreased proportional to the difference between the
response value and its current expected value. The increased or decreased value is then multiplied by
the derivative of the θ on the mean. This accounts for the error in fitting the prediction to the
response. Next, working weights of cases (records) are computed. The weights are lower for cases
with higher absolute value of the derivative of the θ on the mean (derivative of the link function)
and for higher expected variance of the case.

Once the working responses and working weights are obtained, weighted linear regression is

250 00X6331-01 Rev. 2

GLM Algorithms

performed.

A new iteration is then started unless stopping criteria are matched; stopping criteria are the number
of iterations performed and the improvement achieved.

Parallel Stochastic Gradient Descent Algorithm
The Parallel Stochastic Gradient Descent (PSGD) algorithm is a more recent development and it is
subject to a number of restrictions. It works only for a few distribution types and link functions. The
major difference as compared to IRLS is the reduced computational effort: no correlation matrices
are computed and the decision to change linear coefficients is done as each record is parsed rather
than by a complete initial pass by the means of records. For well-randomized and large data sets, the
user can expect a speed advantage over IRLS.

Distribution Types

The types of distributions governing the “error” of the response variable are the following: Bernoulli,
Gaussian (normal), Poisson, binomial, negative binomial, wald (inversegaussian), and gamma.

The Bernoulli, binomial, Poisson, and negativebinomial distributions are nominal, that is, discrete-
valued, distributions.

The Gaussian (normal), wald (inverse gaussian) and gamma distributions are continuous, that is, real-
valued, distributions.

Bernoulli Distribution
The Bernoulli distribution implies that the response variable takes on values 0 and 1. It models a
single toss of a manipulated coin that does not have the same chance of heads and tails. The inverted
link function maps θ to the chance of heads.

Binomial Distribution
Binomial distribution is a special case that needs to be treated separately. It implies that there are
actually two discrete response variables taking non-negative integers. It models tossing a number of
times a manipulated coin that does not have the same chance for heads and tails. The one of the
variables counts the number of heads, the other of sum of heads and tails (named trials). The
inverted link function maps in this case θ to the “chance” (share) of heads.

Poisson Distribution
The Poisson distribution implies that the response variable takes on non-negative integer values. The
inverted link function maps θ to the mean of the variable distributed according to the Poisson
distribution. The distribution is driven by the Poisson process. In this process the average rate of
success over time is known. The probability of a single success within a time interval is proportional
to the length of the interval and is independent of the probability outside of the interval. If the

00X6331-01 Rev. 2 251

In-Database Analytics Developer's Guide

interval gets shorter, the probability of more than 1 success goes toward zero.

Negative Binomial Distribution
The Negative Binomial distribution means that the response variable take on non-negative integer
values. It models the toss a manipulated coin that does not have the same chance for heads and tails
until a predefined number of heads is reached. The response variable is the count of tails. The
inverted link function maps θ to the chance of heads.

Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural
processes. Specifically, in the case of a multitude of independent processes generating continuous
numbers from a distribution, then their average tends to follow normal distribution. The inverted link
function maps θ to the mean value of the distribution of the response variable, while the standard
deviation of the response variable is deemed to be the same for any value of θ .

Wald Distribution
The Wald distribution, also called the Inverse Gaussian distribution, represents the first passage time
for Brownian motion. The inverted link function maps θ to the mean value of the distribution of the
response variable, while the distribution parameter λ , which influences standard deviation but not
the mean of the response variable is deemed to be the same for any value of θ .

Gamma Distribution
The Gamma distribution is the distribution of a sum of random variables that are exponentially
distributed. Also exponentially distributed are time intervals between successes in the Poisson
experiment. The inverted link function maps θ to the mean value of the distribution of the response
variable, while the distribution parameter scale of the response variable is deemed to be the same
for any value of θ .

Link Functions

Link functions handle the non-linearity of the relationship between the θ and the mean of response
variable (meanresp). A number of link functions have been implemented: identity, inverse, logit, log,
complementary log-log (cloglog), gaussit, cauchit, sqrt, invsquare, loglog, log-complement (logc),
negbin, oddspower and power.

Identity Link Function
The Identity link function is of the form θ=meanresp , that is, the mean of the response variable.

252 00X6331-01 Rev. 2

Link Functions

Inverse Link Function

The Inverse link function is of the form θ=
1

meanresp
.

Log Link Function
The Log link function is of the form: θ=ln (meanresp) .

Logit Link Function

Logit link function is of the form: θ=ln (
μ

1−μ
) .

Probit Link Function
The Probit link function family is understood as an inverse of any cumulative probability distribution
function, It is mainly used when the distribution function of GLM is either Bernoulli or binomial. IBM
Netezza In-Database Analytics implements cauchit and gaussit here.

Gaussit Link Function
The Gaussit link function, sometimes called probit in a narrow sense, is the standard normal
distribution inverse θ=qnorm(meanresp) .

Cauchit Link Function
The Cauchit link function is the inverse of the Cauchy distribution θ=ln (mean) .

Log-log Link Function
The log-log link function (loglog) is in the form θ=−log(−log(meanresp)) . This is a “non-canonical”
link function and is not commonly used.

Complementary Log-log Link Function
The Complementary log-log link function (cloglog) is of the form θ=log (−log(1−meanresp)) . This is
a “non-canonical” link function and is not commonly used.

Log-complement Link Function
The log-complement link function (logc) is of the form θ=ln(1−meanresp) . This is a “non-canonical”
link function and is not commonly used.

00X6331-01 Rev. 2 253

In-Database Analytics Developer's Guide

Odds Power Link Function

The odds power link function (oddspow) is of the form
θ=

(
meanresp

(1−meanresp)α−1
)

α
 where the α

parameter is somehow fixed. For example, α may be set equal to 1. This is a “non-canonical” link
function and is not commonly used.

Power Link Function
The power link function is of the form θ=meanrespλ , where λ is somehow fixed. This is a “non-
canonical” link function and is not commonly used.

Negbin Link Function

The negbin link function is of the form θ=ln(k
meanresp+1

) , where parameter k is somehow fixed.

This is a “non-canonical” link function and is not commonly used.

Input Data Format

The GLM algorithms require an input table containing one row per entity under investigation. Rows
must have unique IDs and are deemed to represent independent observations and/or experiments.

A column must be identified that contains values to be used as the response variable. In the case of
binomial distribution, two response variables must exist. For continuous distributions, the response
variable must to be of type DOUBLE, or able to be converted to DOUBLE. For nominal distributions,
INTEGER type should be used.

If not specified explicitly by the user through “incolumn” (or globally by “coldeftype” and “coldefrole”
parameters), numerical predictor variables are treated as continuous, while non-numeric predictor
variables are treated as discrete. A user could also define the input table column type and role by the
table named and passed by the colPropertiesTable parameter. The proper dictionary is automatically
created. The user can change these defaults using the column_properties stored procedure. This
procedure creates a table by setting the colPropertiesTable parameter.

Rules for removing predictor dimensions for nominal attributes in GLM
If there are k nominal attributes, such as A_1 , ... , A_k, exactly one level predictor dimension is
removed from the input table for any subset of the k-1 nominal attributes. Removed vectors are
linearly dependent and can be constructed with remaining vectors. More precisely, if exactly one
predictor dimension is removed from nominals A_2 , ... , A_k, then the removed level predictor
dimension of A_j is equal to the sum of all level vectors of the nominal attribute A_1 minus the
remaining level vectors of nominal attribute A_j. The sum of all level vectors of attribute A_1 is the
vector of ones, that is, entries that are equal to 1, for example, [1, 1, 1].

This formula works because there must be exactly one cell equal to 1 in each row cast to any nominal

254 00X6331-01 Rev. 2

Input Data Format

attribute. If the intercept column is included in the model, exactly one level predictor dimension is
removed from all nominal attributes A_1 , ... , A_k.

The removed level vector of A_j can be constructed in the following way:

The intercept vector, which is the level of ones, minus all remaining level vectors of nominal attribute
A_j. Removed level vectors do not change the rank of the input matrix, which means that the quality
of the solution is ensured.

Example:

The input table T consists of one nominal Class column.

There are three levels of the Class column: C1, C2, and C3.

If the build model includes intercept, there will be the following model coefficients: Class:C2,
Class:C3, and intercept.

One predictor, Class:C1, was removed. Note that any of the three predictors Class:C1, Class:C2, and
Class:C3 can be removed.

Building a GLM Model

GLM Procedure
The GLM procedure builds the Generalized Linear Model.

PRINT_GLM Procedure
The PRINT_GLM procedure prints the built Generalized Linear Model.

PREDICT_GLM Procedure
The PREDICT_GLM procedure applies the built Generalized Linear Model to generate regression
predictions.

Transformation Principles

Transformation principles relate to the values that are supplied for the interaction parameters for the
GLM Stored procedure.

The general principle is that the formula of the transformation principle consists of names of
predictors, the one argument function name '^' and the ';' and '*' and '=' symbols;

The semi-colon (;) separates factors in the incolumn and/or in the interaction parameter. Within
each of group the symbol * separates constituents. A constituent is a predictor name or, in case of
continuous only, a predictor name followed by ^ and a natural number.

00X6331-01 Rev. 2 255

In-Database Analytics Developer's Guide

If the constituent is a name of a continuous predictor, then it represents an expression identical with
the name of this predictor, if followed by ^ and a number, the expression predictor raised to the
respective power.

If the constituent is a name of a nominal predictor then it represents a set of expressions:

if <predictor name>=<level value_i> then 1 else 0 end if

for all distinct values of <predictor name> .

The operator * combines two sets of expressions {e1,e2..,en}, {g1,g2,..,gm} to a set of expressions
{e1*g1, e2*g2,…,en*gm}.

After applying the * operator within a group of factors, a set of expressions is obtained which is the
set of factors within the group.

incolumn Parameter Values
These examples describe the transformation principle permitted in a incolumn parameter. For these
examples, let x1,x2,x3… denote continuous predictor names; n1,n2, n3,… denote nominal predictors.

Example 1
incolumn= x1;x2;x3

The factors used in GLM are x1, x2, x3.

Example 2
incolumn= x1:cont;x2:cont;x3:cont

The continuous predictors that are used in GLM are x1, x2, 3.

Example 3
incolumn= n1:nom;

There are as many factors as there are values of n1 in the data; each factor takes the value of 1 or 0,
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then
n1=“va”, n1=“vb” and n1=“vc”. If n1=“vb” in a record, then the factors take the values: (n1=“va”)=0,
(n1=“vb”)=1 and (n1=“vc”)=0.

Example 4
incolumn= n1;n2

There are as many factors as there are values of n1 and of n2 in the data.

interaction Parameter Values
These examples describe the transformation principle permitted in the interaction parameter. For
these examples, let x1, x2, x3… denote continuous predictor names; n1, n2, n3,… denote nominal
predictors.

256 00X6331-01 Rev. 2

Transformation Principles

Example 1
interaction=x1*x2

There is only one additional factor: the product of x1*x2.

Example 2
x1*x2;x2*x3

There are two additional factors: the product of x1*x2 and product of x2*x3.

Example 3
n1*n2

This means that there will be as many factors as there are values in the dot product of the sets of
values of n1 and of n2 in the data.

Example 4
n1*x1

There are as many factors as there are values in n1 and each factor takes the value of x1 or of zero,
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then the
factors are (n1=“va”)*x1, (n1=“vb”)*x1 and (n1=“vc”)*x1. If n1=“vb” in a record, and x1=133, then
the factors take the values 0, 133, 0 respectively.

Example 5
n1*x1^2

There are as many factors as there are values in n1 and each factor takes the value of x1 or of zero,
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then the
factors are (n1=“va”)*(x1^2), (n1=“vb”)*(x1^2) and (n1=“vc”)*(x1^2). If n1=“vb” in a record, and
x1=133, then the factors take the values 0,017689,0 respectively.

Examples

The functionality of the Generalized Linear Model implementation is illustrated by the examples
using the WineQuality data set.

Consider creating a GLM model for predicting the quality attribute from the WineQuality data set:

CALL nza..glm('intable=nza..WineQuality_train, incolumn=
fixed_acidity ; volatile_acidity ; citric_acid ; residualsugar ; chlorides ;
free_sulfur_dioxide ; total_sulfur_dioxide ; density ; ph ; sulphates ;
alcohol ,
 intercept=TRUE, id=id, target=quality, model=glm_wq, maxit=2,
coldefrole=ignore
, family=gaussian, link=identity');

We have assumed there that the error distribution is gaussian and the link function is identity.

00X6331-01 Rev. 2 257

In-Database Analytics Developer's Guide

The GLM model coefficients and the values of diagnostic measures can be inspected by calling the
PRINT_GLM procedure:

call nza..PRINT_GLM('model=glm_wq');

We notice here that the column citric_acid and total_sulfur_dioxide do not play any role for the
model as their p-values are far beyond 0.05.

The constructed GLM model can be applied to new data using following call:

CALL nza..PREDICT_GLM('intable=nza..WineQuality_test, id=id, model=glm_wq,
outtable=out_wq');

Consider now creating a GLM model for predicting the quality attribute from the WineQuality data
set when we restrict to only quality levels 5 (which we encode 0) and 7 (which we encode 1). Note
that we first drop the formerly created tables and models.

call nza..drop_model('model=glm_wq');
drop table out_wq;

create table wq57 as select *,case when quality=5 then 0 else 1 end qdiff
from nza..WineQuality_train where quality=5 or quality=7;

CALL nza..glm('intable=wq57, incolumn=fixed_acidity ; volatile_acidity ;
residualsugar ; chlorides ; free_sulfur_dioxide ;
density ; ph ; sulphates ; alcohol , intercept=TRUE, id=id, target=qdiff,
model=glm_wq, maxit=2, coldefrole=ignore, family=bernoulli, link=logit');

The GLM model coefficients and the values of diagnostic measures can be inspected by calling the
PRINT_GLM procedure:

call nza..PRINT_GLM('model=glm_wq');

The constructed GLM model can be applied to new data using following call:

create table wq57ts as select *,case when quality=5 then 0 else 1 end qdiff
from nza..WineQuality_test where quality=5 or quality=7;
CALL nza..PREDICT_GLM('intable=wq57ts, id=id, model=glm_wq,
outtable=out_wq');

To see how well the prediction fits the true value, run:

select count(*), qdiff, round(pred) as predicted from wq57ts t join out_wq p
on t.id=p.id group by qdiff,round(pred) order by qdiff,round(pred);

The functionality of the model with interactions is illustrated in the examples below. First a
multiplicative interaction:

CALL nza..glm('intable=wq57, incolumn=
fixed_acidity ; volatile_acidity ; residualsugar ; chlorides ;
free_sulfur_dioxide ; density ; ph ; sulphates ; alcohol,
interaction=density * sulphates , intercept=TRUE, id=id, target=qdiff,
model=glm_wq_i1, maxit=2, coldefrole=ignore, family=bernoulli, link=logit');

258 00X6331-01 Rev. 2

Examples

CALL nza..PREDICT_GLM('intable=wq57ts, id=id, model=glm_wq_i1,
outtable=out_wq_i1');
select count(*), qdiff, round(pred) as predicted from wq57ts t join out_wq_i1
p on t.id=p.id group by qdiff,round(pred) order by qdiff,round(pred);
select count(*), qdiff,pred from wq57ts t join out_wq p on t.id=p.id group by
qdiff,round(pred) order by qdiff,round(pred);

The following example with powers creates two new columns—cube of density and square of
sulphates.

CALL nza..glm('intable=wq57, incolumn=
fixed_acidity ; volatile_acidity ; residualsugar ; chlorides ;
free_sulfur_dioxide ; density ; ph ; sulphates ; alcohol
, interaction=density^3; sulphates^2 ,
 intercept=TRUE, id=id, target=qdiff, model=glm_wq_i2, maxit=2,
coldefrole=ignore
, family=bernoulli, link=logit');

Following is another example of power transformations:

CALL nza..glm('intable=wq57, incolumn=
 volatile_acidity ; residualsugar ; free_sulfur_dioxide ;
density ; alcohol; fixed_acidity ; residualsugar,
interaction=fixed_acidity^2 ; residualsugar^2
,
 intercept=TRUE, id=id, target=qdiff, model=glm_wq_i3, maxit=2,
coldefrole=ignore
, family=bernoulli, link=logit');

Output Table Data Formats

As a result, when the GLM algorithms run, the following tables are generated:

► NZA_META_<model_name>_MODEL Table

► NZA_META_<model_name>_FADIC Table

► NZA_META_<model_name>_DICTIONARY Table

► NZA_META_<model_name>_GLMDIC Table

► NZA_META_<model_name>_PCOVMATRIX Table

► NZA_META_<model_name>_PPMATRIX Table

► NZA_META_<model_name>_RESIDUALS Table

► NZA_META_<model_name>_STATS Table

NZA_META_<model_name>_MODEL Table
The NZA_META_<model_name>_MODEL table contains details about the linearly combined factors
of the GLM model. Following are the table columns.

00X6331-01 Rev. 2 259

In-Database Analytics Developer's Guide

Table 54: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

FAC_ID (primary key
column)

INTEGER Identifier of the factor.

BETA DOUBLE The beta value of the linear part.

STD_ERROR DOUBLE The standard deviation of beta value.

TEST DOUBLE Test statistics for beta significance
(difference from zero).

P_VALUE DOUBLE Significance of the above test statistics.

CLASS_ID INTEGER Class, if the parameter (predictor variable)
is discrete.

DF BIGINT Degrees of freedom.

NZA_META_<model_name>_FADIC Table
The NZA_META_<model_name>_FACDIC table contains the list of all factors. Following are the table
columns.

Table 55: Columns of the NZA_META_<model name>_FADIC table

Column Data Type Purpose

FAC_ID (primary key
column)

INTEGER Identifier of the factor.

FAC_EXPRESSION NVARCHAR An expression representing the factor. The
expression may be derived from the
PPMATRIX table.

NZA_META_<model_name>_DICTIONARY Table
The NZA_META_<model_name>_DICTIONARY table contains information about the input variables.
Following are the table columns.

Table 56: Columns of the NZA_META_<model name>_DICTIONARY table

Column Data Type Purpose

ATTNUM (primary key
column)

SMALLINT Column ID of the input variable.

260 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

ATTNAME NVARCHAR Name of the variable/column.

DICNAME NVARCHAR Name of the table that contains the
dictionary for the variables. Only used for
of nominal variables.

LEVELS BIGINT Number of levels. Only used for nominal
variables.

ATTAVG DOUBLE Average value. Only used for continuous
variables.

ATTSTD DOUBLE Standard deviation. Only used for
continuous variables.

NZA_META_<model_name>_GLMDIC Table
The NZA_META_<model_name>_GLMDIC table contains the list of all factors. Following are the table
columns.

Table 57: Columns of the NZA_META_<model name>_GLMDIC table

Column Data Type Purpose

GLM_ID (primary key
column)

INTEGER Column ID of the variable (GLM run
specific).

NAME NVARCHAR Name of the variable/column.

COLROLE BOOLEAN True=predictor, FALSE=response variable.

NZA_META_<model_name>_PCOVMATRIX Table
The NZA_META_<model_name>_PCOVMATRIX table contains the covariance values. Following are
the table columns.

Table 58: Columns of the NZA_META_<model name>_PCOVMATRIX table

Column Data Type Purpose

FAC_RAW (primary key
column)

INTEGER Factor ID or a special number identifying
the target variable.

FAC_COL (primary key
column)

INTEGER Factor ID or a special number identifying
the target variable

00X6331-01 Rev. 2 261

In-Database Analytics Developer's Guide

Column Data Type Purpose

VALUE DOUBLE Covariance between factors indicated at
row and column IDs.

NZA_META_<model_name>_PPMATRIX Table
The NZA_META_<model_name>_PPMATRIX table defines the factors IDs. Following are the table
columns.

Table 59: Columns of the NZA_META_<model name>_PPMATRIX table

Column Data Type Purpose

FAC_ID (primary key
column)

INTEGER Identifier of the factor.

GLM_ID INTEGER GLM specific identifier – the “covariate” (only
predictors used here).

POWER DOUBLE If the covariate is unrelated to factor or is not
continuous, then the cell is set to NULL

Otherwise cell value is set to the exponent that the
covariate is raised to in the dependency expression.

Example: Let the GLM_ID identify the continuous
work variable.

Let FAC_ID identify a factor of the form if
[jobcat=”professional”) then 1 else 0 endif * work
^2

Therefore, this factor is correlated to the work
covariate, and the number that should be entered
in the cell is 2 because work is present at second
power in the expression.

LEVEL INTEGER If the covariate is unrelated to factor or is not
nominal, then the cell is set to NULL.

Otherwise, the cell value is set to the level of the
covariate used in the dependency expression.

Example: Let the GLM_ID identify the nominal
variable jobcat, with levels professional, clerical,
skilled, unskilled, which got the level identifiers
1,2,3,4 respectively in the dictionary _DIC.

Let FAC_ID identify a factor of the form if
[jobcat=”professional”) then 1 else 0 endif * work ^2

Therefore, this factor is correlated to the covariate

262 00X6331-01 Rev. 2

Output Table Data Formats

Column Data Type Purpose

jobcat, and the number that should be entered in
the cell is 1 because jobcat is professional in the
dependency expression.

NZA_META_<model_name>_RESIDUALS Table
The NZA_META_<model_name>_RESIDUALS table contains the covariance values. Following are the
table columns.

Table 60: Columns of the NZA_META_<model name>_RESIDUALS table

Column Data Type Purpose

RECORDID (primary key
column)

INTEGER RESIDUALS Observation unique identifier.

RAW DOUBLE So-called response residual for each
observation, that is, the difference
between observed value and fitted
(predicted by model) value.

PEARSON DOUBLE So-called Pearson residual for each
observation, that is, the response residual
normalized with the estimated standard
deviation for the observation.

DEVIANCE DOUBLE So-called Deviance residual for each
observation, that is, the sign([response
residual]) * sqrt([observation weight] *
deviance([real value],[fitted value]))

NZA_META_<model_name>_STATS Table
The NZA_META_<model_name>_STATS table contains statistic information. Following are the table
columns.

Table 61: Columns of the NZA_META_<model name>_STATS table

Column Data Type Purpose

STATISTIC NVARCHAR Name of the computed statistics.

VALUE DOUBLE Value of the computed statistics.

00X6331-01 Rev. 2 263

In-Database Analytics Developer's Guide

264 00X6331-01 Rev. 2

C H A P T E R 2 4
Model Deployment

Model Deployment provides the ability to export analytics models from one Netezza database and
import them into a database residing on a physically separate Netezza system. This functionality is
crucial for projects such as rolling out one or more analytics models from a development or
validation system to a production system. (While the systems need not be physically separate, there
are simpler mechanisms for copying models between databases that reside on the same appliance.)

Background

The basis of the model deployment functionality is IBM Netezza Analytics model management, which
gives users control over model administration. Any user who has the necessary privileges to read
analytics models on the source system and to create analytics models on the target system can
transfer models between the two Netezza systems. As a result, model deployment is not confined to
database administrators; any user can have privileges to deploy, with the IBM Netezza Analytics
security architecture controlling model access.

Netezza analytics also provides functionality to export analytic models into PMML files. PMML
focuses on the exchange of data mining models between different products, however, and therefore
is not the best choice for model deployment, even if an import functionality were available. (See
PMML Support, for more information on PMML in Netezza Analytics.) Model deployment requires an
exact copy of all types of models (model content, model metadata, and model privileges). PMML
may not work in conjunction with all types of Netezza analytics-supported algorithms, resulting in
certain metadata conversion into PMML to require proprietary PMML extensions. Furthermore,
converting models to and from PMML is time-consuming. For these reasons, Netezza analytics
includes a model deployment solution based on a proprietary import/export format.

The model deployment functionality is available using stored procedures and a shell script. The shell
script provides functionality above that which can be provided by stored procedures (for example,
file operations). The procedures and command line utilities can:

► export one or more analytic models to file(s)

► inspect the contents of these file(s)

00X6331-01 Rev. 2 265

In-Database Analytics Developer's Guide

► import one or more analytic models from these file(s) into the target database.

The model import and export comprises the model contents as well as their metadata.

All types of analytic models, provided they have been registered in the metadata management
system, can be imported and exported. The contents of all managed components of a model is
included in the exported files. Note that the source (export) and target (import) Netezza systems
must have the same system case, (that is, both must be lowercase systems or both must be
uppercase systems).

Permissions and Access
Because database security and file system security are two independent security systems, the
security functions of the database cannot be reflected on the file system level. For example, while
access to models is restricted to database users with the corresponding privileges, access to file
contents is restricted to system users with the corresponding permissions. Therefore, once a model is
exported to file(s), users other than the database users may have access to the model data. Any user
who can read the exported file(s) can list the models in these files or import them into a target
database.

Model privileges can also be exported and imported, but only by the database administrator.

Applications

Movement of one or more analytic models from a test system to a physically separated production
system is a typical usage scenario for the model deployment functionality. In simpler cases, where
both databases are within the same appliance, you would use the COPY_MODEL procedure.
However, the COPY_MODEL procedure cannot be used to transfer models to a target database when
the systems are physically separated. The following is a sample use case for model deployment.

Sample Deployment Scenario
A data mining analyst is using Netezza analytics to analyze customer data and is ready to deploy
analytic models produced in a test environment into a production environment. The production
environment is physically separated from the test environment. Simply, the analyst needs to export
the models on the test system, move the exported file(s) to the production system, import the
models on to the target, and finally to manage privileges.

The steps for this scenario are:

1. On the test system, the analyst exports all models to be deployed to a set of files.

2. Using the transport medium of choice (network, memory stick, etc.), the analyst moves the
file(s) to the production system.

3. On the production system, the analyst imports all or selected models from the file(s) into the
Netezza analytic-enabled production database. Optionally, models can be overwritten on
model import.

266 00X6331-01 Rev. 2

Applications

4. The analyst evaluates and rectifies model privileges. By default, the user who initiates the
export and import is the new owner of the models. If that user is a database administrator, all
model privileges can be transferred from the source to the target system. If alternate privileges
are desired, the administrator can issue individual GRANT_MODEL or REVOKE_MODEL calls.

Available Functionality

The implementation of the model deployment function is provided by the EXPORT_MODEL,
IMPORT_MODEL, and LIST_MODEL procedures, as well as an included shell script. Each is described
below.

NZA..EXPORT_MODEL
The NZA..EXPORT_MODEL procedure allows you to specify one or more analytics models to be
exported (using the model parameter). When specifying more than one model name, each model
must be separated with a semicolon. Only models from the current database can be exported. Mixed
case model names must be double-quoted; unquoted names are converted to system case. If
model=all is specified, all models in the current database are exported. To export a model, the user
must have the LIST and SELECT privileges on the model.

You can also use a where parameter to filter models to be exported from the current database. All
columns available in the V_NZA_MODELS view can be used in the where parameter .

When specifying the directory parameter (mandatory), an existing directory where the export files
are stored, note that the directory must be writable by the database process (owned by user nz). The
directory must be specified as absolute path name, relative path names are not allowed.

For each model, the export procedure writes a series of files (a file set), dependent on the number
and kind of components of the model. Because it is possible that the directory will receives hundreds
of files, it is best that you specify an empty directory. To simplify organization, all export files are
prepended with a common prefix (based on the mandatory name parameter). By making this prefix
different for each call of the EXPORT_MODEL procedure, you can reuse the directory for different
calls of EXPORT_MODEL.

Note: While the EXPORT_MODEL procedure does not produce a single archive, the shell script
interface, described below, can combine all exported files into a single archive file.

The acl parameter is used to export model privileges also. This parameter can be used by the ADMIN
user only.

The overwrite parameter determines if conflicting files in the specified directory are deleted before
the new files are written. If the directory already contains a file set with the same name as the file set
to be written, this existing file set is deleted if overwrite = true, or the export is aborted if overwrite =
false.

The EXPORT_MODEL procedure writes several files into a user-specified directory by a process
belonging to the database. This process is owned by user nz and, consequently, the files are owned
by nz. For this reason, user nz must have the right to write into the specified target directory. In
addition, by default the written files have open read access. If this is not desired, you must change

00X6331-01 Rev. 2 267

In-Database Analytics Developer's Guide

the file permissions manually when EXPORT_MODEL has finished.

The procedure returns the number of models that were exported successfully.

NZA..IMPORT_MODEL

The NZA..IMPORT_MODEL procedure allows you to specify one or more analytics models to be
imported (model parameter). When specifying more than one model name, they must be separated
with semicolons. Models are always imported into the current database. Mixed case model names
must be double-quoted;unquoted names are converted to system case. (Note that the system case of
the export machine must match the system case of the import machine.) If model=all is specified, all
models in the file set are imported.

You can also use the where parameter to filter models to be imported into the current database . All
columns available in the V_NZA_MODELS view can be used in the where parameter.

Use the directory parameter (mandatory) to specify the directory that contains the files that were
previously exported. The directory must be specified as an absolute path name.

Use the name parameter to identify the desired set of files. Each file set written into a directory can
be identified by its name (that is, the prefix prepended during export). If the specified directory
contains only the result of one EXPORT_MODEL operation, the file set can be clearly detected and
you need not specify the name parameter.

Use the acl parameter to import model privileges (provided they were exported before). This
parameter can be used by the ADMIN user only. If a user or group whose privileges are to be
imported does not exist, the privileges of this user or group are not imported. Note that users and
groups are not created automatically.

By default, models in the current database are not overwritten on model import. If you do wish to
overwrite models, set the overwrite parameter to true. Models with the same name as an imported
model are deleted before the model is imported. Any user who can create a new analytics model in a
database can also import models from the file set into that database. The current user becomes the
owner of the imported models. To overwrite a model, a user needs the DROP privilege on the model.

If the ADMIN user calls the import procedure, the ADMIN can specify the owner parameter. This
parameter sets an alternative owner for all imported models; the new owner must exist on the target
system.

The procedure returns the number of models that were imported successfully.

NZA..LIST_MODELS
The LIST_MODELS procedure used for model deployment is the same as that for the rest of the
Netezza analytics, with the additional ability to list also models from a file set. For model
deployment, therefore, LIST_MODELS has two additional parameters. The directory parameter,
when specified, activates the deployment view for the procedure. The directory must be specified as
an absolute path name. The name parameter identifies the file set in this directory; if the specified
directory contains only the result of one EXPORT_MODEL operation, the file set can be clearly
detected and you need not specify the name parameter. The LIST_MODELS procedure lists the names

268 00X6331-01 Rev. 2

Available Functionality

and some properties of the models in the file set. No special privileges are needed to list the models.

LIST_MODELS cannot list the models in an archive file created by the shell script (described below).
To list archived models, use the list mode of the shell script.

Shell Script
The model deployment functionality includes a command line utility, nzmodel, that can perform the
export and import of models and display the contents of an export file set. In addition, it can create
an archive file instead of file sets. It can perform the model export or model import from outside the
database, and provides these two features not available with the stored procedure:

► Using the -f parameter, the result of the export process can be a single file, not a file set. This
single archive file contains all files from the file set and can be imported directly without
manually extracting the file set. This not only simplifies the transfer of the export result to
another location, but also better preserves the integrity of the file set.

► Copy mode allows models to be copied directly from one Netezza host to another, without any
intermediate files.

Restriction: Only the Linux user who started the NPS database may execute the nzmodel script.
Typically, this user is the nz user.

The following is the syntax for the shell script:

nzmodel -e [-avo] [-z netezza-host] [-d database] [-u user]
[-p password]
 [-w where-clause] [-f file/directory] [-n name] [model...]
nzmodel -i [-avo] [-z netezza-host] [-d database] [-u user] [-p password]
 [-w where-clause] [-O owner] [-f file/directory] [-n name]
[model...]
nzmodel -l [-v] [-f file/directory] [-n name]
nzmodel -c [-avo] [-z source-netezza-host] [-d source-database]
 [-u source-user] [-p source-password]
 [-Z target-netezza-host] [-D target-database]
 [-U target-user] [-P target-password]
 [-w where-clause] [-O owner] [model ...]
nzmodel -h

The following table defines the parameters of the shell script:

Table 62: Options for the model deployment shell script

Option /alt. name Explanation

-e / --export Export model(s) to an archive file or directory. See Export (option -e)
for more detail.

-i / --import Import model(s) from an archive file or directory. See Import (option -i)
for more detail.

-l / --list List file or directory contents (model names and properties).See List
(option -l) for more detail.

00X6331-01 Rev. 2 269

In-Database Analytics Developer's Guide

Option /alt. name Explanation

-c / --copy Copy models from the local database/host to another database/host.
See Copy (option -c) for more detail.

-h / --help Show help.

-a / --acl Export/import model privileges with the model (ADMIN only).

-o / --overwrite Overwrite output files (export) or models in the database (import).

-v / --verbose Display verbose mode.

-d / --db Name of the (source) database.

-D / --tdb Name of the target database.

-z / --host Host name or address of the (source) database.

-Z / --thost Host name or address of the target database.

-p / --password Password for the (source) database.

-P / --tpassword Password for the target database.

-u / --user User name for the (source) database.

-U / --tuser User name for the target database.

-w / --where A where-clause to filter models for export from the source database or
models for import from the archive file or directory.

-O / --owner The owner for all imported models; by default the importing user is the
model owner.

-f / --file The name of the archive file name used for export or import (tgz
format). Alternatively an (existing) directory name can be specified.

-n / --name A name for the file set (only if a directory is specified).

Export, Import, List, and Copy Option Details
The following sections provide additional detail on the options.

Export (option -e)
In export mode, the script exports one or more models to a single file or to a file set in a directory.

270 00X6331-01 Rev. 2

Available Functionality

(see the description of NZA..EXPORT_MODEL for more information). It is possible to export models
from a database on another host (using -z). Note that in this case, all resulting files are written on
that host, not on the local Netezza system. If one of the parameters (host, database, user, or
password) is not specified, its value is taken from the corresponding environment variable.

The models to be exported can be specified using a where clause, or their names can be listed at the
end of the command line (space-separated). If “all” is specified in the model name list, all models are
exported. The final list of exported models is constructed by merging the model set specified by the
where clause with the models specified by name. The where clause and the list of model names can
select only models in the current database (option -d). The where clause can be constructed in the
same way as the where parameter in the NZA..LIST_MODELS procedure.

The result can be written to an archive file, or a set of single files. (The archive file is a zipped form of
the file set.) If an existing directory is specified with the -f option, the result is written as a set of files
into that directory. In that case, you must also specify the -n option to define a name for the file set.
In all other cases, one archive file is written. If the specified file already exists, it is either overwritten
without notice (if the -o option was specified) or the user is asked if the file should be overwritten.

Import (option -i)
In import mode, the script imports one or more models from a single file or a file set into a database
(see the description of NZA..IMPORT_MODEL for more information) .It is possible to import models
into a database on another host (using -z). Note that in this case, all import files must exist on that
host, not on the local Netezza system. If one of the parameters (host, database, user, or password) is
not specified, its value is taken from the corresponding environment variable.

The models to be imported can be specified using a where clause, or their names can be listed at the
end of the command line (space-separated). If “all” is specified in the model name list, all models are
imported. The final list of imported models is constructed by merging the model set specified by the
where clause with the models specified by name. Models can be imported only in the specified
import database (option -d), regardless of the original export database. The where clause can be
constructed in the same way as the where parameter in the NZA..LIST_MODELS stored procedure.

The file/directory parameter (option -f) can be any of the following:

► An archive file created by a model export operation.

► A directory that contains an exported file set. If the directory contains more than one exported
file set, you must specify the -n parameter must to select the desired file set. If you do not know
the name of the exported file set, you can derived it from the file names (because the name of a
file set is part of each file name).

The import can fail if an imported model has the same name as an existing model. In this case it fails
if the overwrite option is not specified or the user does not have privileges to drop the existing
model.

List (option -l)
In list mode, the script lists the names and some properties of the models in the archive file or the
file set. You can specify the file/directory and the name parameter in the same way as you would
with import mode.

00X6331-01 Rev. 2 271

In-Database Analytics Developer's Guide

Copy (option -c)
In copy mode, the script copies one or more models from a database on the local host directly to a
database on another host. The models can be specified in the same way as with the EXPORT_MODEL
procedure, using the where clause and/or a list of model names. Although the copy mode allows you
to specify a source host (option -z), currently the source host must always be the local host.

Examples

Stored Procedure Examples
To export the two models – DECTREE_MODEL and LinRegModel – into the existing directory
/tmp/export, you execute:

call nza..export_model('model=dectree_model;"LinRegModel",
 directory=/tmp/export, name=production');

The names of all created files in /tmp/export start with production (as specified by the name
parameter).

The export command above does not export model privileges. If you are logged in as user ADMIN,
you can also export privileges. Using the overwrite option replaces the existing file set with a new
one:

call nza..export_model('model=dectree_model;"LinRegModel",
 directory=/tmp/export, name=production,
 overwrite=true, acl=true, verbose=true');

Suppose you have several models whose names starts with DECTREE. If you want to export them and
also the model LinRegModel, you could do so as follows:

call nza..export_model('model="LinRegModel", directory=/tmp/export,
 where=MODELNAME LIKE ''DECTREE%'',
 name=production, overwrite=true');

The model sets defined by the model and the where parameter are unified.

To list the models exported to /tmp/export, use this command:

call nza..list_models('directory=/tmp/export');

To import the exported models into another database, log in to target database and call the
IMPORT_MODEL procedure:

call nza..import_model('model=dectree_model;"LinRegModel",
 directory=/tmp/export');

Note that you do not need to specify the name parameter, because /tmp/export contains only one
export file set (“production”).

The import command above does not import model privileges. If you are logged in as user ADMIN,
you can also import privileges (provided you have exported them previously). Use the overwrite

272 00X6331-01 Rev. 2

Examples

option to overwrite models:

call nza..import_model('model=dectree_model;"LinRegModel",
 directory=/tmp/export,
 overwrite=true, acl=true, verbose=true');

If the target machine has a user PETER, you can make PETER the owner of all imported models (you
must be logged in as ADMIN):

call nza..import_model('model=dectree_model;"LinRegModel",
 directory=/tmp/export, owner=peter,
 overwrite=true, acl=true, verbose=true');

Shell Script Examples
To export the two models DECTREE_MODEL and LinRegModel, located in database TEST, into the
existing directory /tmp/export, you execute:

nzmodel -e -d test -f /tmp/export -n product
 dectree_model \"LinRegModel\"

The names of all created files in /tmp/export start with product. Note that default values for the
host, the user, and the password are taken from environment variables NZ_HOST, NZ_USER,
NZ_PASSWORD.

Since the Linux shell interprets double quotes itself, you must use the escape char (\) to prevent this,
since the double quotes are needed in the database for mixed case names.

Instead of writing a file set, you can also create a single archive file:

nzmodel -e -d test -f /tmp/export/product.tgz
 dectree_model \"LinRegModel\"

Here, only the file product.tgz is created.

The following lists the models exported to /tmp/export:

nzmodel -l -f /tmp/export

The following lists the models exported to /tmp/export/product.tgz:

nzmodel -l -f /tmp/export/product.tgz

The following imports the models exported to /tmp/export into the database TESTIM:

nzmodel -i -d testim -f /tmp/export dectree_model \"LinRegModel\"

The following imports all models exported to /tmp/export/product.tgz into the database TESTIM:

nzmodel -i -o -d testim -f /tmp/export/product.tgz all

You can use the copy option to copy models directly from the local host/database to another
host/database:

nzmodel -c -d test -H productionhost -D testim -U admin -P password
 dectree_model \"LinRegModel\"

00X6331-01 Rev. 2 273

In-Database Analytics Developer's Guide

Here we specified the username and password of the target machine (productionhost)explicitly. This
command will work only if you can use nzsql to connect to the target machine.

274 00X6331-01 Rev. 2

C H A P T E R 2 5
PMML Support

Overview

The Predictive Model Markup Language (PMML) is widely accepted as the standard for exchange of
data mining models and is defined by the Data Mining Group (DMG).2 Netezza Analytics PMML
supports export of k-means clustering models, and limited support for decision trees, association
rules, and naïve Bayes algorithms

PMML uses XML to represent mining models. The structure of the models is described by an XML
Schema. One or more mining models can be contained in a PMML document. Consumers typically
apply imported models to their own data or analyze the models. An example could be to visualize
model contents.

PMML General Information
The following sections provide general information on Netezza Analytics PMML support.

PMML Header Element
Any PMML model requires a version attribute as well as a Header element and it may optionally have
a MiningBuildTask element. Following is the PMML definition of Header:

<xs:element name="Header">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element minOccurs="0" ref="Application"/>
 <xs:element minOccurs="0" maxOccurs="unbounded"
 ref="Annotation"/>
 <xs:element minOccurs="0" ref="Timestamp"/>
 </xs:sequence>
 <xs:attribute name="copyright" type="xs:string" use="required"/>

2 Details can be found at http://dmg.org/.

00X6331-01 Rev. 2 275

In-Database Analytics Developer's Guide

 <xs:attribute name="description" type="xs:string"/>
 </xs:complexType>
</xs:element>

The header of Netezza PMML models contains the following values:

Table 63: Header values of Netezza PMML models

Field Value

Extension None

Application <Application name="IBM Netezza Analytics"
version="x.x" />
(where x.x is the version of Netezzza Analytics running
on the system)

Annotation None

Timestamp <Timestamp>model creation time</Timestamp>,
where model creation time is DATECREATED from
NZA_METADATA_MODELS

Copyright "Copyright copyright statement All Rights Reserved",
where copyright statement is COPYRIGHT from
NZA_METADATA_MODELS

Description "description",
where description is DESCRIPTION from
NZA_METADATA_MODELS

MiningBuildTask Element
The PMML element MiningBuildTask consists only of Extensions and defines no semantics. It is
meant to describe the configuration of the training run that produced the model. Netezza PMML
models contain the following:

<MiningBuildTask>
 <Extension name=params>
 <X-Parameter … />
 …
 </Extension>
 <Extension name=colparams>
 <X-ColumnProperty … />
 …
 </Extension>
</MiningBuildTask>

X-Parameter and X-ColumnProperty Elements
The X-Parameter element is defined as follows:

<xs:element name="X-Parameter">
 <xs:complexType>
 <xs:attribute name="taskseq" type="xs:integer" use="optional"/>

276 00X6331-01 Rev. 2

Overview

 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

The X-ColumnProperty element is defined as follows:

<xs:element name="X-ColumnProperty">
 <xs:complexType>
 <xs:attribute name="colname" type="xs:string" use="required"/>
 <xs:attribute name="property" type="xs:string" use="required"/>
 <xs:attribute name="type" type="xs:string" use="required"/>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

The data are those contained in NZA_META_PARAMS and NZA_META_COLPROPS. If colname is *, the
properties pertain to all columns for which an X-Column-Property is not in the PMML document.

Data Dictionary
Any PMML must have a data dictionary describing all available input columns. Netezza PMML models
simply contain a list of DataField elements. Each of them contains the following attributes:

<xs:attribute name="name" type="FIELD-NAME" use="required"/>
<xs:attribute name="optype" type="OPTYPE" use="required"/>
<xs:attribute name="dataType" type="DATATYPE" use="required"/>

The following type definitions apply:

<xs:simpleType name="OPTYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="categorical"/>
 <xs:enumeration value="ordinal"/>
 <xs:enumeration value="continuous"/>
 </xs:restriction>
</xs:simpleType>

Of the DATATYPE values defined in PMML, only the ones described below are used:

<xs:simpleType name="DATATYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="string"/>
 <xs:enumeration value="integer"/>
 <xs:enumeration value="float"/>
 <xs:enumeration value="double"/>
 <xs:enumeration value="boolean"/>
 <xs:enumeration value="date"/>
 <xs:enumeration value="time"/>
 <xs:enumeration value="dateTime"/>
 </xs:restriction>
</xs:simpleType>
If column statistics are contained in the model, continuous fields also contain Interval elements,

00X6331-01 Rev. 2 277

In-Database Analytics Developer's Guide

categorical fields contain Value elements listing all valid values.

Of the possible subelements and attributes of Interval defined in PMML, only the ones described
below are used:

<xs:element name="Interval">
 <xs:complexType>
 <xs:attribute name="closure" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="openClosed"/>
 <xs:enumeration value="openOpen"/>
 <xs:enumeration value="closedOpen"/>
 <xs:enumeration value="closedClosed"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="leftMargin" type="NUMBER"/>
 <xs:attribute name="rightMargin" type="NUMBER"/>
 </xs:complexType>
</xs:element>

Of the possible subelements and attributes of Value, only the ones described below are used:

<xs:element name="Value"> <xs:complexType>
 <xs:attribute name="value" type="xs:string" use="required"/>
 </xs:complexType>
</xs:element>

Note: The order of intervals and values that is defined in the data dictionary defines also the order of
statistics values in succeeding statistics elements.

Transformation Dictionary and Local Transformations
Netezza PMML models do not contain transformation dictionaries. Netezza PMML models may
contain local transformations. The details pertaining to k-means local transformation are described in
the k-means section, Local Transformations.

Mining Models
The main section in a PMML model consists of one or more models of particular types. The XML
element for each of the model types starts with an optional Extension elements, designed to hold
proprietary (non-standard) information that must not be relevant for scoring. Netezza Analytics uses
the models' Extension elements to hold model metainformation. The extension looks as follows:

<Extension extender='metadata' name='<item>' value='<val>'/>
where <item> can be any one of the column names in V_NZA_MODELS of which the
information is not otherwise contained in the PMML document, such as
USERCATEGORY. <val> is the corresponding value.

278 00X6331-01 Rev. 2

Overview

Clustering Model
Netezza clustering models have the following form:

<xs:element name="ClusteringModel">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="MiningSchema"/>
 <xs:element ref="Output" minOccurs="0" />
 <xs:element ref="ModelStats" minOccurs="0"/>
 <xs:element ref="ModelExplanation" minOccurs="0"/>
 <xs:element ref="LocalTransformations" minOccurs="0" />
 <xs:element ref="ComparisonMeasure"/>
 <xs:element ref="ClusteringField"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="Cluster" maxOccurs="unbounded"/>
 <xs:element ref="ModelVerification" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="modelName" type="xs:string"
 use="optional"/>
 <xs:attribute name="functionName" type="MINING-FUNCTION"
 use="required"/>
 <xs:attribute name="algorithmName" type="xs:string"

 use="optional"/>
 <xs:attribute name="modelClass" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="centerBased"/>
 <xs:enumeration value="distributionBased"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="numberOfClusters" type="INT-NUMBER"

 use="required"/>
 </xs:complexType>
 </xs:element>

The generic elements are described in the following subsections. Netezza generates k-means models
for clustering. For details of the k-means models, see K-means Clustering.

Mining Schema and Mining Field
Most data mining models contain a mandatory MiningSchema element describing the subset of the
data dictionary actually used by the model as well as further column properties.

The mining schema consists of a set of MiningField elements defined in the following way by PMML:

<xs:element name="MiningField">
 <xs:complexType>
 <xs:attribute name="name" type="FIELD-NAME" use="required" />
 <xs:attribute name="usageType" type="FIELD-USAGE-TYPE"

 default="active" />
 <xs:attribute name="optype" type="OPTYPE" />
 <xs:attribute name="importance" type="PROB-NUMBER" />
 <xs:attribute name="outliers" type="OUTLIER-TREATMENT-METHOD"

00X6331-01 Rev. 2 279

In-Database Analytics Developer's Guide

 default="asIs" />
 <xs:attribute name="lowValue" type="NUMBER" />
 <xs:attribute name="highValue" type="NUMBER" />
 <xs:attribute name="missingValueReplacement" type="xs:string" />
 <xs:attribute name="missingValueTreatment"
 type="MISSING-VALUE-TREATMENT-METHOD" />
 <xs:attribute name="invalidValueTreatment"
 type="INVALID-VALUE-TREATMENT-METHOD"
 default="returnInvalid" />
 </xs:complexType>
</xs:element>

Besides all required attributes, Netezza PMML provides optype, importance, and
missingValueTreatment. The description of the importance attribute and the missingValueTreatment
attribute is provided independently for each of the algorithms.

Output Fields
The output fields describe a set of result values that can be computed when the model is applied to
new data. In particular, the output fields specify names, types and rules for selecting specific result
features. This information can be used by a scoring engine to determine the results that can be
calculated from the model.

The Output element consists of a set of OutputField elements. See Output Fields in the k-means
section for more information.

Model Statistics
PMML models may contain statistical information about some of the input fields in an element. The
model statistics consists of a set of UnivariateStatistics elements. The description of which univariate
statistics are contained in a k-means model is described in Model Statistics.

Model Explanation
Netezza may generate ModelExplanation elements. See the k-means Model Explanation for more
details.

Model Verification
Model verification is intended to allow scoring engines to verify that their scores are correct, or
rather identical to those intended by the model producer. Model verification is optional.

K-means Clustering

The PMML functionality supported by IBM Netezza In-Database Analytics allows users to export the
data for K-Means models.

280 00X6331-01 Rev. 2

K-means Clustering

Clustering Model
The ClusteringModel element describes the clustering model as a set of clusters. This includes
information needed for scoring; k-means needs, in particular, the center vectors of each cluster.
Details of the sub-elements contained in ClusteringModel are described in the subsequent sections
of this chapter.

ClusteringModel may have the following attributes:

<xs:attribute name="modelName" type="xs:string" use="optional"/>
<xs:attribute name="functionName" type="MINING-FUNCTION"
use="required" />
<xs:attribute name="algorithmName" type="xs:string" use="optional"/>
<xs:attribute name="modelClass" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="centerBased"/>
 <xs:enumeration value="distributionBased"/>
 </xs:restriction>
 </xs:simpleType>
</xs:attribute>
<xs:attribute name="numberOfClusters" type="INT-NUMBER" use="required"/>

Table 64: ClusteringModel attributes

Attribute Description

modelName the name string provided by the user for the
model, when calling the k-means function

functionName is "clustering"

algorithmName is "Kmeans"

modelClass is "centerBased"

numberOfClusters the number of clusters contained in the model

Mining Schema and Mining Field
K-means Clustering supports the following usage types:

<xs:simpleType name="FIELD-USAGE-TYPE">
 <xs:restriction base="xs:string">
 <xs:enumeration value="active" />
 <xs:enumeration value="supplementary" />
 </xs:restriction>
</xs:simpleType>

The mining fields of k-means models contain the attributes importance and missingValueTreatment.

Importance is the value contained in column IMPORTANCE of

00X6331-01 Rev. 2 281

In-Database Analytics Developer's Guide

NZA_META_<model_name>_COLUMNS.

MissingValueTreatment is always by imputation of mean or mode. Therefore, asMean or asMode is
used as values.

Output Fields
For k-means clustering, the output section looks as follows:

<xs:element name="Output">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="OutputField" minOccurs="1"
 maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

Only the following attributes of OutputField entries are contained:

<xs:element name="OutputField">
 <xs:complexType>
 <xs:attribute name="name" type="FIELD-NAME" use="required" />
 <xs:attribute name="optype" type="OPTYPE" />
 <xs:attribute name="dataType" type="DATATYPE"/>
 <xs:attribute name="feature" type="RESULT-FEATURE" />
 </xs:complexType>
 </xs:element>

K-means models contain output fields having result features clusterID and clusterAffinity. Cluster
affinity is defined such that it contains the distance of a row from its cluster center. Here is the
Output section:

<Output>
 <OutputField name="cluster_id" optype="categorical"
 datatype="integer" feature="clusterId" />
 <OutputField name="distance" optype="continuous"
 datatype="double" feature="clusterAffinity" />
</Output>

Model Statistics
K-means PMML models may contain statistical information about active and supplementary input
fields.

Depending on the value of the statistics parameter provided when the model was built, the
UnivariateStatistics elements contain some or all of the following information:

<xs:element name="UnivariateStats">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Counts" minOccurs="0"/>
 <xs:element ref="NumericInfo" minOccurs="0"/>
 <xs:element ref="DiscrStats" minOccurs="0"/>

282 00X6331-01 Rev. 2

K-means Clustering

 <xs:element ref="ContStats" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="field" type="FIELD-NAME"/>
 </xs:complexType>
</xs:element>

Counts looks as follows:

<xs:element name="Counts">
 <xs:complexType>
 <xs:attribute name="totalFreq" type="NUMBER" use="required"/>
 <xs:attribute name="missingFreq" type="NUMBER"/>
 <xs:attribute name="invalidFreq" type="NUMBER"/>
 <xs:attribute name="cardinality" type="xs:nonNegativeInteger"/>
 </xs:complexType>
</xs:element>

NumericInfo, which may be provided for continuous fields, looks as follows:

<xs:element name="NumericInfo">
 <xs:complexType>
 <xs:attribute name="minimum" type="NUMBER"/>
 <xs:attribute name="maximum" type="NUMBER"/>
 <xs:attribute name="mean" type="NUMBER"/>
 <xs:attribute name="standardDeviation" type="NUMBER"/>
 </xs:complexType>
</xs:element>

Note that the optional attributes median and interquartile range are not available, neither are
quantiles. DiscrStats looks as follows:

<xs:element name="DiscrStats">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="INT_ARRAY" minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 <xs:attribute name="modalValue" type="xs:string"/>
 </xs:complexType>
</xs:element>

The array contains the frequencies for each of the values in the corresponding field. They are
provided in the order in which the field values are listed in the Data Dictionary. ContStats looks as
follows:

<xs:element name="ContStats">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Interval" minOccurs="0" maxOccurs="unbounded"/>
 <xs:group ref="FrequenciesType" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="totalValuesSum" type="NUMBER"/>
 <xs:attribute name="totalSquaresSum" type="NUMBER"/>
 </xs:complexType>
</xs:element>

00X6331-01 Rev. 2 283

In-Database Analytics Developer's Guide

with:

<xs:group name="FrequenciesType">
 <xs:sequence>
 <xs:group ref="NUM-ARRAY" minOccurs="3" maxOccurs="3"/>
 </xs:sequence>
</xs:group>

where the three arrays hold the frequencies, sum of values, and sum of squared values for each
interval. For a definition of interval, see the Data Dictionary section.

Model Explanation
For k-means models, Netezza Analytics does not generate a ModelExplanation element. Note that
cluster statistics are contained in Partition elements in the clusters.

Local Transformations
Whenever categorical columns are present, k-means models contain an element,
LocalTransformations, which contains one DerivedField for each categorical mining field.

The derived fields map the categories v1, v2, …, vn (in the order in which they appear in the data
dictionary) to integers 1, 2, …, n. This is necessary, because center vectors in a clustering model can
only have numeric entries, while Netezza Analytics k-means models use modes to characterize
cluster centers.

Each DerivedField element has the following form:

<DerivedField name="DF" displayname="OF"
 optype="continuous" dataType="integer"
 <MapValues outputColumn="DF" defaultValue="0”>
 <FieldColumnPair field="int
 column="cat"/>
 <InlineTable>
 <row><cat>v1</cat><int>1</int></row>
 <row><cat>v2</cat><int>2</int></row>
 ...
 <row><cat>vn</cat><int>n</int></row>
 </InlineTable>
 </MapValues>
</DerivedField>

where OF is the original field name and DF is a uniquely generated name such as OF_INT.

More entries in Local Transformations may become necessary to capture automatic data
normalization or standardization once it is available.

Comparison Measure
Netezza k-means models generate a ComparisonMeasure element. The comparison measure
describes how to aggregate the values obtained by comparing the column value of a record with the

284 00X6331-01 Rev. 2

K-means Clustering

corresponding component of a center vector.

Netezza k-means models use distance-based comparison measures (kind='distance'). Depending
on user input to the algorithm for the distance function, the following elements are contained in the
comparison measure:

euclidean <euclidean/>
manhattan <cityBlock/>
canberra <cityBlock/>
 <Extension name="compareFunction" value="canberra"/>
 </cityBlock>
maximum <chebychev/>

For other functions (user-defined via UDFs), PMML generation is not supported, because the scoring
engine is unlikely to have access to the UDF. Even in the special case, where the UDF implements one
of the other distance measures supported by PMML, for example the Minkowski distance, a further
UDF would be needed to tell the algorithm about the nature of the user-defined distance function.

Note that canberra cannot truly be modeled in PMML 4.0. Canberra uses a sum (chebychev) as
comparison measure, however it requires a compare function that is not available in PMML. The
function is a normalized absolute difference, where the absolute difference of values is divided by
the sum of the individual field values.

The attributes compareFunction specifying the default for the mining fields, as well as minimum and
maximum in ComparisonMeasure are not used by Netezza Analytics PMML. Instead, the compare
function is explicitly set in ClusteringField whenever it is not the absolute difference, for example for
categorical fields.

Clustering Field
Clustering fields refer to mining fields or derived fields. There is a clustering field for each continuous
mining field, as well as for each field derived from a categorical mining field.

The ClusteringField element describes specific features for columns in a clustering model. Netezza
PMML only uses the following attributes:

<xs:attribute name="field" type="FIELD-NAME" use="required"/>
<xs:attribute name="compareFunction" type="COMPARE-FUNCTION"
 use="optional"/>

For comparison measures euclidean, manhattan, and maximum, the compare function is absdiff for
originally continuous fields, and delta for the fields derived from categorical fields. The compare
function for originally continuous fields may be omitted, as it's the default value.

Cluster
For each cluster contained in the k-means model, there is an element Cluster:

<xs:element name="Cluster">
 <xs:complexType>
 <xs:sequence>

00X6331-01 Rev. 2 285

In-Database Analytics Developer's Guide

 <xs:group ref="NUM-ARRAY" minOccurs="0"/>
 <xs:element ref="Partition" minOccurs="0">
 <xs:element ref="Covariances" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="optional"/>
 <xs:attribute name="size" type="xs:nonNegativeInteger"
 use="optional"/>
 </xs:complexType>
</xs:element>

Each cluster starts with an array of center coordinates; the order of the values is the order in which
the fields occur in ClusteringFields. This is straightforward in the case of continuous fields, but does
not naively work for categorical fields, as the Netezza Analytics k-means model stores the modes,
which may be non-numeric.

For non-numeric clustering fields, derived fields are necessary in order to generate numeric field
values from the categories. The definition of these derived fields is done as described in the Local
Transformations section, above.

With F the number of clustering fields and ci the ith center coordinate, the arrays have the
following form:

<Array n="F" type="real">c
1
, c

2
, …, c

F
</Array>

The Partition element contains statistics describing the cluster members. It describes the distribution
of each mining field, i.e. it uses the original rather than the derived fields.

If needed, covariances are also contained in the Cluster element.

<xs:element name="Covariances">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="Matrix"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The sequence of rows/columns corresponds to the sequence in MiningSchema. Note that
Covariances does not contain information about fields from the Transformation Dictionary.

286 00X6331-01 Rev. 2

C H A P T E R 2 6
Utility Functions – Probability Distributions

Introduction

A cumulative probability distribution in a single, real valued variable F(x) formally assigns each x a
value in a range [0,1] so that if (x1<x2) then F(x1)<=F(x2_).

Informally F(x) means the probability that a random variable takes the value x or less.

As already described in Generalized Linear Models, there exist a number of probability distribution
types, like the already mentioned nominal (or discrete) ones: the Bernoulli, binomial, Poisson, and
negativebinomial distributions, or the continuous ones like the Gaussian (normal) , wald (inverse
gaussian) and gamma distributions.

They are characterized by specific parameters and we can be interested in the cumulative
distribution F(x), distribution density f(x) or distribution mass m(x) or the inverted cumulative
distribution IF(x).

The relationship between these functions is as follows: If F(x)=y and F(x) is strictly increasing at x,
then IF(y)=x. If F(x) is continuous then almost everywhere f(x)=F’(x). In case of a discrete distribution
with mass assigned to integers, m(x)=F(x)-F(x-1).

Using Probability Distribution Functions

We are frequently interested in finding out what kind of distribution is followed by a particular
attribute. In majority of data analysis applications we would prefer normal distribution, but if a
distribution differs from it, the attribute may be transformed to become a normal one.

For example if attribute a follows the distribution z, but we want it to follow the normal distribution
n, then we would perform a transformation:

a’(x)=IF_n(F_z(a(x)))

00X6331-01 Rev. 2 287

In-Database Analytics Developer's Guide

Note that if attribute a follows the distribution z, then:

SELECT count(*) from atable where a < IF_z(0.1) ;

Should return a number being 10% of all the records. Same checks may be done at deciles
(0.10.2,0.3…,0.9) or percentiles (0.01, 0.02,…, 0.98,0.99). If the results roughly agree, we have some
confidence that we know what distribution is followed in the data.

But the most prominent usage of the probability distribution functions is hypothesis testing. Within
nzAnalytics procedures like ANOVA, Spearman’s correlation, Chi-square tests and t-tests, Wilcoxon
and other tests, Generalized Linear Models and other incorporate usage of various probability
distribution functions like normal, chi square, t-Student, F-Fisher and other.

And of course they are used to generate samples from distributions other than uniform.

Functions Related with each Distribution

The general form of a call to a probability function is:

<type><name><tail>(<argument>[,<parameters>])

The type can be either P (meaning cumulative), D (meaning density or mass function) , Q (meaning
inverse cumulative).

The name can be BERN, BETA, BINOM, CAUCHY, CHISQ, EXP, F, FISK, GAMMA, GEOM, HYPER, LNORM,
LOGIS, NWW, NBINOM, NORM, NORM3P, POIS, T, UNIF, WALD, WEIBULL, or WILCOX.

The tail can be either an empty string (meaning low taikl) or _H (meaning high tail).

For example:

► PNORM(x) means F(x) for a standard normal distribution

► PNORM_H(x) means 1- PNORM(x)

► DNORM(x) means the density function of standard normal distribution

► QNORM(p) means the inverse cumulative standard normal distribution function

► QNORM_H(p) means 1-QNORM(p)

Distributions and their Parameters

The following sections briefly describe the available distributions.

BERN - Bernoulli Distribution (discrete)
The Bernoulli distribution implies that the response variable takes on values 0 and 1. It models a
single toss of a manipulated coin that does not have the same chance of heads and tails. This is a one
parameter distribution (the percentage of heads).

288 00X6331-01 Rev. 2

Distributions and their Parameters

BETA - Beta Distribution
The Beta distribution is generic distribution, closely related to other distributions like th Fisher
distribution via closed-form mathematical relations. As the beta distribution has a bounded range
with positive density (from 0 to 1), processes with implicit lower and upper limits are modelled using
it. It has two shape parameters.

BINOM - Binomial Distribution (discrete)
Binomial distribution models tossing a number of times a manipulated coin that does not have the
same chance for heads and tails.

It is driven by two parameters: the percentage of heads and the number of trials.

CAUCHY - Cauchy Distribution
The Cauchy distribution describes the cross-section of resonant nuclear scattering, derived from the
probability of a resonant state with a known lifetime.

It has two parameters: location and scale.

CHISQ - Chi-square Distribution
If you have variables X1,...,Xn each of them following standard normal distribution, the variable
X=X1^2+X2^2+...+Xn^2 follows the chi-square distribution with n degrees of freedom.

It has one parameter: the number of degrees of freedom.

EXP - Exponential Distribution
The exponential distribution may be encountered in behavior of technical systems for example in
case of time between failures, provided that the probability of failure is very low and does not
change over time.

It has one parameter: the scale.

F - Fisher Distribution
► The Fisher distribution, also called Fisher-Snedecor distribution or Fisher F-Distribution, describes

the distribution of a quotient of two variables following a Chi-square distribution, both scaled by
their number of degrees of freedom.

It has two parameters, the two degrees of freedom.

FISK - Fisk Distribution
The Fisk distribution may be used in hydrology in models of precipitation or stream flow rates.

00X6331-01 Rev. 2 289

In-Database Analytics Developer's Guide

It has two parameters: median and shape.

GAMMA - Gamma Distribution
The Gamma distribution is the distribution of a sum of random variables that are exponentially
distributed. Also exponentially distributed are time intervals between successes in the Poisson
experiment.

It has two parameters: shape and inverted scale.

GEOM - Geometric Distribution (discrete)
The cumulative Geometric distribution returns the probability that in a series of Bernoulli trials you
will have x or less failures before the first success.

It has one parameter: the probability of success.

HYPER - Hypergeometric Distribution (discrete)
In an urn containing wu white balls and bu black balls, we draw N balls without replacement.
Drawing a white ball is a success (1), a black ball is a failure (0). The cumulative Hypergeometric
distribution calculates the probability that we get x or less successes in the N trials.

Wu, bu and N are the parameters of the distribution.

LNORM - Log-Normal or Galton Distribution
The properties of living tissues, like weight or skin area, tend to follow the Galton distribution.

It has two parameters: the median on logarithmic scale and the shape on logarithmic scale.

LOGIS - Logistic Distribution
The logistic distribution is used in describing the spread of epidemics

It ha two parameters: mean and scale.

MWW - Mann-Whitney-Wilcoxon Distribution (discrete)
We have a set of observations of variable x split into two sets. We assume that the values of the
variable x are distributed in both sets in the same way, and are independent.

We assume that x is ordinal, so that we can rank all values of x. The statistics uStat is calculated as the
sum of ranks of objects belonging to the first set or to the second set, whichever is lower.

The MWW distribution describes the distribution of uStat

It has two parameters: the number of items in the first set and the total number of items.

290 00X6331-01 Rev. 2

Distributions and their Parameters

NBINOM - Negative Binomial Distribution (discrete)
The Negative Binomial distribution means that the response variable take on non-negative integer
values. It models the toss a manipulated coin that does not have the same chance for heads and tails
until a predefined number of heads is reached. The response variable is the count of tails.

It has two parameters: the number of successes needed to stop the series of Bernoulli trials and the
success probability.

NORM - Standardized Normal or Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural
processes. Specifically, in the case of a multitude of independent processes generating continuous
numbers from a distribution, then their average tends to follow normal distribution.

Its standardized version assumes that it has a mean of 0 and standard deviation of 1.

It has no parameters.

NORM3P - Normal or Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural
processes. Specifically, in the case of a multitude of independent processes generating continuous
numbers from a distribution, then their average tends to follow normal distribution.

It has two parameters: the mean and the standard deviation.

POIS - Poisson Distribution (discrete)
The Poisson distribution implies that the response variable takes on non-negative integer values . The
distribution is driven by the Poisson process. In this process the average rate of success over time is
known. The probability of a single success within a time interval is proportional to the length of the
interval and is independent of the probability outside of the interval. If the interval gets shorter, the
probability of more than 1 success goes toward zero.

It has one parameter: the mean.

T- t-Student Distribution
Considering n independent random variables Z1,...,Zn distributed according to the normal
distribution with mean mu and a fixed variance, we create a new variable Z as their average. If s is
the standard deviation from the sample, then the variable X = (Z-mu)/(s/sqrt(n)) follows the t-Student
distribution with n-1 degrees of freedom.

It has one parameter: the number of degrees of freedom.

00X6331-01 Rev. 2 291

In-Database Analytics Developer's Guide

UNIF - Uniform Distribution
Uniform distribution has two parameters: the lower bound and the upper bound. Its density is a
constant between these bounds.

WALD - Wald Distribution
The Wald distribution, also called the Inverse Gaussian distribution, represents the first passage time
for Brownian motion.

It has two parameters: location and shape.

WEIBULL - Weibull Distribution
The Weibull distribution gives a distribution of time between failures x, for which the failure rate is
proportional to a power of time. The shape parameter kshape may be understood as follows:

► If it is lower than 1, then the failure rate decreases over time,

► If it is equal to 1, then the failure rate is constant over time,

► If it is greater than 1, then the failure rate increases over time ("aging process").

The Exponential distribution is a special case of the Weibull distribution:

Weibull distribution has two parameters: scale and shape.

WILCOX - Wilcoxon Distribution (discrete)
Given two variables x and y measured for the same objects (items), we split the objects into two sets:
the first set contains objects where x>y and the second set objects where x<=y.

For each object we compute the rank of |x-y|. The statistics sStat is calculated as the sum of ranks of
objects belonging to the first set or to the second set, whichever is lower.

This statistics follows the Wilcoxon distribution.

The Wilcoxon distribution has one parameter: number of items.

Usage Examples

You may be interested in having a look at how well the petallength of setosa in the iris database fits
the normal distribution. Run:

select avg(petallength), stddev(petallength)
from nza..iris where class = 'setosa';

The result will show that mean and standard deviation of petallength are 1.464 and
0.17351115943645 respectively.

Then run:

292 00X6331-01 Rev. 2

Usage Examples

select rank() over (order by petallength asc) as r, r/50. as pp,
nza..pnorm3p(petallength, 1.464 , 0.17351115943645) ppnorm
from nza..iris where class = 'setosa';

to see that the correspondence is only rough (in the ideal case, the pp and ppnorm columns would
be equal).

 r | pp | ppnorm
----+----------+--------------------
 1 | 0.020000 | 0.0037456162171375
 2 | 0.040000 | 0.01795929726821
 3 | 0.060000 | 0.064065203430695
 3 | 0.060000 | 0.064065203430695
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 5 | 0.100000 | 0.1722824316448
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 12 | 0.240000 | 0.35611888863086
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 24 | 0.480000 | 0.58218228015053
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 38 | 0.760000 | 0.78342456624959
 45 | 0.900000 | 0.91310767209118
 45 | 0.900000 | 0.91310767209118
 45 | 0.900000 | 0.91310767209118
 45 | 0.900000 | 0.91310767209118

00X6331-01 Rev. 2 293

In-Database Analytics Developer's Guide

 49 | 0.980000 | 0.99401125247379
 49 | 0.980000 | 0.99401125247379
(50 rows)

A different way to inspect how well the data follows a distribution is to compute the mean and
variance of petallength:

select avg(petallength), variance(petallength) from nza..iris ;

The SELECT results in a mean that is approximately 3.75 and true variance of 3.11.

Now create a table, iripetall, describing the probability for a given plant to have its actual petallength,
given that the true mean is 3.75 and true variance is 3.11.

Use the call:

CALL nza..CUMULATIVE('intable=nza..iris, id=id, type="n",
incolumn=petallength, outtable=iripetall, mean=3.75, variance=3.11');

It will look like this:

 id | pnorm | petallength | mean | variance
-----+-------------------+-------------+------+----------
 4 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 8 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 12 | 0.11139303484419 | 1.6 | 3.75 | 3.11
 16 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 20 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 24 | 0.12252669600944 | 1.7 | 3.75 | 3.11
 28 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 32 | 0.10100286923082 | 1.5 | 3.75 | 3.11
 36 | 0.074092479803748 | 1.2 | 3.75 | 3.11

If you are interested in outliers, use the following call to see them:

select * from iripetall where pnorm<0.001 or pnorm> 0.999;

The output contains zero rows because the data fit quite well (there is not even a record with pnorm
below 0.025 or above 0.975).

With the following call, you can determine the frequencey of plants in the population with a
petallength close to a given plant from the sample in our table. (This assumes the probability
distribution is the same, inthis case, normal.)

CALL nza..density('intable=nza..iris, id=id, type="n", incolumn=petallength,
outtable=iripetalld, mean=3.75, variance=3.11');

Here is a fragment of the output table iripetalld:

 id | dnorm | petallength | mean | variance
----+------------------+-------------+------+----------
 4 | 0.17678070212437 | 1.5 | 3.75 | 3.11
 8 | 0.17678070212437 | 1.5 | 3.75 | 3.11
 12 | 0.18973901890261 | 1.6 | 3.75 | 3.11

294 00X6331-01 Rev. 2

Usage Examples

The density for plant number (id) 8 is 0.17678. Therefore, the probability of having a plant with
petallength in the range 1.5-0.01 to 1.5+0.01 would be approximately 0.02*0.17678=0.0035356.

To generate a sample of 32 random numbers following the sample Fisk distribution, with median = 5
and shape = 2, do the following:

Create table randfisk (idf integer);
Insert into randfisk values(1);
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Select nza..qfisk(random(),5,2) from randfisk;

The last line is essential. The function “random()” generates random numbers ranging from 0 to 1.
Qfisk considers this as the percentage at which to compute a value. The output looks as follows:

 qfisk

 6.4816069851943
 11.109999638123
 73.47798676712
 0.44251277274839
 4.3609914099502
 3.9652110974754
 8.9253326501444
 5.3863011022385
 18.889358419282
 1.91102815974
 18.88928575491
 12.092956478697
 2.9398120974769
 3.8557807477485
 5.4003170922859
 3.9099985788724
 2.2127362446343
 1.7368954145846
 8.5545143301408
 11.250158024616
 8.6580376466144
 9.8508742789332
 5.0378666446805
 5.1411129557278
 4.6351839618808
 1.9331837885486
 3.894388650915
 4.887109365305
 4.8174315751124
 5.0469902608837
 3.6759954053399
 1.7428535568487
(32 rows)

00X6331-01 Rev. 2 295

C H A P T E R 2 7
Bulk Algorithms

By using bulk algorithms, you can process data sets in parallel. The data set is split into a partition of
data sets that are based on a group.

A typical example is a table that contains the energy consumption over time for all customers of a
utility company. With bulk algorithms, you can compute one model for each group, which is one
model for each customer in the example. These models are built in parallel and independently from
each other on each data slice. Creating the models in this way is much faster than building them
sequentially on the host or outside the database.

You can even further improve the performance of the model creation by distributing the data into
data slices according to the group field, for example, the customer ID. Thus, the data of one group is
stored on one data slice.

Bulk algorithms are bulk matrix operations, bulk linear regression, and bulk principal component
analysis.

Bulk Matrix Operations

Background
By using bulk matrix operations, you can work on many small matrixes in parallel. For example, bulk
matrix operations can help you find the optimum linear regression model when you have many
independent variables to choose from. Instead of using step-by-step linear regressions, you compute
many regression tasks for different subsets of independent variables. From the created bulk of linear
regression models, you can then select the model with the best results. To increase the processing
speed, bulk matrix operations are based on user-defined table functions (UDTFs) with user-defined
aggregates. This way, you can combine the matrix operations in bulks without having to store the
intermediate results.

00X6331-01 Rev. 2 297

In-Database Analytics Developer's Guide

Applications
Bulk matrix operations can be applied to scenarios for which you want to shortly do a set of matrix
operations on one matrix or on many small matrices.

Available Functionality
The following bulk matrix operations are available:

► Matrix operations for one matrix:

▲ Inversion

▲ Transposition

▲ Scaling by a numeric factor

▲ Singular value decomposition (SVD)

▲ Eigenvalue decomposition

▲ Matrix determinant

► Matrix operations for two matrices:

▲ Sum of two matrices

▲ Matrix multiplication of two matrices

▲ Element-wise multiplication of two matrices

▲ Kronecker product to solve linear equations Ax = b

Notes:

► For a single matrix operation:

▲ Matrices of sizes up to 10,000 x 10,000 are supported.

▲ The size of the matrix must be less than 100,000,000 cells.

► For multiple matrix operations:

▲ Matrices of sizes up to 7,000 x 7,000 are supported.

▲ The size of the matrix must be less than 50,000,000 cells.

► Matrices can be created from tables and vice versa.

► If the data set that you use for a bulk matrix operation is incomplete, an empty data set is
returned. For example, the data set might be incomplete if the cell from the first row in the first
column of the first matrix is missing.

Examples
The following examples are available for bulk matrix operations:

► Example Matrix representation for bulk operations̶

► Example Introductory example for bulk matrix operations̶

► Example Input data reordering and redistribution̶

298 00X6331-01 Rev. 2

Bulk Matrix Operations

► Examples UDTF for single-matrix operations̶

▲ Example Transposition̶

▲ Example Scaling̶

▲ Example Inversion̶

▲ Example Pseudo-Inversion̶

▲ Example XtX transformation̶

▲ Example SVD decomposition̶

▲ Example Eigenvalue decomposition̶

▲ Example Matrix determinant̶

► Examples UDTFs for operations on multiple matrices̶

▲ Example Sum̶

▲ Example Product̶

▲ Example Kronecker product̶

▲ Example Solve̶

► Examples User scenarios̶

▲ Example Calculate the bulk of sums for a few matrices̶

▲ Example Calculate the bulk of chain for a few matrix operations̶

▲ Example Calculate bulk matrix operations by using a shared matrix̶

Example ̶ Matrix representation for bulk operations
The matrix operations supports dense matrices that are stored in the database in row-column-value
(RCV) format:

► row (INT4) – row identifier 1..N

► col (INT4) – column identifier 1..M

► val (DOUBLE) – cell value

For input matrices, a special form of sparse matrix is supported. The first cell and the last cell of such
a matrix is presented even if the value is zero. For the first cell, row and col is equal to 1. For the last
cell, row is equal to the maximum row index, and col is equal to the maximum column index.

To do bulk matrices operations, you must extend the RCV format by additional fields.

The input table must be extended by id_task and id_matrix fields:

► id_task (INT4)
Identifies the input group of matrices.
The sequence is from 1 up to 2147483647.

► id_matrix (INT2)
Defines the order of matrices within the group of matrices.
The sequence is from 1 up to 32767.

► row (INT4)
Is the row index, where the sequence starts from 1.

00X6331-01 Rev. 2 299

In-Database Analytics Developer's Guide

► col (INT4)
Is the column index, where the sequence starts from 1.

► val (DOUBLE)
Is the cell value.

The id_task field defines the identifier of the group of matrices that are used in a separate
computational process. If the id_matrix value is set to 1, the operations are done on single matrices.

To convert the matrix to RCV format, you can use the MATRIX2RCV(NVARCHAR(ANY)) procedure. The
input of the procedure is a comma-separated list of parameters in the form of <parameter>=<value>.

Input parameters that are passed to the UDTF are:

► inmatrix
The name of the input matrix in block-cyclic format

► outtable
The name of the output table that contains the matrix in RCV format

► id_task

► Optional: id_task value

► id_matrix

► Optional: id_matrix value

Example:

call nzm..shape('2,3,5,7',3,3,'A');
call nzm..print('A');
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV"');
select * from "A_RCV";
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV",id_task=2');
select * from "A_RCV";
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV",id_task=2,id_matrix=2');
select * from "A_RCV";
drop table "A_RCV";
call nzm..delete_matrix('A');

Note: In the second and third call of matrix2rcv, the input matrix A is added to the existing A_RCV
table.

To convert an RCV table into an nzmatrix object, you can use the RCV2MATRIX(NVARCHAR(ANY))
procedure. The output matrix is specified by id_task and id_matrix. The input of the procedure is a
comma-separated list of parameters in the form of <parameter>=<value>.

Input parameters that are passed to the UDTF are:

► intable
The name of the input table that contains the matrix in RCV format

► outmatrix
The name of output matrix in block-cyclic format

► id_task

► Optional: id_task value

300 00X6331-01 Rev. 2

Bulk Matrix Operations

► id_matrix

► Optional: id_matrix value

Example:

call nzm..shape('2,3,5,7',3,3,'A');
call nzm..print('A');
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV"');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=B');
call nzm..print('B');
call nzm..matrix2rcv('inmatrix=B,outtable="A_RCV",id_task=2');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=C,id_task=2');
call nzm..print('C');
call nzm..matrix2rcv('inmatrix=C,outtable="A_RCV",id_task=2,id_matrix=2');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=D,id_task=2,id_matrix=2');
call nzm..print('D');
drop table "A_RCV";
call nzm..delete_matrix('A');
call nzm..delete_matrix('B');
call nzm..delete_matrix('C');
call nzm..delete_matrix('D');

Example ̶ Introductory example for bulk matrix operations
It is assumed that you have two matrices, A and B, and that you want to add them by yielding a
matrix C.

Matrix A is as follows:

11 12
13 14
15 16

Matrix B is as follows:

29 27
25 23
21 20

To hold them, you must create database tables in the following format:

Create table A (row int4, col int4, val double);
Create table B (row int4, col int4, val double);

Then, you insert the data into these tables.

Insert into A values(1,1,11);
Insert into A values(1,2,12);
Insert into A values(2,1,13);
Insert into A values(2,2,14);
Insert into A values(3,1,15);
Insert into A values(3,2,16);

Insert into B values(1,1,29);

00X6331-01 Rev. 2 301

In-Database Analytics Developer's Guide

Insert into B values(1,2,27);
Insert into B values(2,1,25);
Insert into B values(2,2,23);
Insert into B values(3,1,21);
Insert into B values(3,2,20);

To perform a bulk matrix operation, that is one task on two matrices in the example, you usually
create a view or table by pulling together all tables that are part of the operation.

Create view AB_VIEW as
(select 1::int4 as id_task, 1::int2 as id_matrix,row,col,val from A)
union
(select 1::int4 as id_task, 2::int2 as id_matrix,row,col,val from B);

where:

► A and B are to be processed in task 1

► Matrix A plays the role of the first argument, that is matrix 1

► Matrix B plays the role of the second argument that is matrix 2

Now, you can apply the sum_tf operation:

Create table C as
select o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from AB_VIEW) i,
TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

The structure and interpretation of table C is identical to table A and table B.

If you have many similar tasks to do, that is you have matrices A1, A2, B1, B2, and you want to find
the matrix C1=A1+B1 and C2=A2+B2, you prepare A1, A2, B1, B2 in the same way as matrix A and
matrix B in the example.

Then, you create a view like the following view:

Create view MULTITASK_VIEW as
(select 1::int4 as id_task, 1::int2 as id_matrix,row,col,val from A1)
union
(select 1::int4 as id_task, 2::int2 as id_matrix,row,col,val from B1)
union
(select 2::int4 as id_task, 1::int2 as id_matrix,row,col,val from A2)
union
(select 2::int4 as id_task, 2::int2 as id_matrix,row,col,val from B2);

Now, you can apply the sum_tf operation:

create table C as
select i.id_task, o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from MULTITASK_VIEW) i,
TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);

302 00X6331-01 Rev. 2

Bulk Matrix Operations

Table C contains both matrices C1 and C2 that are stored in a single table. To identify rows and
columns that belong to each of the table, use the id_task column of table C. You can also create
appropriate views like the following view:

create view C1 as select row,col,val from C where id_task=1;
create view C2 as select row,col,val from C where id_task=2;

By using the same method, you can add operators to many matrices, for example, C1=A1+B1,
C2=A2+B2,C3=A3+B3,...,Cn=An+Bn.

The following examples show similar matrix operations are similar in form, as you will see in the
subsequent subsections.

The example about matrix representation and the example about input data reordering and
redistribution show the structure of the tables that represent the matrices.

The other examples show how to apply different matrix operations.

Example ̶ Input data reordering and redistribution
All matrix operations require correct data distribution and ordering to do correct matrix operations.
To achieve this goal, you can use the special user-defined aggregate (UDA). The reorder_matrix(INT4)
UDA is an analytic type aggregate that works in the incremental windows aggregate mode.

Call the reorder_matrix(INT4) UDA function before you do a matrix operation in the matrix
operations execution chain.

You can use the following call for single matrix operations:

select id_task, row, col, val, nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL, <SINGLE_MATRIX_OPERATION >;

For operations on multiple matrices, add the id_matrix field to the call as shown in the following
example:

select id_task, id_matrix, row, col, val, nzm..reorder_matrix(id_task) over
(partition by id_task order by id_matrix desc, row desc, col desc) as
id_task_reorder
from INP_TBL, <MULTIPLE_MATRIX_OPERATION>;

Note: Use the same data order for the SQL query that is shown in the example. If you change the
matrix operation, an error might occur.

Examples ̶ UDTF for single-matrix operations
All single operations are registered in the NZM database.

Example ̶ Transposition
You can use an SQL query to do a matrix transposition operation. A specific UDTF is not required.

The following example shows such an SQL with row identifiers and column identifiers.

00X6331-01 Rev. 2 303

In-Database Analytics Developer's Guide

create table OUT_TBL as
select i.id_task, i.id_matrix, i.col as row, i.row as col, i.val from INP_TBL
i
distribute on (id_task);

The following examples refer to Example Introductory example for bulk matrix operations̶ .

It is assumed that you want to transpose matrix A by using the following call:

create table AT as
select i.col as row, i.row as col, i.val from A i;

It is also assumed that you want to transpose all the matrices, for example, the matrices in the
AB_VIEW, by using the following call:

create table AB_VIEW_T as
select i.id_task, i.id_matrix, i.col as row, i.row as col, i.val from AB_VIEW i
distribute on (id_task);

Example ̶ Scaling
Matrix scaling multiplies all the elements by a scalar value.

You can use an SQL query to do a matrix scaling operation. A specific UDTF is not required.

The following example shows such an SQL where the value is multiplied by the scalar value.

create table OUT_TBL as
select i.id_task, i.row, i.col, i.val * scalar_value as val from INP_TBL i
distribute on (id_task);
where:

► Scalar_value is a real number

► Instead of the multiplication, you can process any arithmetical operation

► The matrices that are to be scaled by the same scalar are contained in the INP_TBL table

Example ̶ Inversion
Description: Calculates matrix inversion.
The matrix that is to be inverted must be a square matrix. It must also be invertible, that is the
determinant must be non-zero. If M1 is the inversion of matrix M, then the matrix product
M*M1=M1*M=I where I is a matrix with 1 on the diagonal and 0 elsewhere.

UDX name: inversion_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

304 00X6331-01 Rev. 2

Bulk Matrix Operations

Output:

► id_task (INT4)
 The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task, o.row, o.col, o.val from
(select *,nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example ̶ Pseudo-Inversion
Description: Calculates matrix pseudo-inversion.
The Moore-Penrose pseudo-inversion is computed by using the SVD method. The properties of the
pseudo-inverted matrix are similar to the properties of the inverted matrix. The pseudo-inverted
matrix is used when an inversion is not possible. For pseudo-inversion, operation parameters control
the tolerance of the numerical precision of the inversion. Each input matrix must be a squared
matrix.

UDX name: pseudo-inversion_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

00X6331-01 Rev. 2 305

In-Database Analytics Developer's Guide

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from (select
*,nzm..reorder_matrix(id_task) over (partition by id_task order by row desc,
col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..pseudo_inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Note: Because of rounding errors or other inaccuracies, you must determine when a numerical value
should be equal to zero, especially at singular points. To determine this condition, you can set or
change the tolerance parameter of the UDTF.
By default, this parameter is set to 1.5e-8. After you do an SVD decomposition of the matrix M into
U*S*V, a value in the S matrix is equal to zero, if its absolute value is lower than the maximum
absolute value in the S matrix, multiplied by the tolerance value. The following example shows the
setting of the tolerance value. In the example, the tolerance value is increased to 1.5e-6.

begin transaction;
select nzm..init_parameters(1) from _v_dual_dslice;
select nzm..set_parameter('tolerance','1.5e-6') from _v_dual_dslice;

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *,nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..pseudo_inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

select nzm..clear_parameters() from _v_dual_dslice;
commit;

Example X̶ tX transformation
Description: Calculates the multiplication of a matrix X transposed and X for an input matrix X. For
example, matrix X transposed * X. For each id_task, a single square matrix is returned. This operation
is often called SSCP (sum of squares and cross products), and the name is used, for example, in linear
regression.

UDX name: xtx_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

306 00X6331-01 Rev. 2

Bulk Matrix Operations

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from (select *
,nzm..reorder_matrix(task_id) over (partition by id_task
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..xtx_tf(i.id_task_reorder, i.row, i.col, i.val)) o
distribute on (id_task);

Example ̶ SVD decomposition
Description: Calculates the SVD decomposition matrix. For each id_task, the UDTF returns three
matrices that are identified by the id_matrix field.

► id_matrix=1: U matrix

► id_matrix=2: S matrix (column vector)

► id_matrix=3: Vt matrix

UDX name: svd_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► id_matrix (INT2)
Identified type of vector
(1-U matrix, 2-S matrix, 3-Vt matrix)

00X6331-01 Rev. 2 307

In-Database Analytics Developer's Guide

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.id_matrix,o.row,o.col,o.val from
(select *,nzm..reorder_matrix(id_task) over (partition by id_task
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..svd_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example ̶ Eigenvalue decomposition
Description: Calculates the eigenvalue decomposition matrix for symmetric matrices. For non-
symmetric matrices, an error occurs. For each id_task, the UDTF returns two matrices that are
identified by id_matrix.

► id_matrix=1: eigenvalue matrix

► id_matrix=2: eigenvector matrix

UDX name: eigenvalue_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► id_matrix (INT2)
Identifies the type of the returned matrix according to eigenvalues or eigenvectors

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

308 00X6331-01 Rev. 2

Bulk Matrix Operations

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.id_matrix,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..eigenvalue_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example ̶ Matrix determinant
Description: Calculates the determinant of a matrix. The matrix must be a square matrix. For each
id_task,the UDTF returns a 1x1 matrix.

UDX name: determinant_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..determinant_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Examples ̶ UDTFs for operations on multiple matrices
All N-ary operations are registered in the NZM database.

Example ̶ Sum
Description: Calculates the sum of two or more matrices.

00X6331-01 Rev. 2 309

In-Database Analytics Developer's Guide

UDX name: sum_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be added. The id_matrix values must be consecutive;
integers must start with 1. In different tasks, the number of matrices that are to be added can
differ.

► row (INT4)
Within the same task, the maximum row number of each input matrix must be identical

► col (INT4)
Within the same task, the maximum col number of each input matrix must be identical

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as select i.id_task, o.row, o.col, o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

The example calculates the sum of all matrices with the same id_task and different id_matrix.
Therefore, the number of resulting matrices will be identical to the number of different values of the
id_task in the INP_TBL table, that is, you get one matrix for each id_task.

Example ̶ Product
Description: Calculates the product of two or more matrices.

UDX name: product_tf

UDX type: UDTF

310 00X6331-01 Rev. 2

Bulk Matrix Operations

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be multiplied. The id_matrix values must be
consecutive; integers must start with 1. In different tasks, the number of matrices that are to be
multiplied can differ.

► row (INT4)
Within the same task, the maximum row number of each input matrix must be identical with the
maximum col number of the preceding input matrix

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i,
TABLE(nzm..product_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Example ̶ Kronecker product
Description: Calculates the Kronecker product of two or more matrices.

UDX name: kronecker_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be multiplied. The id_matrix values must be
consecutive; integers must start with 1. In different tasks, the number of matrices that are to be

00X6331-01 Rev. 2 311

In-Database Analytics Developer's Guide

multiplied can differ.

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..kronecker_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Example ̶ Solve
Description: Solves a linear equation Ax = B. For each id_task, the UDTF returns an x matrix (vector).
To ensure a correct calculation, use two matrices for each id_task.

► id_matrix=1: A matrix

► id_matrix=2: B matrix (column vector)

UDX name: solve_tf

UDX type: UDTF

Input:

► id_task (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier. 1 identifies matrix A; 2 identifies matrix B

► row (INT4)

► col (INT4)
Equal 1 is valid for everywhere for matrix B

► val (DOUBLE)

Output:

312 00X6331-01 Rev. 2

Bulk Matrix Operations

► id_task (INT4)

► row (INT4)

► col (INT4)
Equal 1 is valid everywhere

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..solve_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Examples ̶ User scenarios

Example ̶ Calculate the bulk of sums for a few matrices
It is assumed that you have defined ten tasks for each of which you want to calculate the sum of five
matrices in the INP_TBL table.

For each of the ten tasks, that is id_task=1 to ID_task=10, you have five matrices that are numbered
from 1 to 5 by using id_matrix.

To calculate the sum of these matrices for each task, you can run the following query:

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);

The query writes the results of the bulk summing into OUT_TBL table. The results have ten different
id_task numbers. For each task, only one matrix is stored.

Example ̶ Calculate the bulk of chain for a few matrix operations
It is assumed that you have saved ten tasks, each of which has one matrix, in the INP_TBL table. For
each of the ten tasks, that is id_task=1 to ID_task=10, one matrix is stored. Now, you want to
calculate the bulk of INV(2.02*XtX+7.98) expressions.

To calculate these expressions separately for each id_task, you can run the following query:

create table OUT_TBL as
select i.id_task,y.row,y.col,y.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_task asc, row desc, col desc) as id_task_reorder

00X6331-01 Rev. 2 313

In-Database Analytics Developer's Guide

from INP_TBL) i
,TABLE(nzm..xtx_tf(i.id_task_reorder, i.row, i.col, i.val)) xtx
,TABLE(nzm..inversion_tf(i.id_task_reorder, xtx.row, xtx.col,
2.02*xtx.val+7.98)) y
distribute on (id_task);

The results of the query are stored in the OUT_TBL table.

The processing order of the computation is as follows:

1. xtx(SSCP)

2. 2.02*xtx.val+7.98

3. Inversion

If the number of parallel processors is sufficient, you can do each task in parallel.

Example ̶ Calculate bulk matrix operations by using a shared matrix
It is assumed that you want to calculate a product of two matrices. The first matrix M1 is stored in
INP_TBL1 table. Matrix M1 is unique for each id_task. The second matrix M2 is shared for each M1
matrix. Matrix M2 is stored in the INP_TBL2 table. To ensure that the computation is done efficiently,
the M2 matrix in the INP_TBL2 table must be broadcasted to all data slices.

To calculate a product under these conditions, you can run the following query:

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by row desc, col desc) as id_task_reorder
from (

select id_task,1 as id_matrix, row, col, val
from INP_TBL1
union all
select ds.id_task, 2 as id_matrix, sh.row, sh.col, sh.val
from INP_TBL2 sh cross join

(select distinct id_task as id_task from INP_TBL1) ds
) i

,TABLE(nzm..product_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);

The following query returns the instance of the M2 matrix for each id_task from the INP_TBL1 table:

select ds.id_task, 2 as id_matrix, sh.row, sh.col, sh.val
from INP_TBL2 sh cross join

(select distinct id_task as id_task from INP_TBL1) ds

The value of id_matrix, id_matrix=2, means that the shared matrix is taken as the second argument
of the product operation.

314 00X6331-01 Rev. 2

Bulk Linear Regression

Bulk Linear Regression

Background
Linear regression models are useful to model many real-world phenomena because these models are
easy to train and to apply. You can use these models in areas of biology, biopharmaceuticals,
engineering, actuarial science, and quality assurance.

The bulk linear regression function implements the linear regression algorithm for bulk matrices. For
bulk linear regression, multiple linear regression models for different data groups are created in
parallel. For each input matrix, one linear regression model with different predictors is created. From
the created bulk of linear regression models, you can optionally select the best model. By using a set
of quality indicators, you can identify the model that suits your purpose best.

Applications
Bulk linear regression can be applied to the following main scenarios.

► The data set can be split into logical subgroups, for example, one subgroup for each customer. In
this case, a single model is created for each customer. The single model is independent from the
models that are created for other customers.
A typical example is forecasting the energy consumption of individual households by creating an
individual linear model, separately for each household.

► Several models are created in parallel. From the created model, you can subsequently choose the
best model. You can build these models on variants of the same data set, for example, you can
include additional columns.

Available Functionality
The Netezza Analytics implementation of bulk linear regression extends the linear regression model
that is provided by the LINEAR_REGRESSION, PREDICT_LINEAR_REGRESSION stored procedures. You
can use the bulk linear regression to build many linear regression models for different data sets at
the same time by using parallel machine architecture.

Bulk linear regression has the following functionality that is provided by user-defined table functions
(UDTFs):

► Fitting the bulk linear model with or without the intercept term

► Multiple regressions

► Fitting the model that is based on colinear attributes or nearly colinear attributes

► Standard Least Square Estimation (LSE) procedure by using QR decomposition

► Model diagnostics

► Support for discrete and continuous attributes

The following procedures are available for data conversion:

00X6331-01 Rev. 2 315

In-Database Analytics Developer's Guide

► Procedures that convert input data that is saved in table format to RCV format and vice versa

► Procedures that convert each nominal attribute to a set of dummy single attributes and vice
versa

Examples
Input parameters that are passed to the UDTF are:

► id_task
The numbering of 'row' within each 'id_task' group must start with 1.

► id_matrix

► row

► column

► val

The following example shows how to create a model.

begin transaction;
select nzm..init_parameters(2) from _v_dual_dslice;
select nzm..set_parameter('residuals','1') from _v_dual_dslice;
select nzm..set_parameter('intercept','1') from _v_dual_dslice;

create table M_MAT_TABLE as
select i.id_task, o.id_matrix, o.row, o.col, o.val
from
(select *,

nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_ro
from
(select 1 as id_matrix, id_task, row, col, val

from Y_MAT_TABLE
union all

select 2 as id_matrix, id_task, row, col, val
from X_MAT_TABLE

) a
) i,
TABLE(nzm..lm_tf(i.id_task_ro,i.id_matrix,i.row,i.col,i.val)) o;

commit;

Note: You must set the non-default parameters before you call the nzm..lm_tf UDTF by using the set
_parameter parameter as shown in the example.

The following table shows the parameters for the nzm..lm_tf UDTF. These parameters control the
model structure and the output:

Table 65: Parameters for the nzm..lm_tf UDTF

Parameter Description Values

residuals Returns the residuals as
additional output matrix.

0 - Default. Residuals are not returned.

1 - Residuals are returned.

316 00X6331-01 Rev. 2

Bulk Linear Regression

Parameter Description Values

intercept Automatically include
intercepts in the model.

0 - Intercepts are not included.

1 - Default. Intercepts are included.

The nzm..lm_tf call requires two input matrices, Y and X, where Y represents response vectors and X
represents predictors. These matrices are identified by the id_matrix value, where id_matrix = 1 is set
for the Y matrix, and id_matrix = 2 is set for the X matrix.

By default, the nzm..lm_tf UDTF returns two matrices. If the residuals parameter is set to 1, a third
matrix is returned.

The following list shows the returned matrices:

► ci-by-4 matrix with coefficients and characteristics, where:

▲ ci is the number of input attributes including intercepts

▲ Subsequent columns show the estimated coefficient, standard error, t-statistic, and the
corresponding two-sided p-value

► 7-by-1 matrix with statistics of the fitted model, where:
Subsequent rows show the residual standard error, degrees of freedom, R2 and adjusted R2, F-
statistic, the t-statistic, p-value, and the residual sum of squares

► Optional: n-by-1 matrix with residuals, where n is the number of rows of the input matrix.

The following example shows how to apply the created model. After the models are built, you can
apply them to new data, for example, to a bulk of matrices that are stored in the table. The model
that is identified by id_task, is applied to the matrix that is also identified by id_task.

create table R_MAT_TABLE as
select r.id_task, r.row, r.res+ m.val as val
from
(select z.id_task, z.row, sum(z.val*m.val) as res

 from Z_MAT_TABLE z right join M_MAT_TABLE m on (z.col=m.row-1)
where z.id_task=m.id_task and m.id_matrix=1 and m.col=1
group by z.id_task, z.row

) r, M_MAT_TABLE m
 where m.row=1 and m.col=1 and m.id_matrix=1 and m.id_task = r.id_task;

If the model that is stored in the M_MAT_TABLE table was built without intercepts, the application
query looks as follows:

create table R_MAT_TABLE as
select z.id_task, z.row, sum(z.val*m.val) as res

from M_MAT_TABLE_A m join Z_MAT_TABLE z on (m.row=z.col)
where z.id_task=m.id_task and m.id_matrix=1 and m.col=1
group by z.id_task, z.row;

As a result of the model application, the R_MAT_TABLE table is created. The table contains the
prediction separately for each task field and for each row. The task field is identified by id_task, and
the row is identified by row_field.

The following example shows how to choose and apply the best model from a bulk of linear
regression models. In the example, several linear models are built for each split. The best model is

00X6331-01 Rev. 2 317

In-Database Analytics Developer's Guide

applied, for which then a residual sum of squares (RSS) is done. RSS measures the difference
between the data and the model. If the RSS is small, the model and the data fit tightly together.

-- split data into train/test subset
create table winequality_train as select * from nza..winequality where id <
2467;
create table winequality_test as select * from nza..winequality where id >
2466;

-- conversion to RCV format
call nzm..simple2rcv_adv('outtable=winequality_train_x_rcv,
outmeta=winequality_train_x_rcv_meta, intable=winequality_train,
incolumnlist=.;-QUALITY,id=ID');
call nzm..simple2rcv_adv('outtable=winequality_train_y_rcv,
outmeta=winequality_train_y_rcv_meta, intable=winequality_train,
incolumnlist=QUALITY,id=ID');
call nzm..simple2rcv_adv('outtable=winequality_test_x_rcv,
outmeta=winequality_test_x_rcv_meta, intable=winequality_test,
incolumnlist=.;-QUALITY,id=ID');
call nzm..simple2rcv_adv('outtable=winequality_test_y_rcv,
outmeta=winequality_test_y_rcv_meta, intable=winequality_test,
incolumnlist=QUALITY,id=ID');

-- create a split in data, split is auxiliary just for example
create table WINEQUALITY_TRAIN_X_RCV_4SPLIT as select
 (row/617 + 1)::integer as id_task,
 CASE WHEN row >= 617 THEN row - (row/617)::integer * 617 + 1 ELSE row END
as row,
 col, value as val
 from WINEQUALITY_TRAIN_X_RCV;

create table WINEQUALITY_TRAIN_Y_RCV_4SPLIT as select
 (row/617 + 1)::integer as id_task,
 CASE WHEN row >= 617 THEN row - (row/617)::integer * 617 + 1 ELSE row END
as row,
 col, value as val
 from WINEQUALITY_TRAIN_Y_RCV;

-- create a linear model for each split
begin transaction;
select nzm..init_parameters(2) from _v_dual_dslice;
select nzm..set_parameter('residuals','1') from _v_dual_dslice;
select nzm..set_parameter('intercept','0') from _v_dual_dslice; -- without
intercept, easier model apply

create table WINEQUALITY_M_MAT_TABLE as select
 i.id_task, o.id_matrix, o.row, o.col, o.val
 from
 (select *, nzm..reorder_matrix(id_task) over (partition by id_task order
by id_matrix desc, row desc, col desc) as id_task_ro
 from
 (select 1 as id_matrix, id_task, row, col, val from
WINEQUALITY_TRAIN_Y_RCV_4SPLIT
 union all
 select 2 as id_matrix, id_task, row, col, val from
WINEQUALITY_TRAIN_X_RCV_4SPLIT) a) i,
 TABLE(nzm..lm_tf(i.id_task_ro,i.id_matrix,i.row,i.col,i.val)) o;

318 00X6331-01 Rev. 2

Bulk Linear Regression

commit;

–- apply the best model
drop table WINEQUALITY_R_MAT_TABLE1;
create table WINEQUALITY_R_MAT_TABLE1 as select
 z.row, sum(z.value*m1.val) as res
 from
 WINEQUALITY_TEST_x_RCV z
 right join
 WINEQUALITY_M_MAT_TABLE m1 on (z.col=m1.row)
 where m1.id_task= (select id_task as best_id from winequality_m_mat_table
where id_matrix=2 and row=3 order by val desc limit 1)
 and m1.id_matrix=1 and m1.col=1 group by m1.id_task, z.row;
-- RSS of the best model on test subset
select sum((y.value-r.res)*(y.value-r.res)) as resi from
WINEQUALITY_test_y_rcv y right join WINEQUALITY_R_MAT_TABLE1 r on (y.row =
r.row);

-- apply the worst model
drop table WINEQUALITY_R_MAT_TABLE2;
create table WINEQUALITY_R_MAT_TABLE2 as select
 z.row, sum(z.value*m1.val) as res
 from
 WINEQUALITY_TEST_x_RCV z
 right join
 WINEQUALITY_M_MAT_TABLE m1 on (z.col=m1.row)
 where m1.id_task= (select id_task as best_id from winequality_m_mat_table
where id_matrix=2 and row=3 order by val asc limit 1)
 and m1.id_matrix=1 and m1.col=1 group by m1.id_task, z.row;
-- RSS of the worst model on test subset
select sum((y.value-r.res)*(y.value-r.res)) as resi from
WINEQUALITY_test_y_rcv y right join WINEQUALITY_R_MAT_TABLE2 r on (y.row =
r.row);

Bulk Principal Component Analysis (PCA)

Background
The bulk PCA function implements the PCA algorithm for bulk matrices. For bulk PCA, multiple PCA
models for different data groups are created in parallel. For each input matrix, one PCA model with
different predictors is created. From the created bulk of PCA models, you can optionally select the
best model. By using a set of quality indicators, you can identify the model that suits your purpose
best.

Applications
Similar to bulk linear regression, bulk PCA can be applied when the input data can be split into logical
chunks. Such input data can be data for individual customers, or when several models are evaluated

00X6331-01 Rev. 2 319

In-Database Analytics Developer's Guide

in parallel.

Available Functionality
Bulk PCA has the following functionality:

► For each input matrix, the rotation matrix is returned.

► For each model, the standard deviation that is associated with each feature is returned.

► For each model that is applied to new data, the projected matrix is returned.

► The creation of the PCA models for different data groups is done in parallel.

► The following attributes and matrices are supported:

▲ Continuous attributes

▲ Matrices with up to 1000 attributes

▲ Matrices with up to 10000 rows

Examples
The examples show the following operations:

► Initializing parameters by using the udf_init_parameters UDTF and setting parameters by using
the udf_set_parameter UDTF

► Calculating a PCA rotation matrix and the distribution in percent of explained variables by using
the nzm..pca_tf UDTF

► Standardizing a matrix by using the nzm..standardize UDTF

The following example shows how to initialize the creation of a model by using the
udf_init_parameters UDTF and the udf_set_parameter UDTF:

begin transaction;
select nzm..init_parameters(1) from _v_dual_dslice;
select nzm..set_parameter('k','5') from _v_dual_dslice;
--and/or
--select nzm..set_parameter('p','95') from _v_dual_dslice;

The following example shows how to create a PCA rotation matrix by using the nzm..pca_tf UDTF

create table PCA_RES as
select i.id_task, o.id_matrix, o.row, o.col, o.val
from
(select *,

nzm..reorder_matrix(id_task) over (partition by id_task
order by row desc, col desc) as id_task_ro from INP_TBL

) i,
TABLE(nzm..pca_tf(i.id_task_ro,i.row,i.col,i.val)) o;

The following table shows the parameters for the nzm..pca_tf UDTF. These parameters control the

320 00X6331-01 Rev. 2

Bulk Principal Component Analysis (PCA)

size of the output matrices.

You can specify the maximum number of components in the PCA model in one of the following ways:

► Directly by using a parameter k

► By defining a minimum percentage of the accumulative variance that is explained by the
components

Table 66: Parameters for the nzm..pca_tf UDTF

Parameter Description Values

k Determines the number of
components with the highest
percentage of explained
variation

p Determines the maximum
percentage of explained
variance that amounts to
returning the first k

i
components (sorted by
descending explained
variance) with a cumulative
percentage of explained
variance not exceeding p

[0,100]

Default: 100

Notes:

► If you set both parameters, k and p, the minimum of k and k
i
 (associated with p) is returned.

► If you use the default values (k = c
i
 or p = 100), loadings and standard deviations that are

associated with all features are returned.

The nzm..pca_tf UDTF returns the following matrices:

► c
i
-by-k

i
 matrix with id_matrix = 1 with variable loadings, where c

i
 that is the number of

attributes, and k
i
 that is the number of features

► k
i
-by-1 matrix with the standard deviations with id_matrix = 2

You can apply all models to different associated data groups, or you can apply a single model to all
data groups.

The following example shows how to apply all models by using the nzm..product_tf UDTF:

create table PCA_APP as
select i.id_task, o.row, o.col, o.val
from
(select *,

00X6331-01 Rev. 2 321

In-Database Analytics Developer's Guide

nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc,
row desc, col desc) as id_task_ro

from (select id_task, 2 as id_matrix, row, col, val
from PCA_RES pr where pr.id_matrix = 1
union all
select id_task,1 as id_matrix, row, col, val
from NEW_DATA) a

) i
,TABLE(nzm..product_tf(i.id_task_ro,i.id_matrix,i.row,i.col,

i.val)) o;

The following example shows how to apply a single model by using the nzm..product_tf UDTF. The
dimensions of each task from the NEW_DATA table must conform to the size of the selected model.

create table PCA_APP as
select i.id_task, o.row, o.col, o.val
from
(select *,

nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc,
col desc) as id_task_ro

from (select b.id_task, 2 as id_matrix, row, col, val
from PCA_RES a
CROSS JOIN
(select distinct id_task from PCA_RES) b
where a.id_task = 1 and a.id_matrix = 1
union all
select id_task,1 as id_matrix, row, col, val
from NEW_DATA) c

) i
,TABLE(nzm..product_tf(i.id_task_ro,i.id_matrix,i.row,i.col,

i.val)) o;

The following example shows how to standardize a matrix by using the nzm..standardize UDTF.

create table MAT_STAND as
select i.id_task, o.id_matrix, o.row, o.col, o.val
from
(select *,

nzm..reorder_matrix(id_task) over (partition by id_task
order by row desc, col desc) as id_task_ro from INP_TBL

) i,
TABLE(nzm..standardize(i.id_task_ro,i.row,i.col,i.val)) o;

The following table shows the parameters for the nzm..standardize UDTF. These parameters control
the schema of the standardization.

Table 67: Parameters for the nzm..standardize_tf UDTF

Parameter Description Values

center Determines whether column
centering is done

0 - Column centering is not done.

322 00X6331-01 Rev. 2

Bulk Principal Component Analysis (PCA)

Parameter Description Values

1 - Default. Column centering is done.

scale Determines whether column
scaling is done

0 - Column scaling is not done.

1 - Default. Column scaling is done.

The nzm..standardize UDTF returns the following matrices:

► c
i
-by-r

i
 matrix with standardized values of the input matrix with id_matrix = 1, where:

▲ c
i
 is the number of input attributes, for example, columns

▲ r
i
 is the number of input rows

► c
i
-by-2 matrix with standardization coefficients with id_matrix = 2, where:

▲ The first row contains means of columns or 0 if centering was not done

▲ The second row has one of the following contents:

► Root mean square if centering is not specified

► Standard deviation of the column if centering is specified

► 1 if scaling is not specified

00X6331-01 Rev. 2 323

A P P E N D I X A
Notices and Trademarks

Notices
This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service
that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

00X6331-01 Rev. 2 325

In-Database Analytics Developer's Guide

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are
periodically made to the information herein; these changes will be incorporated in new editions of
the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are
not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including
this one) and (ii) the mutual use of the information which has been exchanged, should contact:
IBM Corporation
26 Forest Street
Marlborough, MA 01752 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may
have been made on development-level systems and there is no guarantee that these measurements
will be the same on generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document should verify the
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only. This information is for planning purposes only. The
information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To
illustrate them as completely as possible, the examples include the names of individuals, companies,
brands, and products. All of these names are fictitious and any similarity to the names and addresses
used by an actual business enterprise is entirely coincidental.

326 00X6331-01 Rev. 2

Notices and Trademarks

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate
programming techniques on various operating platforms. You may copy, modify, and distribute these
sample programs in any form without payment to IBM, for the purposes of developing, using,
marketing or distributing application programs conforming to the application programming interface
for the operating platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. The sample programs are provided "AS IS", without
warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. (enter the year or years). All rights reserved.

Trademarks
IBM, the IBM logo, ibm.com and Netezza are trademarks or registered trademarks of International
Business Machines Corporation in the United States, other countries, or both. If these and other IBM
trademarked terms are marked on their first occurrence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the
time this information was published. Such trademarks may also be registered or common law
trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright
and trademark information” at ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, and/or other
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

NEC is a registered trademark of NEC Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Red Hat is a trademark or registered trademark of Red Hat, Inc. in the United States
and/or other countries.

D-CC, D-C++, Diab+, FastJ, pSOS+, SingleStep, Tornado, VxWorks, Wind River, and
the Wind River logo are trademarks, registered trademarks, or service marks of Wind River Systems,
Inc. Tornado patent pending.

APC and the APC logo are trademarks or registered trademarks of American Power Conversion

00X6331-01 Rev. 2 327

In-Database Analytics Developer's Guide

Corporation.

Other company, product or service names may be trademarks or service marks of others.

Regulatory and Compliance

Regulatory Notices
Install the NPS system in a restricted-access location. Ensure that only those trained to operate or
service the equipment have physical access to it. Install each AC power outlet near the NPS rack that
plugs into it, and keep it freely accessible. Provide approved circuit breakers on all power sources.

Product may be powered by redundant power sources. Disconnect ALL power sources before
servicing. High leakage current. Earth connection essential before connecting supply. Courant de fuite
élevé. Raccordement à la terre indispensable avant le raccordement au réseau.

Homologation Statement
Attention: This product is not intended to be connected directly or indirectly by any means
whatsoever to interfaces of public telecommunications networks, neither to be used in a Public
Services Network.

FCC - Industry Canada Statement
This equipment has been tested and found to comply with the limits for a Class A digital device,
pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection
against harmful interference when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in
accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference, in which case
users will be required to correct the interference at their own expense.

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing
Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel
brouilleur du Canada.

WEEE
Netezza Corporation is committed to meeting the requirements of the European Union (EU) Waste
Electrical and Electronic Equipment (WEEE) Directive. This Directive requires producers of electrical
and electronic equipment to finance the takeback, for reuse or recycling, of their products placed on
the EU market after August 13, 2005.

CE Statement (Europe)
This product complies with the European Low Voltage Directive 73/23/EEC and EMC Directive
89/336/EEC as amended by European Directive 93/68/EEC.

328 00X6331-01 Rev. 2

Notices and Trademarks

Warning: This is a class A product. In a domestic environment this product may cause radio
interference in which case the user may be required to take adequate measures.

VCCI Statement

00X6331-01 Rev. 2 329

	Contents
	List of Tables

	Preface
	Audience for This Guide
	Purpose of This Guide
	Symbols and Conventions
	If You Need Help
	Comments on the Documentation

	Chapter 1 Introduction to IBM Netezza In-Database Analytics
	Overview
	List of Algorithms
	Terminology and Notation
	Using This Guide

	Chapter 2 Algorithmic Tasks
	Overview
	Data Exploration
	Data Transformation
	Discretization
	Standardization and Normalization
	Data Imputation

	Model Diagnostics
	Model Quality Indicators
	Model Evaluation Procedures

	Predictive Modeling
	Algorithmic Classiﬁcation
	Task Deﬁnition
	Model Evaluation
	Applications

	Regression
	Task Deﬁnition
	Model Evaluation
	Applications

	Clustering
	Task Deﬁnition
	Model Evaluation
	Applications

	Association Rule Mining
	Task Definition
	Model Evaluation
	Applications

	Chapter 3 Working with Data Sets
	Sample Data Sets
	CensusIncome
	Data Description
	Data Set Configuration

	WineQuality
	Data Description
	Data Set Configuration

	Retail
	Data Description
	Data Set Configuration

	Chapter 4 Using Netezza Analytic Procedures
	Call Interface
	Column Properties
	Using a Column Properties Table
	COLUMN_PROPERTIES Procedure
	COLUMN_PROPERTIES_CHECK Procedure
	SET_COLUMN_PROPERTIES Procedure
	GET_COLUMN_LIST Procedure
	Algorithms Supporting Column Properties

	Missing Value Support
	Working With Models

	Chapter 5 Metadata Management
	Introduction
	Structure
	Preparing the Database

	Metadata Management Tools
	Model Property Objects
	Model Management Objects
	Model Security Objects
	Metadata Administration Objects
	Usage Scenarios

	Model Naming Conventions
	Model Name Length
	Model Name Uniqueness
	System Case

	Model Component Naming Conventions
	General Component Naming Conventions
	Model Naming Conventions
	White Space Conversion
	Case Conversion
	Case Sensitivity Examples

	Model Property Objects
	V_NZA_MODELS View
	Detailed Column Descriptions

	V_NZA_COMPONENTS View
	Detailed Column Descriptions

	V_NZA_PARAMS View
	Detailed Column Descriptions

	V_NZA_COLPROPS View
	Detailed Column Descriptions

	NZA..LIST_MODELS Procedure
	Example

	NZA..LIST_COMPONENTS Procedure
	Example

	NZA..LIST_PARAMS Procedure
	Example

	NZA..LIST_COLPROPS Procedure
	Example

	Model Management Objects
	NZA..MODEL_EXISTS Procedure
	NZA..DROP_MODEL Procedure
	NZA..DROP_ALL_MODELS Procedure
	NZA..ALTER_MODEL Procedure
	NZA..COPY_MODEL Procedure
	NZA..PRINT_MODEL Procedure
	NZA..PMML_MODEL Procedure
	Details

	NZA..EXPORT_PMML Procedure
	PMML Model to File
	PMML Table to File

	Security and Administration
	Security
	Privileges
	Matrices and the Security Model

	Administration
	Administrator Functions
	Dropped Users
	Database Cleanup
	Migration
	Concurrency

	NZA..MIGRATE_MODEL Procedure
	NZA..REGISTER_MODEL Procedure
	Example

	Model Security Objects
	NZA..GRANT_MODEL Procedure
	NZA..REVOKE_MODEL Procedure
	NZA..LIST_PRIVILEGES Procedure

	Metadata Administration Objects
	NZA..INITIALIZE Procedure
	METADATA_VERSION Procedure
	NZA..IS_INITIALIZED Procedure
	NZA..CLEANUP() Procedure

	Chapter 6 Data Exploration
	Background
	Moments
	Quantiles
	Frequency Table
	Histogram
	Pearson’s Correlation
	Spearman’s Correlation
	Covariance
	Mutual Information
	Conditional Entropy
	Chi-Square Test
	t-Test
	Mann-Whitney-Wilcoxon Test
	Wilcoxon Test
	Canonical Correlation
	One-Way ANOVA
	Multivariate Analysis of Variance (MANOVA)
	Requirements and assumptions for the computation
	Wilks' test
	
Roy's test
	Pillai's test
	Hotelling's test

	Principal Component Analysis

	Available Functionality
	Examples of Algorithm Functionality
	Moments Example
	Quantiles Example
	Outlier Detection Example
	Frequency Table Example
	Histogram Example
	Pearson’s Correlation Example
	Spearman’s Correlation Example
	Covariance Example
	Mutual Information Example
	Conditional Entropy Example
	Chi-Square Test Example
	t-Test Example
	Mann-Whitney-Wilcoxon Test Example
	Canonical Correlation Example
	One-Way ANOVA Example
	Manova Example
	Principal Component Analysis Example

	Chapter 7 Tree-Shaped Bayesian Networks
	Background
	Applications
	Available Functionality
	Examples

	Chapter 8 Discretization
	Background
	Applications
	Available Functionality
	Examples

	Chapter 9 Standardization and Normalization
	Background
	Applications
	Available Functionality
	Examples

	Chapter 10 Data Imputation
	Background
	Applications
	Available Functionality
	Examples

	Chapter 11 Model Diagnostics
	Background
	Misclassiﬁcation Error
	Confusion Matrix
	Mean Absolute Error
	Mean Square Error
	Relative Absolute Error
	Relative Square Error
	Percentage Split
	Cross-Validation
	Available Functionality

	Examples

	Chapter 12 Random Sampling
	Available Functionality
	Example

	Chapter 13 Naive Bayes
	Background
	Missing Value Support

	Applications
	Available Functionality
	Examples

	Chapter 14 Decision Trees
	Background
	Growing
	Pruning
	Prediction
	Missing Value Support

	Applications
	Available Functionality
	Examples
	Output Table Data Formats
	NZA_META_<model_name>_MODEL
	NZA_META_<model_name>_NODES
	NZA_META_<model_name>_PREDICATES
	NZA_META_<model_name>_COLUMNS
	NZA_META_<model_name>_COLUMN_STATISTICS
	NZA_META_<model_name>_DISCRETE_STATISTICS
	NZA_META_<model_name>_NUMERIC_STATISTICS

	Chapter 15 Nearest Neighbors
	Background
	Applications
	Available Functionality
	Examples

	Chapter 16 Linear Regression
	Background
	Applications
	Available Functionality
	Examples
	Output Table Data Formats
	NZA_META_<model_name>_MODEL Table

	Chapter 17 Regression Trees
	Background
	Growing
	Pruning
	Prediction
	Missing Value Support

	Applications
	Available Functionality
	Examples
	Output Table Data Formats
	NZA_META_<model_name>_MODEL
	NZA_META_<model_name>_NODES
	NZA_META_<model_name>_PREDICATES
	NZA_META_<model_name>_COLUMNS
	NZA_META_<model_name>_COLUMN_STATISTICS
	NZA_META_<model_name>_DISCRETE_STATISTICS
	NZA_META_<model_name>_NUMERIC_STATISTICS

	Chapter 18 K-Means Clustering
	Background
	Normalized Euclidean Distances
	Mahalanobis Distances
	Automatic Transformation
	Discrete Attributes
	Statistics

	Applications
	Available Functionality
	Examples
	Output Table Data Formats
	NZA_META_<model name>_MODEL Table
	NZA_META_<model name>_CLUSTERS Table
	NZA_META_<model name>_COLUMNS Table
	NZA_META_<model name>_COLUMN_STATISTICS Table
	NZA_META_<model name>_COVARIANCES Table
	NZA_META_<model name>_DISCRETE_STATISTICS Table
	NZA_META_<model name>_NUMERIC_STATISTICS Table

	Chapter 19 Divisive Clustering
	Background
	Applications
	Available Functionality
	Examples

	Chapter 20 TwoStep Clustering
	Background
	Applications
	Available Functionality
	TwoStep procedure
	PREDICT_TWOSTEP Procedure
	PRINT_TWOSTEP Procedure
	PMML-related Procedures

	Examples
	Output Table Data Formats
	TwoStep Procedure Output Tables
	PRINT_TWOSTEP Procedure

	Chapter 21 Association Rules
	Background
	Applications
	Available Functionality
	Examples
	Output Table Data Formats
	NZA_META_<model_name>_GROUP Table
	NZA_META_<model_name>_RULE Table
	NZA_META_<model_name>_ITEM Table
	NZA_META_<model_name>_ITEMSET Table

	Chapter 22 Time Series Forecasting
	Background
	Time Series Types
	Time Series Algorithms
	Data Requirements
	Interpolation
	Exponential Smoothing
	ARIMA
	Seasonal Trend Decomposition
	Spectral Analysis

	Building a Time Series Model
	TIMESERIES Procedure
	Examples

	Input Table Data Format
	Detailed Column Descriptions

	Output Table Data Formats
	NZA_META_<model_name>_SERIES Table
	NZA_META_<model_name>_PERIODS Table
	NZA_META_<model_name>_SEASONALITYDETAILS Table
	NZA_META_<model_name>_EXPODETAILS Table
	NZA_META_<model_name>_ARIMADETAILS Table
	NZA_META_<model_name>_ARMADETAILS Table
	NZA_META_<model_name>_STDDETAILS Table
	NZA_META_<model_name>_INTERPOLATED Table
	NZA_META_<model_name>_FORECAST Table
	<output> Table
	<seasadjtable> Table

	Printing a Time Series Model
	PRINT_TIMESERIES Procedure
	Example

	Events and Error Conditions

	Chapter 23 Generalized Linear Models
	Background
	Using Generalized Linear Models
	GLM Algorithms
	Iteratively Reweighted Least Square Algorithm
	Parallel Stochastic Gradient Descent Algorithm

	Distribution Types
	Bernoulli Distribution
	Binomial Distribution
	Poisson Distribution
	Negative Binomial Distribution
	Gaussian Distribution
	Wald Distribution
	Gamma Distribution

	Link Functions
	Identity Link Function
	Inverse Link Function
	Log Link Function
	Logit Link Function
	Probit Link Function
	Gaussit Link Function
	Cauchit Link Function
	Log-log Link Function
	Complementary Log-log Link Function
	Log-complement Link Function
	Odds Power Link Function
	Power Link Function
	Negbin Link Function

	Input Data Format
	Rules for removing predictor dimensions for nominal attributes in GLM

	Building a GLM Model
	GLM Procedure
	PRINT_GLM Procedure
	PREDICT_GLM Procedure

	Transformation Principles
	incolumn Parameter Values
	Example 1
	Example 2
	Example 3
	Example 4

	interaction Parameter Values
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	Examples
	Output Table Data Formats
	NZA_META_<model_name>_MODEL Table
	NZA_META_<model_name>_FADIC Table
	NZA_META_<model_name>_DICTIONARY Table
	NZA_META_<model_name>_GLMDIC Table
	NZA_META_<model_name>_PCOVMATRIX Table
	NZA_META_<model_name>_PPMATRIX Table
	NZA_META_<model_name>_RESIDUALS Table
	NZA_META_<model_name>_STATS Table

	Chapter 24 Model Deployment
	Background
	Permissions and Access

	Applications
	Sample Deployment Scenario

	Available Functionality
	NZA..EXPORT_MODEL
	NZA..IMPORT_MODEL
	NZA..LIST_MODELS
	Shell Script
	Export, Import, List, and Copy Option Details
	Export (option -e)
	Import (option -i)
	List (option -l)
	Copy (option -c)

	Examples
	Stored Procedure Examples
	Shell Script Examples

	Chapter 25 PMML Support
	Overview
	PMML General Information
	PMML Header Element
	MiningBuildTask Element
	X-Parameter and X-ColumnProperty Elements

	Data Dictionary
	Transformation Dictionary and Local Transformations
	Mining Models
	Clustering Model
	Mining Schema and Mining Field
	Output Fields
	Model Statistics
	Model Explanation
	Model Verification

	K-means Clustering
	Clustering Model
	Mining Schema and Mining Field
	Output Fields
	Model Statistics
	Model Explanation
	Local Transformations
	Comparison Measure
	Clustering Field
	Cluster

	Chapter 26 Utility Functions – Probability Distributions
	Introduction
	Using Probability Distribution Functions
	Functions Related with each Distribution
	Distributions and their Parameters
	BERN - Bernoulli Distribution (discrete)
	BETA - Beta Distribution
	BINOM - Binomial Distribution (discrete)
	CAUCHY - Cauchy Distribution
	CHISQ - Chi-square Distribution
	EXP - Exponential Distribution
	F - Fisher Distribution
	FISK - Fisk Distribution
	GAMMA - Gamma Distribution
	GEOM - Geometric Distribution (discrete)
	HYPER - Hypergeometric Distribution (discrete)
	LNORM - Log-Normal or Galton Distribution
	LOGIS - Logistic Distribution
	MWW - Mann-Whitney-Wilcoxon Distribution (discrete)
	NBINOM - Negative Binomial Distribution (discrete)
	NORM - Standardized Normal or Gaussian Distribution
	NORM3P - Normal or Gaussian Distribution
	POIS - Poisson Distribution (discrete)
	T- t-Student Distribution
	UNIF - Uniform Distribution
	WALD - Wald Distribution
	WEIBULL - Weibull Distribution
	WILCOX - Wilcoxon Distribution (discrete)

	Usage Examples

	Chapter 27 Bulk Algorithms
	Bulk Matrix Operations
	Background
	Applications
	Available Functionality
	Examples
	Example ̶ Matrix representation for bulk operations
	Example ̶ Introductory example for bulk matrix operations
	Example ̶ Input data reordering and redistribution
	Examples ̶ UDTF for single-matrix operations
	Example ̶ Transposition
	Example ̶ Scaling
	Example ̶ Inversion
	Example ̶ Pseudo-Inversion
	Example ̶ XtX transformation
	Example ̶ SVD decomposition
	Example ̶ Eigenvalue decomposition
	Example ̶ Matrix determinant

	Examples ̶ UDTFs for operations on multiple matrices
	Example ̶ Sum
	Example ̶ Product
	Example ̶ Kronecker product
	Example ̶ Solve

	Examples ̶ User scenarios
	Example ̶ Calculate the bulk of sums for a few matrices
	Example ̶ Calculate the bulk of chain for a few matrix operations
	Example ̶ Calculate bulk matrix operations by using a shared matrix

	Bulk Linear Regression
	Background
	Applications
	Available Functionality
	Examples

	Bulk Principal Component Analysis (PCA)
	Background
	Applications
	Available Functionality
	Examples

	APPENDIX A
	Notices and Trademarks
	Notices
	Trademarks
	Regulatory and Compliance
	Regulatory Notices
	Homologation Statement
	FCC - Industry Canada Statement
	WEEE
	CE Statement (Europe)
	VCCI Statement

