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Preface 

Audience for This Guide
You should have an in-depth understanding of mathematics and statistics to use the IBM Netezza In-
Database Analytics package. In addition, it is helpful to have an understanding of SQL and Netezza 
Stored Procedures and you should be familiar with the basic operation and concepts of the IBM 
Netezza appliance and the Netezza software. 

Purpose of This Guide
This guide provides an introduction to the IBM Netezza In-Database Analytics package. It provides 
background information about the purpose and application of each algorithm, as well as guidelines 
for proper usage.

Symbols and Conventions
Note on Terminology: The terms User-Defined Analytic Process (UDAP) and Analytic Executable (AE) 
are synonymous.

The following conventions apply:

► Italics for emphasis on terms and user-defined values, such as user input.

► Upper case for SQL commands, for example, INSERT or DELETE.

► Bold for command line input, for example, nzsystem stop.

► Bold to denote parameter names, argument names, or other named references.

► Angle brackets ( < > ) to indicate a placeholder (variable) that should be replaced with actual text, 
for example, inza-<release_number>.zip.

► A single backslash (“\”) at the end of a line of code to denote a line continuation. Omit the 
backslash when using the code at the command line, in a SQL command, or in a file.

► When referencing a sequence of menu and submenu selections, the “>” character denotes the 
different menu options, for example, Menu Name > Submenu Name > Selection.
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If You Need Help
If you are having trouble using the IBM Netezza appliance, IBM Netezza Analytics or any of its 
components:

1. Retry the action, carefully following the instructions in the documentation.

2. Go to the IBM Support Portal at: http://www.ibm.com/support. Log in using your IBM ID and 
password. You can search the Support Portal for solutions. To submit a support request, click 
the Service Requests & PMRs tab.

3. If you have an active service contract maintenance agreement with IBM, you may contact 
customer support teams via telephone. For individual countries, please visit the Technical 
Support section of the IBM Directory of worldwide contacts 
(http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#phone)

Comments on the Documentation
We welcome any questions, comments, or suggestions that you have for the IBM Netezza 
documentation. Please send us an e-mail message at netezza-doc@wwpdl.vnet.ibm.com and include 
the following information:

► The name and version of the manual that you are using

► Any comments that you have about the manual

► Your name, address, and phone number

We appreciate your comments.

xvi
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C H A P T E R  1
Introduction to IBM Netezza In-Database 
Analytics

Overview 

The IBM Netezza In-Database Analytics package is for users and developers interested in leveraging 
the development and use of analytic algorithms to perform research or other business-related 
activities. The package brings data mining capabilities to the Netezza platform, enabling data mining 
tasks on large data sets using the computational power and parallelization mechanisms provided by 
the Netezza appliance. 

Most currently available data mining tools suffer significant performance limitations when applied to 
large data sets. These limitations may be two-fold: 

► space: if system memory is used for storing data sets and auxiliary data structures to achieve 
high performance, the limited memory size and/or address space prevents applying data mining 
tools to large data sets. 

► time: if external storage is used for storing data sets or auxiliary data structures to overcome 
memory limitations, the resulting performance decline makes application of data mining tools to 
large data sets impractical. 

Overcoming both these limitations, the parallel architecture of the Netezza database environment 
enables high-performance computation on large data sets, making it the ideal platform for large-
scale data mining applications. 

Mining large data sets might seem unnecessary, as good data mining models can often be created 
from data samples. However, the widespread practice of using small data samples when working 
with large data sets is typically a matter of necessity not choice. When highly reliable data mining 
results are required, no substantial data portions should be discarded. For complex data mining tasks, 
creating data samples of an appropriate size and structure may be a non-trivial task. The IBM Netezza 
In-Database Analytics package provides the tools necessary for mining the spectrum of data set sizes.
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In-Database Analytics Developer's Guide

List of Algorithms 

IBM Netezza In-Database Analytics is a data mining application that includes many of the key 
techniques and popular real-world algorithms used with data sets. Table 1 lists the data mining 
algorithms described in this guide, grouped into tasks. 

Table 1: Algorithms described in this guide

Task Algorithm

Data Exploration Moments

Quantiles

Outlier Detection

Frequency Table

Histogram

Pearson's Correlation

Spearman's Correlation

Covariance

Mutual Information

Chi-Square Test

t -Test

Mann-Whitney-Wilcoxon Test

Wilcoxon Test

Canonical Correlation

One-Way ANOVA

Multivariate Analysis of Variance (MANOVA)

Principal Component Analysis

Tree-Shaped Bayesian Networks

Data Transformation Discretization

18 00X6331-01 Rev. 2



List of Algorithms 

Task Algorithm

Standardization and Normalization

Data Imputation

Model Diagnostics Misclassification Error

Confusion Matrix

Mean Absolute Error

Mean Square Error

Relative Absolute Error

Percentage Split

Cross-Validation

Classification Naive Bayes

Decision Trees

Nearest Neighbors

Regression Linear Regression

Regression Trees

Generalized Linear Models

Clustering K-Means Clustering

Divisive Clustering

TwoStep Clustering

Association Rule Mining Association Rules (including FP-Growth)

Time Series ARIMA

Exponential Smoothing

Seasonal Trend Decomposition

Bulk Algorithms Bulk Matrix Operations

Bulk Linear Regression

00X6331-01 Rev. 2 19



In-Database Analytics Developer's Guide

Task Algorithm

Bulk Principal Component Analysis

Terminology and Notation

When describing data mining tasks and algorithms, unless explicitly noted otherwise, assume that 
the analyzed data set describes a set of instances from a given domain X  and each instance x∈X  is 
represented by a set of attributes. The domain is a set of real-world entities represented by the data, 
such as people, events, transactions, products, or devices. An attribute can be considered a function 
a :X ↦ A  that assigns a value to each instance from the domain. All instances from the domain are 

described by a common set of attributes a1 :X ↦ A1 , a 2: X ↦ A2 , . . ., a n: X ↦ An . An instance 
x∈X  is represented by a vector of its attribute values a1 x , a 2 x ,... , an x . 

It is important to distinguish between discrete and continuous attributes. If a variable can take on any 
value between two specified values, it is called a continuous variable; otherwise, it is called a discrete 
variable. Continuous attributes take numerical values for which arithmetic operations can be 
meaningfully performed. Discrete attributes take a finite number of values that can be tested for 
equality, but cannot be reasonably used for any arithmetic calculations, even if they are represented 
numerically, which is common. For example, in counting attendees to an event, the attendance can 
be any integer between zero and the maximum capacity of the location. However, attendance cannot 
be any number—for example a fractional number—between those two limits, therefore, the 
attribute is discrete. 

For some data mining tasks there is one specific target attribute. For example, this is the case for the 
classification task, where the target attribute is designated by c :X ↦ C  and called the target 
concept. It also applies in the regression task, where the target attribute is designated by f : X ↦ ℝ  
and called the target function. In database terms, instances correspond to table rows and attributes 
correspond to table columns. When writing a x   to designate the value of attribute a  for instance 
x , you refer to the value of the column representing a for the row representing x . 

Using This Guide 

This guide supplements the IBM Netezza In-Database Analytics Reference Guide. It describes the IBM 
Netezza In-Database Analytics call interface and provides some background information about the 
described algorithms and the data mining tasks they are used to solve. The algorithm description, 
which explains the algorithm purpose and principle of operation, is intended to help you choose the 
appropriate algorithms for a given task, run the selected algorithms, and interpret the results.  

The IBM Netezza In-Database Analytics Reference Guide provides an overview and parameter 
description for each algorithm in the package. This information is also available as online help that 
can be requested by calling the stored procedures with the 'help' argument.

This guide provides reproducible examples, with real data, that can be used as starting points for 
experiments. The examples demonstrate typical useful scenarios, which may include several different 
parameter combinations. They are described to an extent necessary to understand, modify, and 
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repeat the examples, but may not fully cover the scope of possible parametrizations. The algorithms 
represent various complexity levels. They also differ significantly in their computational costs and the 
degree of possible parametrization.

The algorithms described in this guide are exposed to the user via different interfaces, all available 
from the Netezza software as stored procedures. No specific data mining knowledge or experience is 
required to follow the presented discussion and run the examples. The relatively brief descriptions of 
particular algorithms refer to the literature for more details where necessary. 
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C H A P T E R  2
Algorithmic Tasks 

Overview

There are a number of major data mining task categories leveraged by the IBM Netezza In-Database 
Analytics package: 

1. Data exploration 

2. Data transformation 

3. Model diagnostics 

4. Predictive modeling , including

► Classification 

► Regression 

► Clustering 

► Association rule mining

The data exploration, data transformation, and model diagnostics categories are broad task families. 
They are comprised of several detailed analytical tasks, grouped together based on their common 
goals. While they are described in conjunction with details specific to the related algorithms, their 
concepts are covered only briefly here. 

The predictive modeling category includes the classification, regression, clustering, and association 
rule mining tasks. As the name implies, the predictive modeling tasks are used to create models from 
the data. The models represent particular types of relationships that have a predictive utility and are 
used to make conclusions about new data from the same domain.

These tasks are defined by the model type and criteria used to evaluate model quality. 
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Data Exploration 

The broad scope of the Data Exploration task family includes identifying both measures to 
characterize data distribution and relationships within the data. Data distribution is typically used 
with a single attribute to provide information about its most typical values, diversity, and possible 
outliers or unlikely values. Data relationships are used to detect dependencies within multiple 
attributes—usually two—where one or more attributes affect the distribution on another attribute. 

Data exploration can be divided into two purposes:

► distribution description 

► relationship identification 

In both cases, different levels of detail are possible and different algorithms can be used, depending 
on attribute types and the level of detail required. 

The main purpose of data exploration is to gain familiarity with the data, initially assess its predictive 
utility, detect possible data quality problems, and make observations that may be useful for 
subsequent analytical processing. While it is typically followed by predictive modeling, it may 
produce results that are useful on their own. 

Data Transformation 

The Data Transformation task family provides an intermediate step to transform the analyzed data 
set and make it more suitable for subsequent analytical processing. These transformations may 
modify values of selected attributes to satisfy requirements of classification, regression, clustering, or 
association rule mining algorithms used for predictive modeling. 

The IBM Netezza In-Database Analytics package addresses three specific data transformations: 

► discretization—replacement of continuous attributes by discrete attributes, with values 
corresponding to original value intervals.

► standardization and normalization—modification of continuous attributes to achieve desired 
distribution properties.

► data imputation—assignment of values to fill missing attribute values.

Discretization 
The discretization process assigns a discrete value to each interval of continuous attribute a  to 
create a new discrete attribute a ' . A discretization algorithm determines the interval boundaries 
that are likely to preserve as much useful information provided by the original attribute as possible. 
Data set discretization should preserve the relationship between the class and the discretized 
attributes if the data set is to be used for creation of a classification model. 

Standardization and Normalization 
Standardization and normalization transformations use the original continuous attribute a  to 
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generate a new continuous attribute a '  that has a different range or distribution than the original 
attribute. Common transformations modify the range to fit the [−1,1 ]  interval (normalization) or 
modify the distribution to have a mean of 0 and a standard deviation of 1 (standardization). 

Data Imputation
Many analytic algorithms require that the data set has no missing attribute values. However, real-
world data sets frequently suffer from missing attribute values. Missing value imputation provides 
usable attribute values in place of the missing values, allowing the algorithms to run. 

Model Diagnostics 

The Model Diagnostics task family is used to reliably assess the quality of predictive models. To be 
useful, the predictive model must exhibit high accuracy both on the data set used to create it, but 
more importantly on new, unseen data from the same domain. Because the need for accuracy is 
high, the model diagnostic process requires appropriately selected model quality indicators, used to 
evaluate the model's prediction on a given data set. It also requires model evaluation procedures, 
which estimate quality indicator values on unseen data. 

By providing model quality estimates, model diagnostics help determine if a model is acceptable for a 
given application. If several candidate models were generated, perhaps obtained using different 
algorithms, parameter setups, attribute sets or data transformations, model diagnostics make it 
possible to select an appropriate model for use. 

Model Quality Indicators
Model quality indicators can be calculated on an arbitrary data set, including a training data set, 
which usually overestimates the model’s quality significantly. To avoid the optimistic bias, model 
evaluation procedures make a separate validation or a test set that is used only for evaluation 
redundant. This removes the optimistic bias, but can raise new issues of pessimistic bias and 
variance. Pessimistic bias can occur if the quality of the evaluated model is reduced by preventing a 
large portion of the available data from being used for model creation. Alternately, using a small test 
set increases the evaluation variance, resulting from a chance factor in data set selection, which 
makes the estimates unreliable. The variance can be kept low by aggregating the results of multiple 
independent evaluations, but at considerable computational expense. 

Model Evaluation Procedures
The main challenge with model evaluation procedures is appropriately handling the tradeoff 
between the bias, variance, and computational cost. 

The data set used for the evaluation process is referred to as the validation or test set, mostly 
depending on the purpose of evaluation. The distinction is based on the application context. For 
intermediate evaluation, used to guide model selection from several candidate models, it is more 
common to speak about the validation set. For the final evaluation of the model ultimately selected, 
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it is more common to speak about the test set. 

When creating models, it is acceptable to use all the available data. However, you should never use a 
subset of the same data to evaluate the model. Thus, it is reasonable to build a final model to be 
deployed for a particular application using the whole available data set, after another model had 
been built on a smaller training set using the same algorithm and parameter setup, and then 
evaluated on the remaining validation or test set. The quality indicators obtained from the evaluation 
process can serve as conservative, non-overestimating quality estimates for the final all-inclusive 
data model. 

Predictive Modeling

Algorithmic Classification 
Classification is a fundamental processes in business and in every day life. As the name implies, 
classification is the act of taking individual items and categorizing them into classes based on 
knowledge about the items. It is possible to classify items differently based on the criteria used. 
Classification is a common business activity, where it may be useful to organize customers, 
employees, transactions, stores, factories, products, devices, documents or any other types of 
instances into a set of re-defined meaningful classes. 

In data mining, where analysis is being performed on a large amount of data, building classification 
models based on available data is a central task. Building a classification model requires that classes 
be defined from the data. Once defined, the data is then organized based on the defined classes. A 
challenge arises in data mining because typically the correct class labels are not known before the 
model is built. 

Task Definition 
The classification task consists of assigning instances from a given domain into a set of classes. The 
domain is described by a set of discrete- or continuous-valued attributes. Classes can be considered 
values of a selected discrete target attribute. The class represents a property of the classified 
instances that either becomes known later or, less often, a property that is difficult or costly to 
determine. It is for this reason that the correct class labels are generally unknown at the time of 
model creation, but they are provided for in a subset of the domain. 

If unknown, the class is only available on a limited historical data set. This is why the application of a 
classification model is also referred to as prediction, and classification is considered one of the 
predictive modeling tasks. 

The classification task can be used by a classification algorithm to create a classification model. The 
resulting model is a machine-friendly representation of the knowledge needed to classify any 
possible instance from the same domain that is described by the same set of attributes. The 
classification model representation may also be human-readable, but this is not always the case.

Mathematically, if:

► X  denotes the domain 
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► C  is the set of classes 

► c  is a particular class 

the classification task is described as finding a model h : X ↦ C  that approximates the target concept 
c :X ↦ C , which is unknown except for a subset D⊂ X . Usually, only a smaller subset T⊂D , 

referred to as the training set, is directly used by the classification algorithm for identifying a model. 
The remaining instances from D  are held out for other purposes, usually model evaluation. 

In database terms, in a data set where rows represent instances to be classified, one selected column 
contains class labels, and the remaining columns represent attributes. The task is to use the data set 
to create a model that can generate class labels for an arbitrary new data set that has the same 
attribute where correct class labels may not be known. 

A classification model type that deserves special interest is the probabilistic classifier model, which is 
capable of estimating class probabilities P d∣x   for arbitrary instances x∈X  and all classes d∈C . 
While such probabilities can be used to predict class labels using the maximum-probability rule, it is 
not always the best approach, such as when non-uniform misclassification costs must be 
incorporated into the classification process. Misclassification costs can be specified via a cost matrix 
 , with rows corresponding to predicted classes, columns corresponding to true classes, and entries 
[d 1, d 2]  containing the corresponding numeric cost of predicting class d 1  for an instance of true 

class d 2 . A simplified cost vector representation is often sufficient, with a single value [d ]  
representing the cost of predicting any class d ′≠d  for an instance of true class d . Such per-class 
misclassification costs are much easier to incorporate in classification algorithms. 

Misclassification costs can be based on application-specific domain knowledge, if available, or 
subjectively adjusted to make the model more sensitive to some classes that are considered more 
interesting or harder to predict. Whenever misclassification costs are non-uniform, the maximum-
probability rule for probabilistic classifiers should be replaced by the minimum-cost rule, which 
predicts the class associated with the least expected misclassification cost. 

Consider the case of two-class classification tasks with C={0,1} . For such tasks the expected 
misclassification cost of predicting class 1 for instance x can be expressed as 
P 0∣x [1,0 ]P 1∣x [1 ,1] . Assuming a zero cost of correct predictions and writing [1 ]  instead 

of [1, 0] , this can be further simplified to P 0∣x[1 ] . Similarly, the expected cost of predicting 
class 0 for instance x is P 1∣x [0 ] . Now the condition for class 1 to be the minimum-cost class for 
instance x is that its expected cost is no greater than that associated with class 0, which can be 
written as follows: 

P 0∣x ∣1∣≤P 1∣x ∣0∣  (1)

After substituting 1− P (1∣x)  for P 0∣x  the inequality can be solved, yielding:

P 1∣x≥
[1]

 [0 ][1]
 (2)

which is the minimum-cost rule for two-class tasks. The rule determines an appropriate probability 
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cutoff value that leads to the minimization of misclassification costs. The cutoff is equal to 0.5, which 
corresponds to the maximum-probability rule if both types of mistakes have the same cost. 

Model Evaluation
A useful classification model should be accurate—regularly generating correct class labels—not only 
for the data set from which it was created, but more importantly for any previously unseen data from 
the same domain. Therefore, a model-building algorithm must detect relationships between class 
labels and attribute values in the available data set and generalize them appropriately so that they 
are likely applicable to new data. One basic way to assess a classification model’s performance on a 
given data set is the misclassification error, which is one of model quality indicators presented in 
more detail in the Model Diagnostics section. 

The misclassification error on a data set may serve as a reliable estimator of the true error, also called 
the generalization error, which is the probability of misclassifying an arbitrary instance from the 
domain, assuming the data set used for error calculation is independent of the training set. If D
denotes the full available data set with known class labels and T⊂D  is the training set, then 
another subset S⊂D−T  should be used for reliable model evaluation. It is the responsibility of 
model evaluation procedures, discussed in the Model Diagnostics section, to keep the data used for 
model evaluation separate from the training data. 

Sometimes the misclassification error is neither sufficient nor the most important performance 
measure. The error implicitly assumes that each wrong (or correct) prediction carries the same 
weight. This is not necessarily the case in several applications, where some model errors may be 
more severe than others. 

Applications
The classification task is a very useful abstraction of many practical prediction tasks in a variety of 
application domains. Classification models are used to predict the future behavior of people, 
diagnose technical devices, monitor financial transactions, recommend actions or predict their 
outcomes. Examples of practical applications of the classification task include: 

► customer classification based on sociodemographic profile and purchase history 

▲ target groups for different types of incentives 

▲ loyal or disloyal 

▲ likely or unlikely to react to an incentive 

▲ likely or unlikely to make a purchase of specific type or within a specific time-frame 

▲ likely or unlikely to switch to a competitor 

▲ high-performing and low-performing 

▲ interested or uninterested in a specific type of advertisement 

► retail store classification based on location and sales history 

▲ high-performing and low-performing 

▲ appropriate and inappropriate for selling specific product types 

► technical device classification based on operating logs and measurements 
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▲ likely or unlikely to fail within a specific time frame 

▲ requiring different types of maintenance actions 

► credit card transaction classification based on the current transaction information, transaction 
history, and cardholder information likely and unlikely to be fraudulent 

► network intrusion detection based on network traffic logs 

► text document classification into a set of topic classes 

Regression
The regression task definition is nearly the same as the classification task, the difference being that 
the target attribute is continuous. As a result, the regression task applications are similar. The target 
attribute to predict can represent financial indicators, sales or purchases, physical measurements, 
technical device parameters or performance measures, and many other quantities that need to be 
predicted based on historical data. The classification and regression tasks are sometimes referred to 
jointly as supervised learning tasks, which constitutes a major subclass of inductive learning. 

Task Definition 
The task consists of finding a regression model, based on a data set with known target attribute 
values, that captures and appropriately generalizes the relationship between the continuous target 
attribute and other available attributes, continuous or discrete. Such a model could generate 
predictions of target attribute values for arbitrary new data sets containing the same attributes. 
Consider an unknown target function f : X ↦ ℝ  that assigns a real value to each instance from the 
domain X , and assume the availability of a subset D⊂ X  for which the values of f  are known. A 
regression algorithm should use a training set T⊆D  to find a regression model h : X ↦ ℝ , 
approximating the target function on the entire domain. Instances are represented by means of their 
attribute values, as described above for the classification task, and the regression model is a 
computational representation of predictively useful relationships between the target function and 
the attributes. 

The most common reason of the target function being generally unknown, except for an available 
data set, is that it represents some quantity related to the future, that is needed before it is known. A 
regression model created based on historical data is expected to predict the target function on new 
data. This makes regression another example of predictive modeling. 

Model Evaluation 
Similar to classification, successful regression models must generalize the relationships between the 
target attribute and the remaining attributes identified in the training set. This generalization is 
necessary to deliver satisfactory performance on previously unseen data. To assess a model’s 
generalization capabilities it should be evaluated on a data set independent of the training set, which 
in practical terms means selecting a subset S⊆D−T  for model evaluation. This is the task of model 
evaluation procedures, discussed in the Model Diagnostics section. 

Performance measures commonly used for regression models, such as the mean absolute error, the 
mean square error, and the relative absolute error are described in the Model Diagnostics section. 
These errors represent different ways of measuring how the predictions differ from the true values. A 
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correlation coefficient is also a widely adopted regression performance measure since for some 
applications measuring the correlation can be more appropriate than measuring the difference. 

Applications 
The regression task is most often applied for numerical prediction in scenarios where a quantity 
needs to be approximately determined before it becomes available. This may be an amount of 
money spent or earned, an industrial process or technical parameter value, production or sales 
volume, or some more specific indicators of business decision outcomes. It is not uncommon for the 
regression model predictions to be used in an automated or manual optimization process as the 
objective function. This assumes the predicted quantity needs to be optimized by changing a number 
of factors possibly impacting it, and the model predicts the effects of such changes. 

Some typical examples include: 

► predicting the value of customer purchases based on purchase history, applied incentives, and 
seasonal factors 

► predicting the audience of TV or radio advertisements based on the location and broadcast 
schedule information 

► predicting the resale price of off-lease vehicles based on vehicle VIN-based features, its 
condition, mileage, warranty, and geographical location 

► predicting the production yield of oil or gas wells based on the geological conditions or the 
applied well drilling and completion technology 

► predicting the time to failure of a technical device based on operating logs and measurements 

► demand forecasting for a product based on a recent sales track and market situation 

Clustering 
Clustering can be considered a form of classification in which there are no a priori given class labels 
and there is no predetermined target attribute. Instead, the set of possible classes is obtained as a 
set of clusters, created by analyzing the similarity patterns present in the data. The goal is to group 
instances similar with respect to their attribute values in the same cluster, and considerably different 
instances in separate clusters. 

Task Definition 
The clustering task can be seen as a superposition of two sub-tasks: 

► cluster formation—data partitioning into similarity-based clusters 

► cluster modeling—classification with classes corresponding to the clusters 

While two distinct algorithms could be used to address the two sub-tasks, it is more common to use 
a single clustering algorithm for both cluster formation and modeling. Using a single algorithm is 
convenient since the same principle responsible for cluster formation based on available data can be 
also used to classify new data to existing clusters. A clustering model provides both a list of clusters 
identified based on a data set and a mechanism for assigning new instances, described by the same 
set of attributes, to these clusters. It can be applied to new data as in the case of a classification 
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model. 

Formally, the clustering task consists in finding a clustering model h : X ↦ Ch , where C h  is a set of 
similarity-based clusters associated with h, based on a data set T⊆D⊂X . Like the classification 
and regression task, the training set T  may be a subset of the available data set D , containing 
instances described by a set of attributes, but this time with no designated target attribute. The 
clustering model should maximize the intra-cluster similarity and minimize the inter-cluster similarity. 
The exact meaning of this general similarity principle is established by particular clustering 
algorithms. Several algorithms use an explicit distance function to measure the (dis)similarity 
between instances. 

An interesting extension of the clustering task occurs when adding the requirement of cluster 
hierarchization. The resulting hierarchical clustering task requests that each cluster be further 
partitioned into sub-clusters, which have their own sub-clusters, and so on. This implies a tree 
representation of the clustering model, with nodes representing clusters, and their descendant 
nodes representing their sub-clusters. A hierarchical clustering model assigns a sequence of clusters 
to each instance from consecutive clustering tree layers, or, alternatively, a single cluster from a 
specified level. 

Model Evaluation 
Unlike the classification and regression tasks, there are no widely accepted “objective” performance 
measures for clustering models. While a variety of measures have been described in mathematical 
literature, in practice they are used as supplementary rather than primary criteria for model 
selection. The latter are mostly based on domain and application-specific requirements and 
preferences. The former can be roughly divided into: 

► distance-based cluster quality measures—using an explicit distance function, they measure 
how close instances are from the same cluster to one another and how distant instances are 
from different clusters from one another 

► probabilistic cluster quality measures—treating the clustering as a representation of a mix of 
probability distributions, they measure how likely the data set is to have been generated from 
this mix 

► external cluster quality measures—assuming the availability of a reference attribute on some 
data subset, not used for clustering, but representing the available domain knowledge about the 
desired way of partitioning the data, they measure the consistency of the clustering with the 
reference attribute 

The third category of cluster quality measures is of little practical interest, since whenever the 
clustering is needed, an appropriate reference attribute is unlikely to exist. Such measures are usually 
applied in research for benchmarking and comparing clustering algorithms. When using distance-
based clustering algorithms, it is typical to evaluate their effects using distance-based quality 
measures using the same distance function. 

Applications
Some clustering applications can be summarized as follows:

► clustering can provide useful insights about the similarity patterns present in data and a 
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clustering model can be considered as knowledge per se

▲ customer segmentation

▲ point of sale segmentation

▲ document catalog creation

► clustering can be performed on a selected subset of observable attributes that are available for 
all instances, and used to predict hidden attributes that are impossible or difficult to determine 
for some instances based on cluster membership

▲ customer clustering based on socio-demographic attributes to predict attributes describing 
purchase behavior

▲ point of sale segmentation based on location, building, and local population features, used 
to predict attributes describing selling performance

► clustering performed on a set of “normal” instances can be used for anomaly detection, by 
issuing alerts for new instances that do not fit an existing cluster

▲ network traffic clustering, used for intrusion detection

▲ credit card transaction clustering, used for fraud detection

▲ sensor signal clustering, used for device fault detection

► clustering can be used as a domain decomposition method for some further data mining tasks, 
which may be easier to apply within homogenous clusters

▲ customer clustering and classification with respect to loyalty within clusters

▲ customer clustering and predicting reaction to incentives within clusters

▲ credit card account clustering and classification with respect to fraud likelihood within 
clusters

▲ product clustering and demand forecasting within clusters

▲ used vehicle clustering and price prediction within clusters

Association Rule Mining 
The association rule mining task assumes that instances from the domain can be described by so 
called itemsets rather than attribute values. Unlike attributes, the number of items associated with 
particular instances can and usually does differ substantially. One common example is a retail 
purchase transaction, described by the list of purchased items. The goal of association rule mining is 
to identify sets of frequently co-occurring items. 

Task Definition

Assume that for each instance x∈X  there is a set of associated items I x⊂ I , where I  denotes 
the set of all possible items. This is equivalent to an attribute representation with one attribute ai : X

↦ {0,1}  for each item i∈I . However. the sets of items corresponding to particular instances are 
usually very small subsets of the set of all possible items I , which makes such a representation 
inconvenient. Any subset of I  is called an itemset, and an ordered pair of itemsets A , B⊂I  
written as A⇒B , is called an association rule. The task of association rule mining consists in finding 
highly reliable and useful association rules based on a provided data set D⊂X . For consistency 
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with the other data mining tasks discussed previously, this document uses the term “model” to refer 
to the output of the association rule mining task, that is, a set of association rules. 

It is not uncommon to adopt a simplified view of the association rule mining task, where frequent 
itemsets are to be found rather than association rules. The meaning of ‘frequent’ refers to a high 
occurrence rate in the analyzed data set and is explained when discussing model evaluation. The 
difference between the rule and itemset formulation is not substantial, since frequent itemsets can 
be used to generate association rules in a relatively simple and efficient way without accessing the 
data. This is how association rule mining algorithms work.

Model Evaluation 
For the association rule mining task the model itself is not evaluated, but rather its individual 
components: single association rules or itemsets. The evaluation is based on counting instances from 
a data set S⊂X , which can either be the same data set from which the model was derived or a new 
data set on which it is evaluated—with appropriate itemsets. The two most commonly used 
performance measures for association rules are: 

► support:

supp
s
(A⇒ B)=

∣S A∪B∣

∣S∣
 (3)

► Confidence:

conf
s
 A⇒ B=

∣S A∪B∣

∣S A∣
 (4)

Where S I={x∈S ∣ I x⊆ I }  for any itemset I⊂I  is the subset of S  consisting of instances such 
that their associated sets of items are completely contained in I . The support is therefore the ratio 
of all instances from S  containing all items from A  and B , and the confidence is the ratio of such 
instances to instances containing all items from A  only. Sometimes the common numerator of the 
fractions defining the support and confidence is referred to as the absolute support, as opposed to 
the relative support defined above. 

The support is also defined for itemsets. The support of itemset I  on data set S  is calculated as: 

supps I =
∣S I∣

∣S∣
 (5)

Again, the numerator of this fraction is referred to as the absolute support. Itemsets with support 
exceeding a certain user-specified threshold are called frequent itemsets. Association rules are 
considered reliable and useful if both their support and confidence exceed user-specified thresholds. 
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Applications 
The most common example of market basket analysis used to explain association rules is also likely 
the most common application. Association rules discovered from customer purchase transactions are 
highly valued in retail marketing. High-support and high-confidence product associations can be used 
to make individualized product recommendations for direct marketing campaigns, design cross-
selling promotion offers, choose attractive rewards for loyalty programs, prepare advertisements or 
booklets, and adjust product placement on store shelves. The scope of possible association rule 
mining applications is much wider than just the retail world, however. For example, it is not 
uncommon to look for associations in medical or biological data, in technical device logs, in car or 
plane crash reports, in crime or terrorist attack reports. 
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Working with Data Sets

Sample Data Sets

Most data sets used throughout this guide come from the UCI Machine Learning Repository, widely 
used by the data mining community for benchmarking algorithms. This section lists the data sets 
used in the guide, as well as data set configuration instructions.

CensusIncome
The CensusIncome data set comes from the 1994 and 1995 population surveys by the US Census 
Bureau. The UCI repository contains two different data sets extracted from these surveys. While the 
smaller Adult data set is sometimes also known as “Census Income,” this guide refers to the larger 
Census-Income (KDD) data set—used here to demonstrate data exploration, data transformation, 
classification, and clustering algorithms—as the “CensusIncome data set.” 

Data Description 
The data set contains 299,285 instances and 40 attributes, 33 discrete and 7 continuous. The 
attribute income represents the class for classification. The remaining attributes describe the 
demographic, social, professional, family, and financial situation of individuals to be classified into 
two income classes. 

Data Set Configuration
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file 
and configuring the database tables and data, which must be performed before the examples in this 
guide based on the CensusIncome data set can be used. 
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WineQuality
The WineQuality data set describes the properties of the Portuguese Vinho Verde wine. The UCI 
repository contains one data set for white wines and one for red wines. This guide uses the larger 
white wine data set to demonstrate data exploration and regression algorithms. 

Data Description 
The data set contains nearly 4900 instances and 12 continuous attributes. One attribute, quality, 
represents the target function for regression. It is the quality evaluation provided by experts and 
expressed numerically in the [0,10]  range. The remaining attributes represent physicochemical 
wine properties that should be used to predict wine quality. 

Data Set Configuration 
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file 
and configuring the database tables and data, which must be performed before the examples in this 
guide based on the WineQuality data set can be used. 

Retail
The Retail data set used in the Netezza database is based on the Belgian Retail data set, which is 
market basket data from an anonymous Belgian retail store, available from the FIMI Dataset  
Repository courtesy of Tom Brijs. It is used in this guide to demonstrate association rule mining. 

Data Description 
The data set covers over 88,000 store receipts from more than 5000 customers. Each receipt 
represents a purchase transaction and has a number of items associated with it. A more detailed 
description of the data set can be found in Tom Brijs’ paper Retail Market Basket Data Set. 

Data Set Configuration 
Refer to the IBM Netezza Analytics Administrator's Guide for instructions for acquiring the data file 
and configuring the database tables and data, which must be performed before the examples in this 
guide based on the Retail data set can be used. 
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C H A P T E R  4
Using Netezza Analytic Procedures

When enabling a database for use with analytics procedures, you must both enable the database and 
set individual user access permissions. There are four scripts used to ensure that databases are 
properly created and that access rights for various classes of user are properly set. See the IBM 
Netezza Analytics Administrator's Guide for a complete description of setup, as well as important 
usage notes.

Call Interface 

The algorithms discussed in this manual are available through stored procedures that can be called 
directly from nzSQL. The call interface follows the following common pattern:

CALL proc('arg1=val1, arg2=val2, …, argn=valn');

Each procedure has a single character string (NVARCHAR) argument parsed as a parameter string, 
which contains a number of comma-separated argument specifiers. A single argument specifier of 
the form

arg=val

provides a value val for a named argument arg. Some procedures accept a list of semicolon-
separated values for a single argument:

arg=val1; val2;...; valm

Algorithm parameter names can be supplied in any case (upper, lower, or mixed) and in any order. 
White space between parameter names, equal signs, and other separator characters are also 
allowed. Algorithm argument values fall in to the following categories:

► numeric constants

► boolean constants 

► string constants 

► table names or column names 
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When the parameter string is parsed for a particular algorithm, its arguments are recognized and cast 
to appropriate data types. Arguments that specify table or column names are also converted to the 
database's default letter case, unless bounded by double quotes. In the following example, if the 
stored procedure is called in a database defined to use upper-case names, the value of argument 
intable is converted to upper case and the value of argument outtable remains in lower case due to 
the double quotes around the argument value:

CALL proc('intable=tab1, outtable="tab2"');

will be implicitly converted to:

CALL PROC('INTABLE=TAB1, OUTTABLE="tab2"');

The same double-quoting mechanism is required when passing table or column names containing 
non-letter special characters that cannot be directly used in nzSQL. Table and column names can 
contain national characters. 

For some procedures, a column name passed as an argument value must pass an additional value 
used to specify a column-specific operation or parameter for the algorithm. In such cases a colon is 
used to separate the actual name and the additional value assigned to it:

arg=colname:val
arg=colname1:val1; colname2:val2; …; colnamem:valm

The 'help' parameter string can be used with any procedure to display the list of accepted arguments 
and a description of the algorithm's operation.

CALL proc('help');

It is best to run analytic stored procedures in user-created databases that have been properly 
initialized to work with models, not in the NZA database. Algorithms always write output tables or 
models to the current database. Subsequent upgrades to Netezza In-Database Analytic functions 
could result in deleting your output tables or models if they are stored in the NZA database. Input 
tables referenced in the 'intable' parameter may be qualified with a database name qualifier (for 
example, nza..CensusIncome). See Working With Models or Metadata Management for more 
information on initializing models.

Some common parameters are described in the table below, although not all listed parameters are 
used by every algorithm. Many algorithms accept or require these parameters; this varies from 
algorithm to algorithm. This is not a complete list of all possible parameters. Parameters that are 
specific to a particular algorithm or a small set of algorithms are discussed fully in the the detailed 
algorithm section.

Table 2: Partial list of common parameters

Parameter Description

by Identifies a column name for grouping, in algorithms that 
support this. For example:

'by=age'

check Sets the type of validation check the algorithm performs on 
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Parameter Description

the data.

► A setting of NULL checks the data for a NULL value in 
any column. 

► A setting of ALL checks that each ID column value is 
unique and that there are no NULL values in the 
columns. (Note that this can be quite time consuming.) 

► A setting of NONE turns off the validation check. For 
example:
'check=all'

'check=none'

'check=nulls'

coldefrole Identifies the default role for the columns of the input 
table. See Column Properties for more information. For 
example:

'coldefrole=ignore'

coldeftype Identifies the default type for the columns of the input 
table. See Column Properties for more information. For 
example:

'coldeftype=cont'

colPropertiesTable Identifies the name of the table that contains information 
about the properties of the columns of the input table. 
These properties are used by the algorithm. See Column
Properties for more information. For example:

'colPropertiesTable=colPropertiesCensus'

help Generates help output for the specific algorithm. When 
used, this must be the only parameter supplied on the call. 
For example: 

call nza..hist('help')

id Identifies the unique identifier column name for the table 
being processed. If this parameter is required and not 
supplied, the default column name is assumed to be 'id'. 
For example:

'id=itemid'

incolumn Identifies a single column or set of columns as input to the 
algorithm. Columns can have 'properties' and 'roles' 
associated with them. See Column Properties for more 
information. For example:
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Parameter Description

'incolumn=mycolumn'

'incolumn=col1; col2; col3'

intable Identifies the name of the input table that contains the data 
on which the algorithm will operate. The table name may 
contain a database qualifier. For example: 

'intable=mydb..mytable'

model Identifies the name of the model to be created (for 
algorithms that generate a model) or the name of the 
model to be processed (for algorithms that act on existing 
models). When creating a model, the model is created in 
the database where the algorithm is run. The database 
must be initialized to work with metadata management. 
(See Metadata Management for more information.) The 
model name must be unique within the database and 
cannot already exist. For example:

'model=my_arule_model'

outtable Identifies the name of the output table to be created. The 
table is created in the database where the algorithm is run. 
The table cannot already exist in the database or an error is 
issued. For example:

'outtable=myouttable'

target Identifies the column name that splits the input data into 
different class groups. If this parameter is required and not 
supplied, the default column name is assumed to be 'class'. 
For example:

'target=sex'

Column Properties

Column properties provide the user with control over designating the type of data in columns being 
processed without relying on the algorithm's default casting of data types. Supplying a property 
value allows the caller to identify nominal and numeric columns. In addition to types, the column 
property specification also allows the caller to identify the role a column plays in the computation 
being done by the algorithm. Column roles are specific to each individual algorithm. Column types 
have a defined set of values.

The following are valid columns types:

► nominal [nom] 

► continuous [cont] 
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To supply a property to a column in the incolumn list, the property comes after the column name 
separated by a colon. For example:

CALL nza..EWDISC('intable=nza..CensusIncome_train,
incolumn=age:5; num_persons_worked_for_employer:2;
weeks_worked_in_year:5,
outtable=ci_ewd');

In the example above, additional data for the columns being referenced in the incolumn parameter is 
supplied. The meaning of the role or descriptive data that follows the colon (:) is specific to this 
algorithm. For more details on a specific algorithm, refer to the IBM Netezza In-Database Analytics  
Reference Guide.

In the next example, column type for the columns being referenced in the incolumn parameter is 
supplied:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, 
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income, 
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

Columns having roles of target and/or id can be also specified with the incolumn parameter. Using 
this method, the example above would now look as follows:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, 
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont; id:id; income:target, 
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

Properties that are related to more than one parameter are separated by a “|” vertical bar. For 
example:

CALL nza..STD_NORM('intable=nza..CensusIncome_train,incolumn=age:S; 
wage_per_hour:N; capital_gains:L;capital_gains|capital_losses:C, id=id, 
outtable=CensusIncome_train_std_num');

In addition to setting column properties for individual columns in the incolumn parameter, it is also 
possible to set a default type for all columns using the coldeftype parameter. If coldeftype is specified 
and a column property is specified for a column in the incolumn parameter, the property specified in 
the incolumn parameter takes precedence. For example:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, coldeftype=nom,
incolumn=AGE:cont; capital_gains:cont; capital_losses:cont; 
dividends_from_stocks:cont;
NUM_PERSONS_WORKED_FOR_EMPLOYER:ignore; WAGE_PER_HOUR:ignore; 
WEEKS_WORKED_IN_YEAR:ignore; id:cont,
id=id, target=income, model=ci_tree1, eval=gini, minimprove=0.005, 
minsplit=1000');

In this example, by default, columns are treated as nominal except those which are continuous due 
to being specifically designated as such in the incolumn parameter.

Similar to coldeftype, default role can be specified with coldefrole, as in the example below:

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, coldefrole=ignore, 
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incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE: cont, id=id, target=income, 
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

In the example above all columns will be ignored except those that are defined by incolumn, id, and 
target.

Another method for supplying column properties for an input table is to create a column properties 
table associated with the specific input table. This provides a convenient way to specify this 
information for tables that are used frequently in algorithms and ensures consistency in how the data 
is handled with each algorithmic call. When naming a column properties table in an algorithm's call 
the caller does not need to specify column properties in the incolumn parameter or use the 
coldeftype or coldefrole parameters, but may do so to override the properties specified in the column 
properties table. 

You can use the following procedures to create and manage a column properties table:

► COLUMN_PROPERTIES 

► COLUMN_PROPERTIES_CHECK 

► SET_COLUMN_PROPERTIES

► GET_COLUMN_LIST

Using a Column Properties Table
The following example returns a list of specified columns separated by semicolons. For example:

CALL nza..GET_COLUMN_LIST('colPropertiesTable=colPropertiesIris, 
role=input;id;target;input, type=nom;cont, separator=;');

             GET_COLUMN_LIST             
-----------------------------------------
 "ID";"SEPALLENGTH";"SEPALWIDTH";"CLASS"

Below is an example of calling an algorithm supplying a column properties table, which would have 
been created in a separate step.

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, 
colPropertiesTable=colPropertiesCensus, 
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income, 
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

COLUMN_PROPERTIES Procedure
This procedure creates a column properties table. All columns are set by default (that is, numeric 
types are set to continuous). For example:

call nza..COLUMN_PROPERTIES('intable=nza..CensusIncome, 
outtable=colPropertiesCensus');
This table also defines a role for each column. The following are possible roles:

► id – column is an identifier

► target – column is a target value

► ignore – attribute is ignored
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► objweight – contains weights of objects (if algorithm supports weighting of objects, if not, this 
column is ignored

► input – for all input variables (default role)

The example below demonstrates how to create a column properties table, using coldeftype and 
incolumn parameters, with a combination of default values and overrides to default values.

call nza..COLUMN_PROPERTIES('intable=nza..Iris,
outtable=colPropertiesIris, coldeftype=cont, 
incolumn=id:id; class:nom; petallength:ignore; petalwidth:ignore');

The procedure nza..COLUMN_PROPERTIES() creates a new table: 

IDCOL  |   COLNAME   |          COLDATATYPE           | COLTYPE | COLROLE |
COLWEIGHT 
---------------------------------------------------------------------------------
     1 | ID          | INTEGER                        | cont    | id     |      1
     2 | SEPALLENGTH | DOUBLE PRECISION               | cont    | input  |      1
     3 | SEPALWIDTH  | DOUBLE PRECISION               | cont    | input  |      1
     4 | PETALLENGTH | DOUBLE PRECISION               | cont    | ignore |      1
     5 | PETALWIDTH  | DOUBLE PRECISION               | cont    | ignore |      1
     6 | CLASS       | NATIONAL CHARACTER VARYING(12) | nom     | input  |      1

You can modify this table and pass it as column properties to procedures that support this. The 
default Coltype is set based on a column datatype (read from the table definition). Colweight is set to 
1 by default.

COLUMN_PROPERTIES_CHECK Procedure 
This procedure checks if the colPropertiesTable table is correct. Below is an example:

CALL nza..COLUMN_PROPERTIES_CHECK('intable=nza..iris,
colPropertiesTable=colPropertiesIris');

An exception is raised if:

► type is incorrect or inconsistent with the table datatype

► more than one id or objweight is defined

► column name is incorrect (does not match input table columns)

► type does not match the specification [cont, nom]

► role and type do not match one of the allowed values

► the datatype cannot be cast on an attribute (for example if the varchar column has been defined 
as continuous)

SET_COLUMN_PROPERTIES Procedure 
This procedure sets and/or updates properties in the specified colPropertiesTable table.

CALL nza..SET_COLUMN_PROPERTIES('intable=nza..iris, 
colPropertiesTable=colPropertiesIris, incolumn=petallength:input; 
petalwidth:input');
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GET_COLUMN_LIST Procedure
This procedure retrieves a list of specified columns from a colPropertiesTable.

CALL nza..GET_COLUMN_LIST('colPropertiesTable=colPropertiesIris, 
role=input;id;target;input, type=nom;cont, separator=;');

The above example returns a list of specified columns separated by semicolons. For example:

             GET_COLUMN_LIST             
-----------------------------------------
 "ID";"SEPALLENGTH";"SEPALWIDTH";"CLASS"

Below is an example of calling an algorithm supplying a column properties table, which would have 
been created in a separate step.

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, 
colPropertiesTable=colPropertiesCensus, 
incolumn=DETAILED_INDUSTRY_RECODE:nom; AGE:cont, id=id, target=income, 
model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000');

The table colPropertiesTable contains property data for the input table columns, but the incolumn 
parameter has higher priority and overrides the settings from the column properties table. For 
example, in the example above, age will be treated as continuous regardless of what is specified in 
the column properties table. 

Algorithms Supporting Column Properties
Below is a list of algorithms that support column properties:

► Naïve Bayes (NAIVEBAYES)

► Decision tree (DECTREE)

► Regression tree (REGTREE)

► Divisive clustering (DIVCLUSTER)

► K-means (KMEANS)

► kNN (KNN)

► GLM

► Linear model

► PCA

► Tree-shaped Bayesian networks

Missing Value Support 

Many real world databases suffer from missing values in tables. One solution to this problem is to 
preprocess these tables to either:

► remove rows or columns with missing values using SQL queries
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► replace missing values with some special value using SQL queries

► impute the value by using the Netezza Analytics IMPUTE_DATA procedure

For easier processing and better model quality and predictions, Netezza Analytics provides an 
internal solution to deal with the missing values. Depending on the algorithm, functions will either 
intelligently handle or skip the missing table data. 

The following selected algorithms are capable of building or applying models using tables with 
missing values, internally handling missing values in an appropriate manner (instead of just ignoring 
instances with missing values):

► Decision Trees

► Regression Trees

► Naïve Bayes classifier

For other algorithms, if rows contain missing values, the rows are ignored, but the table is still used. 
Preprocessing is still possible, using the Netezza Analytics supplied IMPUTE_DATA procedure, but is 
not required. Note that preprocessing is not “automated.” When receiving a data set with missing 
values, each algorithm either processes them in its own way (decision trees, regression trees, naive 
Bayes) or ignores instances (rows) with missing values. Preprocessing may be explicitly applied to get 
rid of missing values. For algorithm-specific details of missing value support, see the algorithm 
description in the IBM Netezza In-Database Analytics Reference Guide.

Working With Models

The Metadata Management feature provides an environment for managing the analytics models 
created by the Netezza Analytics software. The implementation of the Metadata Management 
component is done on top of the existing database system, using stored procedures and user-defined 
functions.

All analytics models created by the various Netezza Analytics functions (like DECTREE or KMEANS) are 
registered in a catalog. There are administrative views and functions that are provided for model 
management. The Metadata Management system provides the following capabilities:

► Listing information about models

► Performing basic operations on models (for example, delete, copy, rename, update)

► Performing advanced operations on models (for example, print, PMML format and export)

► Securing data (grant and revoke privileges on models and model operations)

Note: The Metadata Management feature is utilized by all algorithms that generate models. Any 
database used for models must be initialized for use by the Metadata Management feature. This is 
done by calling nza..initialize(). 

All model manipulation should be done using the Metadata Management provided functions. Model 
tables should not be altered, updated, dropped, etc.. using normal SQL/DDL statements.

For more information, see the section on Metadata Management.
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Metadata Management

Introduction

IBM Netezza Analytics provides a set of data mining algorithms that generate analytic models. An 
analytic model is considered to be any data mining model, such as a decision tree or a regression 
tree, generated by one of the data mining algorithms. Each algorithm stores a generated analytic 
model in one or more database tables or Netezza Matrices. The tables can be read by the user via 
normal SELECT statements; the matrices can be accessed using functions provided by the Netezza 
Matrix Engine. 

In addition, a set of tools for Metadata Management for the analytic models are provided. Metadata 
management provides a means to track information about the tables created and used by analytic 
models. The tools used for this tracking are a set of database objects, such as:

► tables, views, and stored procedures that provide a catalog for analytics models 

► functions to manage the models 

► a security environment for the models 

Metadata Management provides provisions for exporting models using Predicitive Model Markup 
Language (PMML), an XML-based format used to store and exchange data mining models between 
different modeling platforms.

The Metadata Management component is implemented “on top” of the existing database system. 
This method allows analytics models to be managed in a manner similar to other database objects 
such as tables and views. 

Structure
The Metadata Management interface consists of a set of database views and a set of stored 
procedures.

The catalog for the metadata of analytics models is made up of a number of tables. All analytics 
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models created by the various data mining functions, such as DECTREE or KMEANS, are registered in 
the catalog. The internal catalog tables for metadata storage of analytics models are not directly 
accessible for the normal analytics user; data access is provided by special views and procedures. 

Custom views and a set of public procedures are used to perform the necessary operations on the 
analytics models. The metadata for analytic models for a given database is stored in that database. 
As a result, the database views used for metadata are also located in the local database. These views 
are created during database initialization. The stored procedures used for Metadata Management, 
however, are centrally located in the NZA database, and are created during IBM Netezza Analytics 
installation. For more information on database initialization, refer to the Metadata Administration
Objects section.

Privileges for operations on models can also be managed for users and groups.

Preparing the Database
Each database where analytics models are to be used must be initialized by the system administrator 
using the create_inza_db.sh script. In addition, each user that needs to use the analytics functions 
must be prepared by the system administrator using the create_inza_db_user.sh script. For more 
information on these scripts, refer to the IBM Netezza Analytics Administrator’s Guide.

Metadata Management Tools

A number of administrative views and other functions are offered that allow you to work with the 
metadata information for each model. In addition, there is a security layer for the analytics models 
that provides privileges for operations on models that can be granted to users and groups.

The metadata management system provides the following tools, accessible though the public 
interface of Stored Procedures and Database Views described in the following sections.

Model Property Objects
► List all analytics models and their properties, for example name, owner, create date, etc.

► List all tables/views/matrices belonging to an analytics model

► List all parameters used to create an analytics model

► List all column properties defined for the input data used to create a model

► Filter the listed objects by their properties 

Model Management Objects
► Delete one or more analytics models, both underlying tables/view/matrices as well as metadata 

► Copy an analytics model

► Rename an analytics model 

► Update the properties of an analytics model 
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► Update the contents of an analytics model 

► Print an analytics model to the console 

► Convert analytics models to the PMML format and export them, for example to use for 
visualization 

Model Security Objects
► Set initial security privileges on new analytics models 

► Change the owner of an analytics model 

► Grant or revoke privileges on operations with analytics models to users and groups 

Metadata Administration Objects
► Enable a database for metadata management

► Determine the version of the metadata objects

► Determine if a database is initialized to utilize metadata

► Remove metadata objects from a database

Usage Scenarios
The functionality offered by the metadata management system provides access to analytics models 
and their properties. The stored procedures and database views that are the public interface to the 
metadata management functionality are typically accessed through the command line or using SQL 
scripts executed on the command line. Access using ODBC/JDBC also allows external applications to 
perform management functions.

Some typical scenarios for using the management functions on analytic models are:

► Using the list functions to get an overview of the models 

► Using the drop functions to remove models that are no longer needed

► Using the alter function to categorize and describe the models

► Using the copy function to exchange a model with other users on the same NPS

► Using the PMML conversion function to create a PMML model,  for example, for using a PMML 
visualizer

► get a quick overview of a model using the print function 

Model Naming Conventions

Model Name Length
Model names are limited to 64 characters since they are used to generate names for model 
components (tables/views/matrices). Since internal table names have a character limit, the model 
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name in turn must also be limited. For more information see the Model Component Naming
Conventions section. 

Model Name Uniqueness
Model names must be unique throughout a database. As a result a user cannot create a model with 
the same name as a model that is already used in the database, regardless of the user that created 
the model. 

System Case
By default, the Netezza system uses uppercase letters for table names and model components. This is 
known as the system case. The system case can be configured to use lowercase instead, which was 
the default in earlier Netezza releases; however, it is not recommended to convert an existing 
uppercase system to a lowercase system or vice versa. When entering table names or model 
component names in SQL commands on an uppercase system, they are converted to all uppercase 
unless they are enclosed in double quotes ("). When surrounded by double quotes, names are saved 
as entered.

Model Component Naming Conventions

Each algorithm stores its analytic models in one or more database components 
(tables/views/matrices). The case used for the naming conventions is dependent on the case setting 
of the NPS. By default, the Netezza system uses uppercase letters to display SQL output. The system 
case can be configured to use lowercase instead, which was the default in earlier Netezza releases. 

The system automatically converts identifiers, such as database, table, and column names, to the 
default system case, which is Upper on new systems. To use mixed case and/or spaces, double quotes 
must be used around the identifier. For example:

CREATE TABLE "Emp Table" (emp_id integer, emp_name char(20));
SELECT emp_id FROM "Emp Table";

General Component Naming Conventions
Each component is assigned a canonical name using a special naming schema. The name is generated 
in the form:

 <Prefix>_<Derived_model_name>_<Derived_component_type>_<Sequence_ID> 

Where:

► <Prefix> is always NZA_META for uppercase systems and nza_meta for lowercase systems..

► <Derived_model_name> is the model name created using the conventions described in the 
Model Naming Conventions section. The maximum length is 64 characters.

► <Derived_component_type> is the usage type in the case specified for the database, for example 
MODEL, PMML, or INPUT for uppercase databases and model, pmml, or input for lowercase 
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databases. Any instances of one or more consecutive spaces are converted to an underscore 
(“_”). Maximum length is 38 characters if a sequence ID is used; 42 characters otherwise. For 
more information on table types, refer to NZA..LIST_COMPONENTS Procedure section.

► The sequence ID, if needed; otherwise omitted. Maximum length is 4 characters.

Model Naming Conventions
Due to certain table naming requirements on the IBM Netezza Appliance, the derived model name 
has some limitations. 

White Space Conversion
One or more consecutive spaces in a model name are converted to a single underscore (“_”). In SQL, 
using spaces in table names force the table name to be quoted in SQL statements. However, readable 
model names often include spaces. Using an underscore eliminates the need for such quoting. 

Note: Some similar model names, for example “Model 1” and “Model_1” cannot be used in the 
same database, as they both resolve to “Model_1”.

Case Conversion
The derived model name is the only element of the name where the case may not be automatically 
converted based on the system case. Model names, like table names in the database, are case-
sensitive, therefore converting them to the system case could cause conflicts.

As an example, consider a model called “Sample Model” that, due to its structure, uses two tables 
with usage type “Column Statistics.” In this case, the table names are:

► NZA_META_Sample_Model_COLUMN_STATISTICS_0

► NZA_META_Sample_Model_COLUMN_STATISTICS_1

Case Sensitivity Examples
Since model names are treated in a similar manner to database objects in SQL statements, the 
following apply:

► A model name is converted to the system case.

► A model name in double quotes is not converted .

► Model name literals in a where clause, for example in the list_model() procedure, are not 
converted.

For example, Table 3 illustrates some examples for a Netezza appliance whose system case is the 
default uppercase.

Table 3: Case sensitivity examples

Command Result

CREATE TABLE foo (x integer) Creates a table FOO
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Command Result

nza..kmeans('model=foo ... ') Creates a model FOO

CREATE TABLE "foo" (x integer) Creates a table foo

nza..kmeans('model="foo" ... ') Creates a model foo

SELECT * FROM _V_TABLE WHERE TABLENAME = 
'foo';

Returns the table information only if the 
table name is foo (literals in a WHERE 
clause are not converted).

nza..list_models('where=modelname=''foo'' '); Lists the model only if the model name is 
foo (not FOO).

Model Property Objects

For accessing model properties, the following views and stored procedures are defined:

► Views

▲ V_NZA_MODELS View

▲ V_NZA_COMPONENTS View

▲ V_NZA_PARAMS View

▲ V_NZA_COLPROPS View

► Stored procedures

▲ NZA..LIST_MODELS Procedure

▲ NZA..LIST_COMPONENTS Procedure

▲ NZA..LIST_PARAMS Procedure

▲ NZA..LIST_COLPROPS Procedure

The views are required for programmatic access; however, a number of stored procedures are 
defined that output a subset of the view's information to the console. These procedures are intended 
to be used in a manner similar to the “\” commands in nzsql, that is, the procedures display only the 
basic information for the objects in a more readable format.

V_NZA_MODELS View
The V_NZA_MODELS view provides access to the core metadata of an analytic model. This view lists 
all analytic models and their properties. Each record contains the metadata for an individual model. 
Following are the view columns:
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Table 4: Columns of the V_NZA_MODELS view

Column Name Column Type Description

MODELNAME (unique 
key column)

NVARCHAR(64) The name of the analytics model.

OWNER NVARCHAR(128) The name of the owner of the model.

CREATOR NVARCHAR(128) The name of the creator of the model.

CREATED TIMESTAMP The date and time when the model was created.

MODIFIED TIMESTAMP The date and time when the analytics model 
was most recently modified.

STATE VARCHAR(16) The state of the model.

DESCRIPTION NVARCHAR(8192) A user-defined description of the model.

COPYRIGHT NVARCHAR(128) A copyright notice for the model.

MININGFUNCTION VARCHAR(64) The mining function of the model.

ALGORITHM VARCHAR(64) The name of the algorithm used to create the 
model.

COMPONENTFORMAT VARCHAR(16) A version identifier indicating the format of the 
model tables.

APPLICATIONNAME VARCHAR(64) The name of the application that created the 
model.

APPLICATIONVERSION VARCHAR(16) The version of the application that created the 
model.

USERCATEGORY NVARCHAR(64) A user-defined category name.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section. 

► OWNER—The name of the regular database user that is the owner of the model. Initially, the 
owner is set to the same name as the creator. 

Note: If the name of the database user is changed, the view shows the changed name correctly. 
However, if the database user is dropped from the database, the view shows the name of the 
dropped user until a new owner is assigned by an administrator.

► CREATOR—The name of the regular database user who called the procedure to build the model. 
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Note: If the name of the database user is changed, the view shows the changed name correctly. 
However, if the database user is dropped from the database, there is no procedure to change the 
creator name. 

► CREATED—The date and time when the analytics model was created. This value cannot be 
changed. 

► MODIFIED—The date and time when the analytics model was most recently modified. This value 
is updated each time there is a change to the model metadata or the model contents via one of 
the provided procedures. 

► STATE—The current state of the model. Valid values are “Complete”, “Creating” and “Updating”.

▲ Creating—The model is being calculated.

▲ Updating—The model is being updated.

▲ Complete—No creation or update process is running. Write access to the model metadata 
and model contents might be restricted when a model is not in the “Complete” state. 

Note: For very large data sets, the model may remain in the Creating state for some time. 

► DESCRIPTION—A free text field intended to be used to provide a description of, and any other 
information about, the analytics model. The initial value is NULL. When model generation is 
complete, the user can update the column texts using the NZA..ALTER_MODEL stored procedure. 
For more information refer to the NZA..ALTER_MODEL Procedure section. 

► COPYRIGHT—A free text field intended to be used to provide a copyright notice. This is useful if , 
for example, the model is converted to a PMML model, which should have a copyright section. 
The initial value is NULL. The user can update the column once the model generation is 
completed. When model generation is complete, the user can update the column texts using the 
NZA..ALTER_MODEL stored procedure. For more information refer to the NZA..ALTER_MODEL
Procedure section. 

► MININGFUNCTION—The mining function of the model. The values are supplied by the individual 
mining algorithms and, where applicable, are based on the PMML standard values. 

► ALGORITHM—The name of the algorithm used to create the analytics model. The values are 
supplied by the individual mining algorithms, and where applicable, are based on the PMML 
standard values. 

► COMPONENTFORMAT—This format of the model tables. The makeup of the model 
components, such as the number of tables, table layout, views, or matrices can change for an 
algorithm between software versions. Since it is possible for different databases with different 
formats of metadata or model components to exist in parallel, this value indicates the software 
version format for the component. Generally, the component format version is of the form 
<major_version>.<minor_version>. As an example, all component formats that did not change 
since release 1.x.x are shown as “1.0”. 

Optionally, the value can also contain a second component format number which indicates the 
earliest version of IBM Netezza Analytics that is compatible with the format to the string. For 
example, a value of “3.5(2.0)” indicates that the component format is 3.5, but the components 
can be read by any application that expects component format 2.0 or above. 

Finally, if the version in brackets is missing, there is no backward compatibility. That is, “3.5” is 
the same as “3.5(3.5)”.
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► APPLICATIONNAME—The name of the application used to create the model. Currently, the 
value is always “IBM Netezza Analytics”. 

► APPLICATIONVERSION—The version of the application that was used to create the model. 

► USERCATEGORY—A free text field intended to be used to provide a category for the model. For 
example, a project name. 

V_NZA_COMPONENTS View
The V_NZA_COMPONENTS view provides access to the names and types of the components, that is 
tables/views/matrices, associated with an analytic model. Each record contains the metadata for a 
specific component of an individual model in a given database. Following are the view columns:

Table 5: Columns of the V_NZA_COMPONENTS view

Column Name Column Type Description

MODELNAME (unique 
key column)

NVARCHAR(64) The name of the analytics model.

NAME (unique key 
column)

NVARCHAR(128) The name of a component (table, view, or 
matrix).

SCHEMA  (unique key 
column)

NVARCHAR(128) The schema that contains the component.

DATABASE (unique key 
column)

NVARCHAR(128) The database that contains the component.

TYPE VARCHAR(16) The component type.

MANAGEMENT VARCHAR(16) The management level of the component.

USAGETYPE VARCHAR(64) The usage type of the component.

SEQID SMALLINT An identifier used if more than one component 
of the same type exists.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► NAME—The name of a component in either the current database or another database. If the 
name of the table/view is changed, the view shows the changed name correctly; there is no 
procedure to change matrix names.

► SCHEMA—The schema that contains the component. If NPS multiple schema mode is enabled, 
the schema for managed components is INZA.

► DATABASE—The database that contains the component. Managed components must be in the 
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current database; therefore, the value must be the current database.

► TYPE—The component type. Valid values are “Table”, “View”, and “Matrix”.

► MANAGEMENT—There are two types of management used to distinguish components. 

▲ Managed—The life cycle of these objects is controlled by the provided procedures. They are 
dropped when the model is dropped, renamed when the model is renamed, and so on. 
These objects must reside in the current database. The components containing the model 
contents are managed by IBM Netezza Analytics. Note that matrices are public objects and 
can be manipulated by any user. Therefore, it is possible that changes in the matrix 
components of a model make the model inconsistent. 

▲ Referenced—The name of these objects are included in the metadata, but the objects are 
not managed, nor is referential integrity enforced. These objects can reside in a database 
other than the current database. Examples of referenced components are input components 
for an algorithm and PMML tables. If these objects are dropped, the reference remains.

► USAGETYPE—The type of the component. For example, the core table of an analytic model is of 
type “Model”; PMML tables are of type “PMML”; an input table is of type “Input”. 

► SEQID—The optional sequence ID for the object. Typically, this value is NULL. However, if an 
algorithm stores more than one component of the same type, they are distinguished by the 
sequence ID. The ID is a small integer value greater than or equal to zero and selected by the 
algorithm. 

V_NZA_PARAMS View
The V_NZA_PARAMS view provides access to the individual parameters passed to the model building 
procedure used to create or update a model, including the name of the stored procedure. Each 
record contains the metadata for a specific parameter used for an individual model. 

Note: Some passed parameters, for example the “model” or the “id” parameter. are not available via 
this view, The view also shows parameters that were not passed to the procedure but have a default 
value.

Table 6: Columns of the V_NZA_ PARAMS view

Column Name Column Type Description

MODELNAME (unique 
key column)

NVARCHAR(64) The name of the analytics model.

TASKSEQ (unique key 
column)

SMALLINT Identifies a task used to create/update the 
model.

PARAMETERNAME 
(unique key column)

VARCHAR(64) Name of the parameter.

PARAMETERTYPE VARCHAR(64) Data type of the parameter.

PARAMETERVALUE NVARCHAR(8192) Value of the parameter.
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Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► TASKSEQ—Every operation to create or update a model can be viewed as a task; each task for a 
given model is assigned a task sequence ID. When a model is created, the task sequence ID is set 
to 1. All parameters used in the creation of that model are stored with ID 1. When a model is 
updated, the task sequence ID is incremented, and the new ID is used to store the parameters of 
the update procedure. That way we can store the complete series of stored procedure calls that 
have been executed on a model. In this manner, the complete series of stored procedure calls 
that have been executed on a model can be recorded. 

► PARAMETERNAME—The name of a parameter that has been specified in the parameter string 
of the model building or model updating procedure. There is a special parameter named 
“procedure”. This parameter indicates the name of the stored procedure used to build the 
model.

Note: Parameters that represent column properties are not available in this view; however, they 
are available via the V_NZA_COLPROPS view. See the V_NZA_COLPROPS View section for more 
information.

► PARAMETERTYPE—The data type of the parameter. This column contains SQL data type names. 

► PARAMETERVALUE—The value of the parameter as it is passed to the model building or 
updating stored procedure. Values are stored as strings. The information from the 
PARAMETERTYPE column can be used to convert the value to another type, if needed. 

V_NZA_COLPROPS View
This view provides access to the column properties of the input table. Special properties of the input 
table columns can be defined, for example, if a column should be treated as continuous or nominal. 
These properties can be passed as parameters in the command line, or in a special table. In the event 
the same property is specified twice, the property in the command line overrides the property 
definition on the special table.

Each record contains the metadata for specific property of an individual column for a given model. 

Table 7: Columns of the V_NZA_ COLPROPS view

Column Name Column Type Description

MODELNAME (unique 
key column)

NVARCHAR(64) The name of the analytic model.

COLUMNNAME (unique 
key column)

NVARCHAR(128) The name of an input table Λ column.

PROPERTYNAME 
(unique key column)μ

VARCHAR(64) The name of a column property.

PROPERTYTYPE VARC Data type of the property.
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Column Name Column Type Description

HAR(
64)

PROPERTYVALUE NVARCHAR(64) The value of the column property.

Detailed Column Descriptions
► MODELNAME—The name of the analytics model. For more information, refer to the Model

Naming Conventions section.

► COLUMNNAME—The name of a column in the input table. If no column properties are specified 
for an input table column, it is not shown. 

► PROPERTYNAME—The name of the property. Valid property names are “idcol”, “coldatatype”, 
“coltype”, “colrole” and “colweight”. 

▲ coldatatype—The SQL data type of the input column 

▲ coltype—The mining type of the input column, either nominal or continuous 

▲ colrole—A special role of the input column, for example, target or id 

▲ colweight—A weight for the input column 

▲ idcol—The physical sequence number of a column. 

An example of idcol is in the instance of a command such as CREATE TABLE NEWTABLE (A INT, 
B VARCHAR, C DOUBLE) then A has idcol 1, B has idcol 2 and C has idcol3

► PROPERTYTYPE—The data type of the property. Typically the property values are special words 
so the type is VARCHAR; however, the weight property has a numerical type, for example 
INTEGER or DOUBLE. 

► PROPERTYVALUE—The value of the property. 

NZA..LIST_MODELS Procedure
The NZA..LIST_MODELS procedure allows the user to output a list of models that match the criteria 
specified in the parameter string, provided the user has been granted the LIST privilege or any other 
object privilege on the model. The output is a list of the selected models with columns 
MODELNAME, OWNER, CREATED, STATE, MININGFUNCTION, ALGORITHM, and USERCATEGORY. 
For more information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section.

Example
CALL NZA..LIST_MODELS('where=OWNER=''JOE'' AND 
ALGORITHM=''classification''');

NZA..LIST_COMPONENTS Procedure
The NZA..LIST_COMPONENTS procedure allows the user to output a list of components that match 
the criteria specified in the parameter string, provided the user has been granted the LIST privilege or 
any other object privilege on the model. The output is a list of the selected components with 
columns MODELNAME, NAME, SCHEMA, DATABASE, TYPE, MANAGEMENT, USAGETYPE, and 
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SEQID. For more information on granting privileges, refer to the NZA..GRANT_MODEL Procedure 
section.

Example
CALL NZA..LIST_COMPONENTS('where=OWNER=''BOB'' AND USAGETYPE=''Model''');

NZA..LIST_PARAMS Procedure
The NZA..LIST_PARAMS procedure allows the user to output a list of parameters used to create 
models using criteria specified in the parameter string, provided the user has been granted the LIST 
privilege or any other object privilege on the model. The output is a list of parameters with columns 
MODELNAME, TASKSEQ, PARAMETERNAME, PARAMETERTYPE, and PARAMETERVALUE. For more 
information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section. 

Example
CALL NZA..LIST_PARAMS('where=MODELNAME=''My_Model''');

NZA..LIST_COLPROPS Procedure
The NZA..LIST_COLPROPS procedure allows the user to output a list of column properties that match 
the criteria specified in the parameter string, provided the user has been granted the LIST privilege or 
any other object privilege on the model. The output is a list of column properties with columns 
MODELNAME, COLUMNNAME, PROPERTYNAME, PROPERTYTYPE, PROPERTYVALUE. For more 
information on granting privileges, refer to the NZA..GRANT_MODEL Procedure section. 

Example
CALL NZA..LIST_COLPROPS('where=PROPERTYNAME=''COLDATATYPE''');

Model Management Objects

For performing Model Management, the following stored procedures are defined:

► Stored Procedures

▲ NZA..MODEL_EXISTS Procedure

▲ NZA..DROP_MODEL Procedure

▲ NZA..DROP_ALL_MODELS Procedure

▲ NZA..ALTER_MODEL Procedure

▲ NZA..COPY_MODEL Procedure

▲ NZA..PRINT_MODEL Procedure

▲ NZA..PMML_MODEL Procedure

▲ NZA..EXPORT_PMML Procedure

NZA..MODEL_EXISTS Procedure
The NZA..MODEL_EXISTS procedure determines if the specified model exists. When run, the system 
returns TRUE if the model exists; otherwise it returns FALSE.

00X6331-01 Rev. 2 59



In-Database Analytics Developer's Guide

NZA..DROP_MODEL Procedure
The NZA..DROP_MODEL procedure drops the model with the specified name, provided the user has 
been granted the privilege to drop the model. All managed model components 
(tables/views/matrices) and all metadata regarding the model are removed. If the procedure 
executes successfully, the system returns TRUE and outputs the model name. If the model metadata 
could be removed but one of the model components could not be dropped, the system returns FALSE 
and outputs a warning. For more information on granting privileges, refer to the 
NZA..GRANT_MODEL Procedure section. 

NZA..DROP_ALL_MODELS Procedure
The NZA..DROP_ALL_MODELS procedure drops the selected models from the database, provided the 
user had been granted the DROP privilege for all models. Once run, the procedure outputs the 
names of all dropped models. The procedure could also be used by the administrator to drop all 
models before cleaning up metadata. If the procedure executes successfully, the system returns 
TRUE. However, since the procedure calls DROP_MODEL for each individual model, the procedure 
returns TRUE only if all DROP MODEL calls were successful. For more information on granting 
privileges, refer to the NZA..GRANT_MODEL Procedure section. 

NZA..ALTER_MODEL Procedure
The NZA..ALTER_MODEL procedure alters properties of the specified model, provided the user has 
been granted the ALTER privilege for the model. At least one of the optional parameters must be 
specified. Multiple properties can be modified with a single call by specifying all of the applicable 
parameters.

Notes: 

► The model name and owner can be changed only if the state of the model is “Complete”.

► When a model name is changed, the names of the model's managed components are changed 
accordingly.

► Models that have been built using the model building procedures on the local machine get the 
application name ”IBM Netezza Analytics” and the current application version which are read-
only and cannot be changed.

NZA..COPY_MODEL Procedure
The NZA..COPY_MODEL procedure copies the specified model, including all managed components 
and metadata, to the current database, provided the user has been granted the SELECT privilege for 
the source model. Models can be copied either from the current database or from another database. 
The model is copied into the current database, with the new model name specified by the value 
provided by the copy parameter. The active user is set as the owner of the copied model.

Note: Only models whose state is “Complete” can be copied. 
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NZA..PRINT_MODEL Procedure
The NZA..PRINT_MODEL procedure generates a formatted presentation of the specified model.

Notes:

► Only models whose state is “Complete” can be printed. 

► The print function is not available for all algorithms. In the event a model cannot be printed, a 
warning message is returned.

NZA..PMML_MODEL Procedure
The NZA..PMML_MODEL procedure creates a PMML representation of the analytics model and 
stores it in a database table, provided the user has been granted the SELECT privilege for the model. 
The resulting PMML string is split into several fragments, each stored in a separate row. Each row is 
assigned a sequence ID to define the order of the rows.

Notes:

► Only models whose state is “Complete” can be converted to PMML. 

► The PMML function is not available for all algorithms. In the event a model cannot be converted 
to PMML, a warning message is returned.

Details
The table specified by outtable can be an existing table or a new table.

► If the specified outtable does not exist, it is created with the columns MODELNAME, 
PMML_SEQ_ID, PMML. 

► If the specified outtable exists, the first column with datatype NVARCHAR(n <= 128) is used to 
store the model name, the first column with datatype INTEGER/SMALLINT/BIGINT is used to 
store the sequence ID, and the first column with datatype NVARCHAR(n >= 1024) is used to store 
the PMML fragments.

The model name column is optional for existing tables. However, a table that has no model name 
column can store only one PMML model. If an existing table with a model name column already 
contains a model with the same name, an exception is thrown. If an existing table without a model 
name column is not empty, an exception is also thrown.

If the user has been granted the ALTER privilege as well as the SELECT privilege on the model, the 
PMML table is added to the metadata of the analytics model. If the metadata already contains a 
reference to a PMML table for this model, it is overwritten.

Important: PMML tables are not created/dropped automatically when a model is created/dropped. 
In addition, the contents of regular components and PMML tables are not synchronized. However, 
since only one PMML table reference for each model is maintained, the possibility of a large amount 
of inconsistent data is minimized.
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NZA..EXPORT_PMML Procedure
The NZA..EXPORT_PMML procedure exports an analytic model to a file. This can be done by either:

► exporting the analytics model as a PMML model and then saving it to a file

► exporting the analytics model as a PMML table and then saving it to a file

PMML Model to File
When exporting from a model, if there is already a PMML table for the model registered in the 
metadata, the model is taken from this table and written to the file name specified. There is no need 
to specify the optional outtable parameter. If there is not a registered PMML table but an outtable 
was specified, the procedure first calls the PMML_MODEL procedure to create the PMML table and 
then exports the model from the resulting table. If an outtable was not specified, the model is 
converted and exported without using an intermediate PMML table. This method uses the following 
form of the procedure:

EXPORT_PMML('<model>,<file>,[<outtable>]')

The following privileges are required:

Action Privilege

To export a model to a file LIST privilege on the model

A PMML table reference exists in the metadata SELECT privilege on this PMML table

A PMML table reference does not exist in the 
metadata

SELECT privilege on the model.

PMML_MODEL is called  to create the specified 
outtable/ outtable is registered in the metadata as 
PMML table for this model

ALTER privilege on the model

PMML Table to File
When exporting from a table, the PMML table is specified by the intable parameter. If the PMML 
table contains more than one model, use the model parameter to identify the appropriate model. 
This method uses the following form of the procedure:

EXPORT_PMML('<intable>,<file>,[<model>]')

In this scenario, the only privilege needed is SELECT privilege on the specified PMML table.
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Security and Administration

The Metadata Management functionality provides a security layer that can be used to manage access 
to models and the related metadata by users. In addition, Metadata Management provides 
procedures for enabling and disabling access to metadata objects for a given database, as well as the 
ability to get metadata-related information about a database.

Security
Metadata Management allows security to be applied to models. The security layer limits a user's 
access rights to models and metadata. For example, a user cannot drop a model simply by dropping 
its model table; instead users must use the metadata interface to manage their models.

The security mechanism for analytics models:

► Allows the definition of privileges for users or groups on models and their metadata

► Prevents a scenario where all models in the database are publicly available or are able to be 
modified by any user

► Ensures that the model data is consistent with the model metadata

Privileges
Security is governed by a system of privileges that can be granted to users. A user must be granted 
privileges on analytic models in order to perform operations on them. Privileges can be granted or 
revoked similar to database privileges. However, the existing SQL commands GRANT and REVOKE 
cannot be used for analytics models, therefore Metadata Management uses a custom set of 
privileges.

There are two types of privileges. The CREATE privilege is an admin privilege, that is, it is not bound 
to a specific model, since, by definition, the model does not yet exist. The remaining privileges—LIST, 
SELECT, DROP, ALTER, and UPDATE—are object privileges. The object privileges are bound to a 
specific model and can be granted to users and groups, including users that are not in the inza_users 
group. They can also be granted to the special group “public”. The table below defines the privileges 
available for analytic models:

Table 8: Model privileges

Privilege Type Description

CREATE Administrator Allows the user/group to create an analytics model.

LIST Object Allows the user/group to display a model and its 
properties.

SELECT Object Allows the user/group to read the model components.
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Privilege Type Description

DROP Object Allows the user/group to drop a model.

ALTER Object Allows the user/group to change the properties of a 
model.

UPDATE Object Allows the user/group to change the contents of a 
model.

The CREATE privilege is granted to all IBM Netezza Analytics users, that is, users that are members of 
the group “inza_users”1. 

When a model is created, there are no object privileges associated with it. Instead, the user who 
created the model becomes the model's owner. Initially, only the model's creator (who gets all 
privileges), the database owner, and the user ADMIN can view and manipulate the model. For other 
users to gain access to the model, the owner, the database owner, or the user ADMIN must grant 
privileges to it.

► A user who has one of the privileges SELECT, DROP, ALTER, UPDATE can list models, even if this 
privilege is not granted explicitly. 

► The SELECT privilege for a model is granted on/revoked from all managed components, since the 
SELECT privilege allows to read these objects. 

► The UPDATE privilege is not needed directly for metadata management, but rather is is needed 
for stored procedures in the algorithm components that update the model contents, such as 
PRUNE_DECTREE.

When a privilege is given to a user/group, it can be given “with grant option.” When the grant option 
is given, the user can in turn give the privilege to other users.

Important: The security model ensures that the regular IBM Netezza Analytics user does not bring 
the metadata into an inconsistent state. However, in the database, the database owner as well as the 
administrator (user ADMIN) have extensive privileges that supersede the privileges granted by the 
security model. As a result, it is possible for these users to change data in the tables and to make 
changes in the metadata that are not allowed by the official procedures available to standard users. 
Changes by these users could result in inconsistent data.

Matrices and the Security Model
Managed matrices are not included in the security model. While the security model can be thought 
of as relating generally to all model components, certain privileges have no effect on matrices. 
Matrices are public objects, that is, all matrix access procedures can be called by everyone on every 
matrix in the database. This public access prevents the security model from being applied to them. 

Important: Managed matrices have public read/write access privileges, therefore it is possible that 
they can be illegally dropped or modified by any user.

1 System Administrators can add users to this group using the create_inza_db_user.sh script, typically run when 
configuring a database for use with Netezza Analytics. 
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Administration
Metadata management provides a set of procedures that can be used to enable metadata 
functionality for a database. The database owner and the ADMIN user are the only privileged users 
who can execute these functions. However, it is strongly recommended that while working with 
other IBM Netezza Analytics functions, these highly privileged IDs not be used; regular user IDs 
should be used instead.

Administrator Functions
Using the provided functions, the database owner and ADMIN user can enable metadata for a 
database, disable metadata and remove metadata objects from a database, and request information 
about the database, including whether the database is enabled for metadata use and, if so, its 
metadata version. For more detailed information, refer to the Metadata Administration Objects 
section.

In addition, these users have the ability to grant and revoke privileges for other users. While standard 
users can be granted these privileges, only the database owner and ADMIN user can be guaranteed 
to have this ability. For more detailed information, refer to the Model Security Objects section.

Dropped Users
In the event that the user who is recorded as the owner of a model is dropped from the database, 
the V_NZA_MODELS view shows the name of the dropped user as the owner until a new owner is 
assigned. In that event, a new owner must be set using a valid, active user name. Refer to the 
NZA..ALTER_MODEL Procedure section.

Database Cleanup
Over the course of time, delete and update commands on the metadata tables produce unused 
records. While the number of such records is likely to be low, the administrator can reclaim this space 
using the GROOM command, if desired.

Migration
When new releases of IBM Netezza Analytics become available, updated or new functionality, either 
in Metadata Management or in the Model Components, may affect the metadata tables. In this 
event, migration from one metadata version to another is required. 

Note: Typically, metadata procedures check for the correct initialization of metadata before 
executing. Therefore, if metadata migration is required, the Metadata Management module issues a 
warning message. 

Migration is initiated by calling the NZA..INITIALIZE procedure, which migrates the metadata tables. 
To perform migration, the user must have the ALTER model privilege. For more information, refer to 
the NZA..INITIALIZE Procedure section.

Since different databases with different formats of metadata or model components can exist in 
parallel, migration is performed independently per database. 
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WARNING: If the old data is needed, the user must copy the model before migration occurs. 
Otherwise the data will be lost.

While the typical scenario is to migrate from the release that immediately preceded the current 
release, it is possible that migration may be necessary from older releases. For example, if a user has 
release 2.0 and now installs release 4.0, the process is to perform a migration from the 2.0 format to 
the 3.0 format, the another migration from the 3.0 format to the 4.0 format.

Concurrency
The Netezza database supports only the isolation level SERIALIZABLE. This isolation level limits the 
concurrency of transactions. If two transactions read and write to the same database table, it is 
possible that the younger transaction aborts with the error:

ERROR: <your database>.ADMIN.<a table> : Could not serialize - transaction 
aborted
Since the algorithm and metadata management procedures use the same set of metadata tables, this 
error can also happen when IBM Netezza Analytics procedures are called.

Note that the error can only happen if two IBM Netezza Analytics procedures work with models in 
the same database. If different databases are used (each database has its own set of metadata 
tables), this error cannot occur.

If you see this error message, you can:

► Run your procedure at a later time.

► Switch off serialization checking for the current session. To do so, enter the following on the 
command line (this command should be run outside of a transaction):

set serializable = false;

NZA..MIGRATE_MODEL Procedure
The NZA..MIGRATE_MODEL procedure migrates the components of a model that was created in a 
previous version of Netezza Analytics to the format of the current version. Model components are, 
for example, tables, views, and matrices. If the migration is not needed, the procedure does not 
migrate the components and shows an appropriate message.

If a procedure that uses a model detects that the model must be migrated before it can be 
processed, you get the following message:

The model <model-name> is stored in an older format that is not supported 
(Format Version = 1.0). Call MIGRATE_MODEL to convert this model to the 
latest format.

The MIGRATE_MODEL procedure does not migrate the metadata of models but only the model 
components. The migration of the metadata for all databases and models is done by the script 
update_inza_dbs.sh. Typically, this script is run during the upgrade of Netezza Analytic. You can, 
however, also call the script manually.

NZA..REGISTER_MODEL Procedure
With the NZA..REGISTER_MODEL procedure, you can register a model that was created by using IBM 
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Netezza Analytics 1.x so that you can use it with Netezza Analytics 2.x Metadata Management. 

Take this procedure before you work with IBM Netezza Analytics 3.x because a direct registration to 
IBM Netezza Analytics 3.x is not supported.

To register a model, you must have been granted the SELECT privilege on the previous model tables. 

Before registration is done, the appropriate database must be initialized. Once initialized, the 
procedure must be called separately for each model. In addition, it is important that the procedure 
uses the same parameters used to create the model originally. The procedure assumes that the 
model was created using the algorithm specified by the procedure parameter and checks only for 
correct parameters and the availability of the underlying tables.

If the value of a parameter is not known, a question mark (?) can be specified if the default should 
not be used.

The original tables and matrices are not modified. Once under model management control, the caller 
of the function is added as the creator and owner of the model. 

Note: FP-GROWTH models cannot be migrated to ARULE models and therefore cannot be registered.

Example
call nza..register_model('procedure=DIVCLUSTER,  model=divcluster_adult, 
intable=nza..adult, outtable=divcluster_adult_out,id=id, target=income, 
distance=euclidean, maxiter=5, minsplit=30, maxdepth=3,randseed=12345');

The parameter values provided are not validated against the model. Using the example above, if 
distance was set to Manhattan when the model was created (instead of Euclidean), registration will 
be incorrect.

Model Security Objects

For setting model Security, the following stored procedures are defined:

► Stored Procedures

▲ NZA..GRANT_MODEL Procedure

▲ NZA..REVOKE_MODEL Procedure

▲ NZA..LIST_PRIVILEGES Procedure

NZA..GRANT_MODEL Procedure
The NZA..GRANT_MODEL procedure grants one or more privileges on a model to one or more users 
or groups. At least one user or group must be specified. 
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NZA..REVOKE_MODEL Procedure
The NZA..REVOKE_MODEL procedure revokes a privilege on a model from users or groups. For a list 
of valid values to use with the privilege parameter, see Table 8 in the Privileges section.

NZA..LIST_PRIVILEGES Procedure
The NZA..LIST_PRIVILEGES procedure lists either the object privileges or grant permissions for the 
specified user. If no user is specified, the procedure lists privileges for all users, provided the 
requesting user has permissions to view the privilege list. The grant parameter of the procedure 
controls whether object (the default) or grant permissions are displayed. To display grant privileges:

NZA..LIST_PRIVILEGES('grant=true')

The output columns are USERNAME, MODELNAME, and PERMISSIONS.

Notes: 

► Only the effective privileges are listed; individual user or group privileges are not shown.

► To view privileges, the user must have select access on the system view _V_SYS_PRIV.

► Privileges of the ADMIN user are not shown, since this user always has all privileges.

Metadata Administration Objects

For performing model administration, the following stored procedures are defined:

► NZA..INITIALIZE Procedure

► METADATA_VERSION Procedure

► NZA..IS_INITIALIZED Procedure

► NZA..CLEANUP() Procedure

NZA..INITIALIZE Procedure
The NZA..INITIALIZE() procedure is called to enable a database for the analytic functions and creates 
all database objects needed to manage the metadata for the analytic models. It is called when a new 
database for IBM Netezza Analytics is set up during the execution of the create_inza_db.sh script. In 
addition, calling the NZA..INITIALIZE procedure manually can initiate a migration from one metadata 
version to another, if needed. For more information, refer to the Migration section. 

METADATA_VERSION Procedure
The METADATA_VERSION() procedure is used to determine the version of the metadata objects used 
in the current database. It is generated in the current database when the INITIALIZE() procedure is 
applied on it. If the metadata has not been initialized, this procedure does not exist.
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NZA..IS_INITIALIZED Procedure
The NZA..IS_INITIALIZED() procedure determines if the metadata objects have been created in the 
specified database. The procedure also check whether the version of the metadata objects is as 
expected. 

NZA..CLEANUP() Procedure
The NZA..CLEANUP() procedure drops all metadata objects in the current database. To successfully 
clean up the metadata objects, all metadata tables must be empty. If the tables are not empty, 
NZA..DROP_ALL_MODELS() must be called to delete all models. For more information, refer to the 
NZA..DROP_ALL_MODELS Procedure section.
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C H A P T E R  6
Data Exploration 

Background 

Data exploration algorithms constitute a collection of useful computational techniques used in 
virtually all data mining projects to become familiar with the data. This section reviews those 
available in the IBM Netezza In-Database Analytics package. 

The data exploration algorithms can be divided into the following categories: 

► distribution description 

► relationship identification 

The distribution description category consists of algorithms used to describe the empirical 
distribution of single attributes or the joint distribution of multiple—usually two—attributes. 
Algorithms in the relationship identification category detect and quantify relationships between 
attributes. These algorithms are standard and widely known. The adopted definitions of all calculated 
quantities are provided in the subsections below. Implementation-specific details are covered, if 
necessary, when presenting the available functions and usage examples. 

Moments 
Moments are quantities used to describe certain aspects of continuous attribute distributions. Of 
particular interest are the central moments or moments around the mean. The kth central moment is 
the mean of differences between attribute values and the attribute mean raised to the power of k , 
which for an attribute a  and data set D  can be written as: 

a ,k D =
1
∣D∣∑x∈D

 a  x −ma  D  
k

 (6)

Where:
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ma D=
1
∣D∣∑x∈D

a x   (7)

is the mean value of attribute a  in data set D , the basic location measure. Notice that the 0th 
central moment is 1 and the 1st central moment is 0, which means that only k ≥ 2 central moments 
actually say something about the data. In practice, k∈{2,3, 4} is used. 

The 2nd central moment is the variance, which measures the dispersion of the distribution. The 3rd 
and 4th central moments are usually used in a standardized form, that is, divided by the 
corresponding power (3 or 4, respectively) of the standard deviation. The 3rd standardized central 
moment is called the skewness and serves as a common distribution asymmetry measure: 

skewaD =
a , 3D

sa
3
D 

 (8)

where sa D is the standard deviation of attribute a  on data set D . It takes a value of 0 for 
symmetrical distributions, negative values for a longer left tail, and positive values for a longer right 
tail. 

The 4th standardized central moment is the kurtosis and serves as a measure of distribution 
peakedness. Typically, a constant of 3 is subtracted from the 4th standardized central moment in a 
kurtosis calculation, with the result sometimes referred to as excess kurtosis: 

kurta D =
a , 4D 

sa
4
D 

−3  (9)

This correction makes the kurtosis of a normal distribution equal to 0. It is negative for distributions 
flatter than normal and positive for distributions more peaked than normal. 

Quantiles 
Quantiles constitute a convenient and intuitive description of continuous attribute distribution that 
allow observation of location, dispersion, and asymmetry. Quantiles of a continuous attribute are 
values from its range taken at regular intervals of its cumulative distribution. The quantile of order 
p∈ [0, 1]  of attribute a  on data set D can be defined as a value q p  satisfying the following 

conditions: 

∣D a p∣

∣D∣
≤ p  (10)
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∣D a≤ p∣

∣D∣
≥ p  (11)

where Dap  and Da≤p  denote the subsets of D  where the inequality in the subscript is satisfied by 
the values of attribute a . Informally, the order p  quantile of an attribute is a value that cuts off the 
lower p⋅100 % of instances in the data set with respect to the attribute’s values. The order 0.5 
quantile is also known as the median, which partitions the data set into halves, and the 0.25, 0.5, and 
0.75 order quantiles are called the quartiles, which partition the data set into quarters, with the first, 
second, and third designated as q1 , q 2 , q3 , respectively. Other common special cases include:

► deciles—quantiles of order 0.1, 0.2,..., 0.9 

► percentiles—quantiles of order 0.01, 0.02,..., 0.99

When using quartiles, the second quartile q2 , also known as the median, serves as a location 
measure; the difference between the third and the first quartile q3−q1  called the inter-quartile 
range serves as a dispersion measure; and the following ratio, called the quartile skewness, can be 
used as an asymmetry measure:

q3−q2−q2−q1

q3−q1

 (12)

Outlier Detection 

It is common to apply the following quartile-based outlier detection criteria: 

a x   q1 −q3−q1  (13)

a x   q3 q3−q1  (14)

These report the value of attribute a  for instance x  as outlying if it is below the first quartile or 
above the third quartile by more than the inter-quartile range multiplied by a coefficient a , which 
controls the aggressiveness of outlier detection. A commonly-used value for this parameter is 1.5. 

Frequency Table 
A univariate frequency table describes the distribution of a discrete attribute by providing the 
occurrence count for each unique value. A bivariate frequency table similarly describes the joint 
probability distribution of two discrete attributes, by providing the occurrence count for each distinct 
combination of their values. 
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Histogram 
A histogram is a frequency table counterpart for continuous attributes. Although usually presented 
visually as a graph, it can be considered a table providing occurrence counts for a series of disjoint 
intervals covering the range of the attribute. The intervals can be of equal or inequal width. The 
number of intervals and their boundaries can be specified manually to ensure the histogram is most 
meaningful and readable, or adjusted automatically to the distribution. 

Pearson’s Correlation 
Pearson’s correlation coefficient, also known as the linear correlation coefficient, measures the 
degree of linear relationship between two continuous attributes. For attributes a1  and a 2  it is 
calculated on data set D  as follows: 

corPa1 ,a2
D=

∑x∈D  a1  x −ma1
 D    a2  x −ma 2

 D  

∑x∈D  a1  x −ma1
 D  

2
∑x∈D  a2  x −ma 2

 D  
2  (15)

where ma 1
D  and ma 2

D   denote the mean values of attributes a1  and a 2  on data set D , 
respectively. In practical terms, it measures how close the data points are to a straight line in the 
two-dimensional space of a1  and a 2 . 

The linear correlation coefficient falls in the [−1,1 ]  interval, with absolute values approaching 1 
denoting nearly linear relationships, absolute values above 0.7 usually considered to indicate strong 
relationships, and absolute values below 0.3 usually considered to indicate no relationship. The sign 
of the correlation coefficient indicates whether the relationship is increasing (positive correlation: 
when one attribute increases the other tends to increase) or decreasing (negative correlation: when 
one attribute increases the other tends to decrease). 

Spearman’s Correlation 
When searching for relationships between attributes, there may be an interest in nonlinear 
relationships that appear weak according to Pearson’s correlation, but may actually be strong. One 
way to detect them is to use Spearman’s correlation coefficient, also known as the rank correlation 
coefficient, which measures the degree of monotonic relationship between two continuous 
attributes. For attributes a1  and a 2  it is calculated on data set D  as follows: 

corSa1 , a2
D=1−

6∑x∈D  ra1
 x −ra 2

 x  
2

∣D∣∣D∣2−1
 (16)

where r a1
 x  and r a2

x   denote the ordinal number rank of instance x  in relation to attributes a1  
and a 2 , respectively. 

Unlike linear correlation it is ordering and not the attribute values that impact rank correlation. The 
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rank correlation coefficient falls in the [−1,1 ]  interval, with absolute values approaching 1 denoting 
nearly linear relationships, absolute values above 0.7 usually considered to indicate strong 
relationships, and absolute values below 0.3 usually considered to indicate no relationship. The sign 
of the correlation coefficient indicates whether the relationship is increasing (positive correlation: 
when one attribute increases the other tends to increase) or decreasing (negative correlation: when 
one attribute increases the other tends to decrease). 

Covariance 
The covariance for a pair of continuous attributes provides a dependency measure that is similar and 
closely related to the linear correlation. The formula for calculating the covariance of attributes a1  
and a 2  on data set D  is: 

cova1 ,a 2
D  =

1
∣D∣−1

∑
x∈D

a1  x −ma 1
 D   a2  x −ma2

 D    (17)

which can be seen to relate to the corresponding Pearson’s correlation coefficient defined above as 
follows: 

cova1 ,a 2
D  = corSa1 ,a 2

D sa1
D  sa 2

D   (18)

Where sa 1
D   and sa 2

D   are the standard deviations of attributes a1 and a 2 , respectively, on data 
set D . 

It is common to calculate and use a covariance matrix for a set of n  continuous attributes 
a1 , a2 , ... , an , which is an n×n  matrix containing the covariance for each pair of attributes from this 

set. The covariance matrix is a convenient way to detect and describe linear relationships within a set 
of attributes. Consider the covariance matrix for two sets of attributes, ai 1

, ai 2
, ... , ai m

 and 
a j 1

, a j 2
,... ,a jn

. It is an m×n  matrix containing the covariance for each pair of attributes ai k
, a j l

, 
where k=1,2, ... ,m; l=1, 2,... , n . 

Mutual Information 
The mutual information is an information theory-based dependence measure intended for discrete 
attributes. For attributes a1  and a 2 , it is calculated on data set D  as follows: 

I a1 , a2
D =∑

v1∈A1

∑
v2∈A2

P a1  x =v1 , a2  x =v2 

⋅log
P a1  x =v1 , a2  x =v2 

P  a1  x =v1  P a2  x =v2 

 (19)

where the base of the logarithm can be arbitrary, but is usually taken as 2, and the probabilities are 
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estimated from data set D  based on value occurrence counts: 

P  a1  x =v1  =
∣Da1= v1

∣

∣D∣
 (20)

P  a1  x =v1 =
∣Da 2=v2

∣

∣D∣
 (21)

P  a1  x =v1 , a2  x =v2  =
∣Da 1=v1

∩Da 2=v2
∣

∣D∣
 (22)

By putting a condition in a subscript to a data set here and thereafter we refer to the subset 
satisfying the condition. The quantity measures the information about one attribute that is contained 
in the other. It is non-negative, equal to 0 for independent attributes, and symmetric. 

Conditional Entropy
The conditional entropy is an information theory-based unidirectional dependence measure 
intended for discrete attributes. For attributes a1

given a2
, it is calculated on data set D as follows:

H a1∨a2
(D )=∑

v1∈A1

∑
v2∈A2

P ( a1 ( x )=v1 , a2 ( x )=v2)

¿ l o g
P ( a2 ( x )=v 2)

P ( a1 ( x )=v1 , a2 ( x )=v2)

 (23)

The entropy can be considered as a measure of variation of an attribute in the data set. The 
conditional entropy is then a measure of how the first variable varies if we keep the second fixed. 

Chi-Square Test 
The chi-square (or “ 2 ”) test is used to detect statistically significant relationships between discrete 
attributes. The formula for calculating the 2  statistic for attributes a1  and a2  on data set D  can 
be written as: 

a1 ,a 2

2
D = ∑

v1∈A1

∑
v2∈A2

∣Da1=v1 ,a 2=v2
∣− Ea1=v1 , a2=v2


2

E a1=v1 , a2=v2

 (24)
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Where Da 1=v1 , a2=v2
 is the subset of D  with the value of a1  equal v1  and the value of a2  equal 

v2 , and Ea1= v1 ,a 2=v2
 is the expected number of such instances under the null hypothesis of no 

relationship between the attributes. This expected number is calculated as:

Ea1= v1 ,a 2=v 2
=
∣Da1=v 1

∣⋅∣Da 2=v2
∣

∣D∣
 (25)

 

where Da 1=v1
 and Da 2=v2

 denote the subsets of D  with the conditions from the subscripts 
satisfied. The statistic accumulates the discrepancies between the actual and expected numbers of 
attribute value associations, standardized by dividing by the expected value. It is large whenever the 
actual numbers differ from the expected ones substantially, which is unlikely under the null 
hypothesis of no relationship. 

The 2  statistic is a random variable approximately following the 2  distribution. It can be used to 
determine the p -value (“right tail”), which is the probability of obtaining a 2  statistic value at 
least as large as actually calculated assuming the null hypothesis. If sufficiently low, typically, 0.05 or 
0.01, it is considered justification for rejecting the null hypothesis. Alternatively, the corresponding 
value of the cumulative distribution function can be determined and used to reject the null 
hypothesis if sufficiently close to 1. 

t-Test 

A t -test is any statistical hypothesis test in which the test statistic follows a Student's t distribution, if 

the null hypothesis is supported. 

When a test statistics follows the normal distribution and we know apriori the standard deviation 
(scaling term) of this statistic, then the hypothesis would be tested using the normal distribution.

However, what is most frequently encountered, we have to estimate the standard deviation of the 
test statistics based on the sample, then the test statistic (under certain conditions) follows a 
student's t distribution. Student’s t -test comes in a number of variations, depending on the intended 

application: 

► a single mean 

► unpaired (for two means) 

► paired 

► for a regression line slope 

These tests are applicable to normally distributed attributes only and using them for attributes with 
other distributions may lead to unreliable conclusions. 

The t -test for a single mean tests the null hypothesis of the mean attribute value in the whole 
domain being equal to a specified theoretical value  , based on the observed mean and variance in 
the data set. The underlying statistic is calculated as: 
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t a , D  =
ma D −

sa D

∣D∣
 (26)

where ma D  and saD   are the mean and standard deviation of attribute a  on data set D . 

The unpaired t -test is used to test the hypothesis of the mean attribute value in two sub-domains 
being equal based on their observed means and variance in the two corresponding subsets of the 
data sets. Both the sub-domains and the corresponding data subsets are also called groups. Typically, 
the partitioning into two groups is represented by two values of another discrete attribute. The 
statistic is calculated according to the following formula: 

t aD 1 , D2 =
ma D1 −ma D2

 sa
2D1

∣D1∣


sa
2D2

∣D2∣

 (27)

where ma D1  and saD1  are the mean and standard deviation of attribute a  on subset D1 , 
and ma D2  and saD 2  are the mean and standard deviation of attribute a on subset D2 , 
respectively. 

The paired t -test considers two attributes and a single data set to test the null hypothesis of the 
mean difference between the two attributes across the whole domain being 0. This is equivalent to 
the t -test for a single mean applied to a new attribute defined as the difference of the original two 
attributes: 

t a1 ,a2
D =

ma1−a 2
D 

Sa1−a2
D

∣D∣

 (28)

where ma 1−a2
D   and sa1−a2

D  denote the mean and standard deviation of differences between 
a1  and a2  on data set D . 

The t -test for a regression line slope is used to test the null hypothesis that two continuous 
attributes are linearly related with a given slope coefficient  . For the application of this test, a 
regression line a2 x=ba1x v  for two attributes a1  and a2  is using data set D , which yields 
an estimated slope coefficient ba1 , a2

D and intercept va 1 , a2
D  calculated as:

ba1 , a2
D =

∑x∈D  a1  x  −ma 1
 D   a2  x  − ma 2

 D  

∑x∈D  a1  x −ma1
 D  

2  (29)
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va 1 , a2
D  = ma2

D − ba1 , a2
Dma 1

D  (30)

Then the estimated slope coefficient is compared to the theoretical one,  , to achieve the following 
test statistic: 

t a1 ,a2 , D =
ba1 , a2

D − 

sb a1,a 2

D 
 (31)

where ma 1
D   and ma 2

D  are the means values of attributes a1  and a2  on D , and:

sba
1
, a

2

D =
1

∣D∣−2∑x∈d  a2  x  − ba1 , a2
 D  a1  x   v a1 , a2

 D   
∑x∈D  a1  x  −ma 1

 D  
 (32)

is the standard deviation of the estimated slope coefficient. 

All these t  statistics can be considered random variables with different realizations for different data 
sets from the same domain following Student’s distribution. These variables can be used to 
determine the p -values or cumulative distribution function values on which to base the decision to 
accept or reject the null hypotheses. A sufficiently low p -value—typically, 0.05 or 0.01—justifies 
rejecting the null hypothesis. Likewise, cumulative distribution function values sufficiently close to 0 
or 1 justify rejecting the null hypothesis. This has the additional advantage of specifying whether the 
obtained test statistic appeared unlikely low or unlikely high according to the distribution assuming 
the null hypothesis. 

Mann-Whitney-Wilcoxon Test 
The Mann-Whitney-Wilcoxon test is a non-parametric counterpart of the unpaired t -test. It is used 
to verify the hypothesis that the locations of a continuous attribute differ significantly in two sub-
domains based on the observed differences of their location in the corresponding two data subsets. 
As with the unpaired t -test, the partitioning into two groups is usually represented by two values of 
a discrete attribute. 

The hypothesis is tested without making any assumptions on their distributions. It is possible by 
defining a test statistic that does not directly depend on attribute values, but rather on their 
ordering, which is similar in spirit to Spearman’s rank correlation. It is calculated for attribute a  
based on data subsets D1  and D2  as follows: 

uaD1 , D2 = ∑
x1∈D1

∣{x2∈D2∣ a x2a x1}∣
1
2 ∣{x2∈D2 ∣a  x2=a x1}∣  (33)

For each instance from the first subset, the test counts the number of instances in the second subset 
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for which the value of attribute a  is less than or equal to the value of attribute a of the first subset. 
Cases where the value is equal, are weighted with ½. If the statistic approaches its minimum or 
maximum values—0 and ∣D1∣⋅∣D2∣ , respectively—it indicates a strong location difference that is likely 
to occur not only for the observed data sets, but also for the whole corresponding sub-domains The 
distribution of the Mann-Whitney-Wilcoxon statistic, necessary to determine the p -values or 
cumulative distribution function values used for rejecting or accepting the null hypothesis of no 
location difference, is tabulated for small data sets and approximated by a normal distribution for 
larger data sets. 

Wilcoxon Test 
The Wilcoxon test is related to the paired t -test in the same way as the Mann-Whitney-Wilcoxon 
test is related to the unpaired t -test. It is a non-parametric approach to testing the hypothesis that 
two continuous attributes do not differ significantly, that is their median difference in the whole 
domain is 0. The underlying Wilcoxon statistic. also known as the signed rank statistic, is calculated 
for attributes a1  and a2  on data set D  as follows: 

wa1 ,a 2
D = ∑

x∈{ x'∈D∣a 2 x' a1 x' }

r a1−a2
 x  (34)

where r a1−a 2
x   is the rank of instance x  with respect to the absolute difference between a1  and 

a2 , that is, ∣a1 x −a2 x∣ . The formula sums the ranks for all instances where the value of the 
second attribute is less than the value of the first attribute. The distribution of the statistic is 
tabulated for small data sets and approximated by a normal distribution for larger data sets. 

Canonical Correlation 
Just as Pearson’s correlation measures the degree of linear relationship between two attributes, the 
canonical correlation measures the degree of linear correlation between two sets of attributes, that 
is, it looks for many-to-many rather than one-to-one dependencies. Consider two sets of attributes, 
a i1

, ai 2
, ... , a im

 and a j1
, a j2

, ... , a j n
. So called canonical variates are identified for these sets, which 

are new attributes formed as linear combinations of the original attributes: 

u x  =∑
k=1

m

ik
a ik
x  (35)

v  x =∑
k=1

n

 j k
a jk
 x  (36)

where the coefficients of these linear combinations, αi1
, αi 2

, ... , αim
 and α j1

, α j2
, ... , α jn

, are called 
canonical coefficients. They are chosen so as to maximize the linear correlation between the 
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canonical variates on the analyzed data set D , corSu ,v D  . The maximum achieved linear 
correlation between the canonical variates is the canonical correlation between the two attribute 
sets: 

corCa i
1
,... ,a i

m
; a j

1
,... , a j

n

(D)= max
ai

1
,... , ai

m
; a j

1
, ... , a j

n

corSu , v (D)  (37)

One-Way ANOVA 
The one-way ANOVA (ANalysis Of VAriance) can be considered an extension of the unpaired t -test 
for two means that can compare the means in more than two groups. The underlying statistical test, 
called the F -test, is equivalent to the t -test in the case of two groups with the F statistic equal to 
the square of the corresponding t statistic. In practice, the one-way ANOVA is applied whenever 
there are at least three groups to consider. As with the basic t -test, a single continuous attribute is 
considered, for which location differences in subgroups are to be detected. 

Apart from the extension to more than two groups, the one-way ANOVA can take into account 
experimental design. This term refers to one common application of the one-way ANOVA to 
experimentally analyze the effects of some treatments to a set of experimental units or subjects. 
Treatments determine the grouping, as each possible treatment corresponds to one group. 
Experimental units are represented by instances in the data set, with the analyzed continuous 
attribute representing the effects of particular treatments observed for particular units. In this 
setting, the experimental design determines how treatments are assigned to particular units, that is, 
how the grouping is performed. In other words, the experimental design represents information 
about the procedure used to collect the analyzed data that is taken into account in the analysis. 

Two common experimental designs are the completely randomized design (CRD) and the random 
block design (RBD). The CRD is the simplest design assuming that treatments are assigned to 
experimental units at random. Groups do not need to be of equal size, but there can be no factors in 
the experiment that affect the likelihood of a particular treatment being assigned to a particular unit. 
In the more complex random block design, it is assumed that experimental units are arranged into a 
number of blocks of the same size, equal to the number of possible treatments, according to some 
factor that is suspected to impact the treatment effects. Units from each block are randomly 
assigned to different treatments. This approach “filters out” the possible impact of the factor used 
for blocking, by making sure that treatments are randomly assigned within the blocks. Discrete 
attributes in the analyzed dataset are represented by the grouping or treatment in either case, and 
by the blocking for the RBD design. 

Multivariate Analysis of Variance (MANOVA) 
MANOVA is a statistical procedure to compare multivariate variance models for different groups of 
input data. It is a generalization of One-Way ANOVA , whereas not only a single variable but multiple 
dependent variables are supported.

Similar to ANOVA, MANOVA is often used to measure the effects of treatments for a group of 
subjects or experimental units. A typical example is to show different versions of a website to 
different user groups to measure different quantities for each user. A quantity is, for example, the 
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time that the user spent on the website or the number of purchases. The results are then analyzed to 
find out whether these quantities significantly differ for each of the user groups.

MANOVA is most suitable for several dependent variables that are moderately correlated. If the 
dependent variables are too highly correlated, that is, they are measuring the same effect, it would 
be better to use a single ANOVA model. If the dependent variables are uncorrelated, you could apply 
a set of pair-wise ANOVAs to measure each effect independently.

In general, you can get the following information by using the MANOVA procedure:

► If there are interactions among the dependent variables 

► If there are interactions among the independent variables

► If changes in the independent variables significantly affect the dependent variables

The MANOVA algorithm is based on the test for equality of location parameters in the group of k 
samples. The test is done under the following assumption:

Y i∼N p(μi ,Σ)i.i.d. ,Σ>0

where:

► Each sample i is independently drawn from the p dimensional multivariate normal distribution 
with the sample-specific mean vector μi

► Each sample i consists of ni multivariate observations (column vectors) that are 

denoted by y i , j , where 1⩽ j⩽n i

► All groups share the common covariance matrix Σ

► Matrix Σ is non-singular

Requirements and assumptions for the computation
The following conditions apply to the computation:

► As the test is based on the comparison of covariance estimators, the computational 
procedure requires the following formula to start the computation:

∑
i=1

k

ni⩾ p

► For the description of the statistical tests and test procedures, the following 
notations are used:

▲ N=∑
i=1

k

n i

▲ μ̂i=
1
n i
∑
j=1

nk

y i , j  

▲ μ̂=
1
N
∑
i=1

k

∑
j=1

nk

y i , j

▲ E=∑
i=1

k

∑
j=1

nk

( y i , j−μ̂i )( yi , j−μ̂i)
T
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▲ H=∑
i=1

k

ni (μ̂−μ̂i)(μ̂−μ̂i )
T

► The k-sample tests for equality of location parameters test the following hypothesis:

{H 0 :μ1=...=μk

H A:∃i≠ jμi≠μ j
}

► According to the assumptions, matrix E and matrix H are independent and 
distributed through the Wishart distribution in the following way:

▲ Independent from H 0 : E∼W p(Σ ,νE)

▲ Under H 0 : H∼W p(Σ , νH )

▲ With the following degrees of freedom:
νE=N−k ,
νH=k−1

► Under H A , matrix H is distributed through the non-central Wishart distribution.

► The tests for the H_0 hypothesis and the H_A hypothesis are:

▲ Wilks' test

▲ Roy's test

▲ Pillai's test

▲ Hotelling's test

These tests are based on matrix H and matrix E. The test statistics can be 
expressed in terms of the eigenvalues and eigenvectors of matrix A.

Matrix A is defined as follows:

A=E−1 H
► To ensure numerical stability, the eigenproblem of matrix A

(A−λi I )q i=0
is reformulated to a generalized eigenproblem of matrix H and matrix E
(E−1 H−λi I )qi=0⇔(H−λ i E )qi=0

► The solution of the generalized eigenproblem is represented in the following way:
λ1⩾...⩾λ p

 

Wilks' test
Wilks' lambda distribution Λ  is defined as follows:

Λ=
∣E∣

∣H+E∣
=∏

i=1

p
1

1+λ i

Under the null hypothesis ( H 0 ), the test statistics follow Wilks' lambda distribution:

Λ∼Λ( p ,νE ,νH )

You can compute Wilks' lambda distribution by using the following schemes:

► Bartlett's approximation
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► Rao's F approximation

► Exact F-distribution when constraints concerning p ,νE ,νH  are met.

For the description of approximation schemes, the following notation is used:

f =νE−
p−νH+1

2

For the different approximation schemes, the following notations are used: 

► Bartlett's approximation
− f log(Λ ( p ,νE ,νH ))∼χ

2
[ p νH ]

The degree of accuracy of three decimal places for the approximation is reached when

p2
+νH

2
⩽
1
3

f

Tip: Use Bartlett's approximation instead of Rao's F approximation if this degree of accuracy is 
reached, given that neither p nor νH are equal 1 or 2.

► Rao's F approximation

d={√ ( p νH )
2
−4

p2
+νH

2
−5

if p2
+νH

2
−5≠0

1 otherwise
}

λ=
p νH−2

4
The asymptotic distribution of Λ( p , νE , νH ) can be expressed as follows:

(
1−d√Λ( p ,νE ,νH )

d√Λ( p ,νE , νH )
)(

f d−2 λ
p νH

)∼F ( p νH , f d−2 λ)

When p2
+νH

2
−5=0⇔ p νH=2 or νH= p=1 , the expression is reduced to the exact 

distribution. If p = 1, or if  p = 2, or if νH = 1, or if νH = 2, the following numerical 
simplifications are made:

Roy's test
The test statistics is defined as follows:
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θ=
λ1

1+λ1

However, because the approximations of the θ distriution are not satisfactory, the upper bound 
on the distribution of λ1 is considered instead.

Let d=max ( p ,νH ) under H 0 be F upper=
(νE−d−1)λ1

d
∼F [d ,νE−d−1] , where 

F upper is a conservative approximation. That means, if H 0 is accepted by using 
F upper , the exact test that is based on θ , would also accept H 0 .

Pillai's test
The following notation is used:

s=min(νH , p)

m=
1
2
(∣νH− p∣−1)

M=
1
2
(νE−p−1)

The test statistics is defined as follows:

V= trace[(E+H )−1 H ]=∑
i=1

s λi

1+λ i

The approximate distribution under H 0 is as follows:

(2M+s+1)V
(2m+s+1)(s−V )

∼F [s (2m+s+1) , s (2M+s+1)]

Hotelling's test
The following notation is used:

s=min(νH , p )
a= p νH

B=
(νE+νH− p−1)(νE−1)

(νE−p−3)(νE− p)

b=4+
a+2
B−1

c=
a (b−2)

b (νE− p−1)

The test statistics is defined as follows:

U=trace [E−1 H ]=∑
i=1

s

λ i

The approximate distribution under H 0 is as follows:
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U
c
∼F [a , b]

When νH=1 (two sample comparison), the test statistic distribution is reduced to the exact 
Hotelling distribution. You can transform the Hotelling distribution to the F distribution by using the 
following algorithm:

νE− p+1

p
U∼F [ p ,νE− p+1]

Principal Component Analysis
Principal component analysis (PCA) is an analytical procedure based on an orthogonal linear data 
transformation to a new representation space. It can be thought of as replacing the original 
attributes by new attributes, called principal components, which correspond to the directions in the 
original attribute space exhibiting the greatest variance. The number of principal components used is 
at most equal to the number of original attributes, but it is often considerably less, since one of 
common motivations behind PCA is dimensionality reduction.

Principle component analysis, being strongly based on linear algebra calculations, can be directly 
applied to numerical data only. Data sets containing discrete attributes need to undergo 
preprocessing that numerically encodes their discrete values. With all attributes being continuous, 
the data set D  can represented by a matrix A , with rows corresponding to n  attributes and 
columns corresponding to ∣D∣  instances (this is a typical convention adopted for PCA, although it is 
not consistent with the view of data sets as tables with rows representing instances and column 
representing attributes). Principal component analysis involves the following major operations 
performed on such a data matrix:

► calculating row means u [ i ]  for i=1,2, , n  that is, attribute value means for each attribute, 
based on its values for all instances)

► calculating the deviations of data matrix elements from the row means, B [i , j ]=A[i , j ]−u [i ]

► calculating the covariance matrix C=
1
∣D∣

B⋅BT

► calculating the eigenvectors and eigenvalues of the unbiased covariance matrix estimator such 
that V−1

⋅C⋅V=E , where V  is the matrix of eigenvectors and E  is the diagonal matrix of 
eigenvalues of C

► sorting the columns of the V  and E  matrices in the decreasing order of eigenvalues

► (optionally) trimming the V  and E  matrices to a selected number of highest eigenvalues and 
the corresponding eigenvectors, to be used as basis vectors for a new representation space

► finding projection to the selected eigenvectors

The obtained eigenvectors – which are the principal components that were looked for – can be 
considered transformed attribute value vectors in a new representation space (also called feature 
vectors). If not all eigenvectors are selected, this results in dimensionality reduction. 

Corresponding eigenvectors and eigenvalues could also be computed using Singular Value 
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Decomposition algorithm, which provides a more stable but significantly slower and much more 
memory-consuming alternative to the procedure presented above.

PCA can be considered an advanced data exploration algorithm used to find patterns in the data and 
identify a transformed data representation that highlights this patterns. Whereas simple data 
exploration algorithms may be sufficient for exploring single attributes or pairs of attributes, the 
utility of PCA most clearly manifests itself for multidimensional data (with several attributes), where 
these simple algorithms are not sufficient. If the analyzed data set does indeed exhibit strong 
patterns, the new representation obtained using PCA can be considerably compressed by 
dimensionality reduction, without a significant information loss. This makes it possible to also 
consider PCA a powerful data transformation technique that can be applied prior to further analytical 
work. Areas where this technique has proven particularly useful are those where high-dimensional 
data sets are encountered, including text mining, image analysis, biological data analysis, customer 
preference and taste analysis (collaborative filtering), etc.

Available Functionality 

The following distribution description algorithms are available: 

► moments— the MOMENTS stored procedure is used for calculating distribution moments and 
related summary statistics for continuous attributes, such as mean, variance, standard deviation, 
skewness, excess kurtosis, minimum, and maximum. 

► quantiles— the QUANTILE, QUARTILE, and MEDIAN stored procedures are used for calculating 
distribution quantiles and related summary statistics for continuous attributes.

► outlier detection—the OUTLIERS stored procedure is used for detecting outlying values of 
continuous attributes based on quartiles.

► frequency table—the UNITABLE and BITABLE stored procedures are used for calculating 
univariate (for single attributes) and bivariate (for attribute pairs) frequency tables, showing 
distinct attribute value occurrence counts). 

► histogram—the HISTOGRAM stored procedure is used for calculating histograms for continuous 
attributes (occurrence counts per intervals). 

The following relationship identification algorithms are available: 

► Pearson’s correlation—the CORR stored procedure is used for calculating Pearson’s linear 
correlation for a pair of continuous attributes. 

► Spearman’s correlation—the SPEARMAN_CORR stored procedure is used for calculating 
Spearman’s rank correlation for a pair of continuous attributes. 

► covariance—the COV and COVARIANCEMATRIX stored procedures are used for calculating the 
covariance of a pair of continuous attributes and the covariance matrix for two sets of 
continuous attributes. 

► mutual information—the MUTUALINFO stored procedure is used for calculating the mutual 
information for a pair of discrete attributes. Note that the mutual information is a concept 
related to the entropy – see the stored procedures for ENTROPY, JOINTENTROPY, and 
CONDENTROPY. 
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► chi-square test—the CHISQ_TEST stored procedure is used for performing Pearson's 2  test for 
independence for a pair of discrete attributes.

► t -test—the T_ME_TEST, T_UMD_TEST, T_PMD_TEST, and T_LS_TEST stored procedures are 
used for performing Student’s t -test for a single continuous attribute (a single mean), for a 
single continuous attribute in two subgroups (two means, unpaired), for two continuous 
attributes (two means, paired), and for a linear regression slope.

► Mann-Whitney-Wilcoxon test—the MWW_TEST stored procedure is used for performing the 
Mann-Whitney-Wilcoxon non-parametric test for a continuous attribute in two subgroups 
(unpaired). 

► Wilcoxon test—the WILCOXON_TEST stored procedure is used for performing the Wilcoxon non-
parametric test for two continuous attributes (paired). 

► canonical correlation—the CANONICAL_CORR stored procedure is used for calculating the 
canonical correlation for two sets of continuous attributes. 

► one-way ANOVA—the ANOVA_CRD_TEST and ANOVA_RBD_TEST stored procedures are used for 
performing the analysis of variance test for a continuous attribute in multiple groups, using 
either:

▲ the completely randomized design, with two specified attributes—one discrete attribute 
representing the treatment or grouping, and one continuous attribute representing the 
effect of treatments. 

▲ the randomized block design with an additional specified discrete attribute representing the 
blocks.

► MANOVA—the MANOVA_ONE_WAY_TEST and MANOVA_TWO_WAY_TEST stored procedures 
test the multivariate analysis of variance for different groups of input data with two or more 
dependent variables. 
These stored procedures use one of the following designs:

▲ Completely randomized design, with two specified attributes—one discrete attribute that 
represents the treatment or grouping, and one continuous attribute that represents the 
effect of treatments. 

▲ Randomized block design with an additional specified discrete attribute that represents the 
blocks.  

All procedures that perform statistical tests adopt the convention of presenting the cumulative 
distribution value of the test statistic on output instead of the p -value. This approach has the 
advantage of indicating whether the obtained test statistic appeared unlikely low or unlikely high 
according to the distribution assuming the null hypothesis, whenever rejecting the null hypothesis is 
recommended. The calculated cumulative distribution value for the test statistic is also referred to as 
the percentage point. 

Examples of Algorithm Functionality

In this section, the functionality of each algorithm is illustrated with examples. Note that the Netezza 
implementations have been optimized to work with large data sets, which in some cases requires 
using approximation techniques that may produce slightly different results for medium or small data 
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sets. 

Moments Example
The following stored procedure call demonstrates how to calculate moments for the continuous age 
attribute in the CensusIncome data set: 

CALL nza..MOMENTS('intable=nza..CensusIncome, incolumn=age, 
outtable=ci_m_age'); 

The specified output table ci_m_age contains a single row with the following fields:: 

► columnname—the attribute name 

► countt—the number of instances on which the moments calculation is based 

► average—the mean value of the specified attribute 

► variance—the variance of the specified attribute 

► skewness—the skewness of the specified attribute 

► kurtosis—the kurtosis excess of the specified attribute 

► stdev—the standard deviation of the specified attribute 

► minimum—the minimum value of the specified attribute 

► maximum—the maximum value of the specified attribute 

Examining the output from 

SELECT * FROM ci_m_age; 

reveals that the age attribute ranges from 0 to 90 years, with a mean value of about 34.5 and 
standard deviation of about 22. The distribution has a noticeably longer right tail with a skewness of 
about 0.37 and is considerably less peaked than normal with a kurtosis of about −0.73. 

The same calculation can be repeated in subgroups determined by another attribute. The following 
example uses the income attribute to split the moments calculation into two groups: 

CALL nza..MOMENTS('intable=nza..CensusIncome, incolumn=age, by=income, 
outtable=ci_m_age_income'); 

The output table has the same structure as the previous example with an additional column named 
as the grouping attribute, and contains one row for each distinct value. The remaining fields contain 
the same statistics as described above, calculated separately within groups. Examining its contents 
using 

SELECT * FROM ci_m_age_income; 

reveals considerable differences of age distribution in the high-income and low-income groups. The 
high-income group contains people that are older on the average, but with less age standard 
deviation and a more peaky (concentrated around the mean) age distribution. 

When analyzing data sets with many attributes, it may be inconvenient to issue a separate call and 
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inspect a separate output table to get a distribution description for each attribute. In these cases, the 
SUMMARY1000 procedure is useful. It is capable of generating the same descriptive statistics for up 
to 1000 attributes in one call, as demonstrated below: 

CALL nza..SUMMARY1000('intable=nza..CensusIncome,
                       Vaincolumn=age;
                       wage_per_hour;
                       capital_gains;
                       capital_losses;
                       dividends_from_stocks;
                       num_persons_worked_for_employer;
                       weeks_worked_in_year,
                       outtable=ci_m_continuous'); 

The above call requests distribution description statistics be calculated for all continuous attributes in 
the CensusIncome data set by specifying them via the incolumn argument (if not specified, all 
attributes will be considered). The resulting output table contains one row for each input attribute 
and the following columns: 

► columnname—the attribute name 

► columnid—the ordinal attribute identification number 

► countt—the number of instances on which the calculation is based 

► average—the mean value of the corresponding attribute 

► variance—the variance of the corresponding attribute 

► stdev—the standard deviation of the corresponding attribute,

► skewness—the skewness of the corresponding attribute 

► kurtosis—the kurtosis excess of the corresponding attribute 

► minimum—the minimum value of the corresponding attribute 

► maximum—the maximum value of the corresponding attribute 

► nonmissingcases – the number of instances on which the calculation is based

► missing – the number of instances for which the value of the attribute is missing

► distinctvalues – in case of nominal attributes – the number of distinct values

►  mostfrequentvalue - in case of nominal attributes – the value that was most frequent (or 
among the most frequent) 

► mostfrequentcases- in case of nominal attributes – the count of instances for which the above 
value is the attribute value. 

You can omit the incolumn argument, in which case all the columns will be summarized (provided 
they are fewer than 1000). For example: 

CALL nza..SUMMARY1000('intable=nza..CensusIncome, outtable=ci_m_all');

As for moments, you can also call the procedure with the by parameter.

CALL nza..SUMMARY1000('intable=nza..CensusIncome, outtable=ci_m_allby, 
by=income');
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Using Select * from ci_m_allby will show you the result of this procedure. 

Quantiles Example
To calculate a single quantile value of specified order use the following call: 

CALL nza..QUANTILE('intable=CensusIncome, incolumn=age, quantiles=0.25')

It returns the 0.25 order quantile, also referred to as the 1st quartile, of the age attribute. Multiple 
quantiles for the same attribute can be calculated in one call by specifying more than one value in a 
semicolon-separated list: 

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, quantiles=0.0; 
0.25; 0.5; 0.75; 1.0, outtable=ci_age_q'); 

This calculates the 0, 0.25, 0.5, 0.75, and 1 order quantiles or the minimum, the 1st quartile, the 2nd 
quartile (median), the 3rd quartile, and the maximum, and stores the values in the specified output 
table ci_age_q. The table contains one row per quantile and two columns: 

► p—the quantile order, 

► value—the quantile value. 

Examining the received contents using 

SELECT * FROM ci_age_q; 

reveals that the age attribute is within the range from 0 to 90, which corresponds to the moments 
example, with the 1st quartile equal to 15, the median equal to 33, and the 3rd quartile equal to 50. 

While the QUANTILE procedure demonstrated above calculates quantiles of arbitrary orders in the 
[0,1]  interval, there are separate procedures to handle the most common special cases. To calculate 

the 1st, 2nd, or 3rd quartile use the QUARTILE procedure, as in the following example: 

CALL nza..QUARTILE('intable=nza..CensusIncome, incolumn=age, quartile=3'); 

This call returns the requested 3rd quartile of the age attribute and is equivalent to: 

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, 
quantiles=0.75'); 

Similarly, the MEDIAN procedure returns the median, as demonstrated below: 

CALL nza..MEDIAN('intable=nza..CensusIncome, incolumn=age'); 

which is equivalent to the following calls of QUARTILE or QUANTILE: 

CALL nza..QUARTILE('intable=nza..CensusIncome, incolumn=age, quartile=2'); 

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, quantiles=0.5');

with respect to the calculated values, but uses a different specialized algorithm optimized for large 
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data sets. The MEDIAN procedure is not recommended for input tables with less than millions of 
rows, for which the general quantile/quartile algorithm may perform better.

Note that if a single quantile is to be calculated, the value is returned and no output table is created.

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, 
                    quantiles=0.25, outtable=test');

QUANTILE
----------
       15 
(1 row)

To calculate several quantiles at once, separate the quantile values with semicolons. The quantile 
values are returned in the output table and the number returned by QUANTILE function indicates a 
number of quantiles computed.

CALL nza..QUANTILE('intable=nza..CensusIncome, incolumn=age, 
                    quantiles=0.25;0.75, outtable=test');

QUANTILE 
----------
       2 
(1 row)

SELECT * FROM test;

  P   | VALUE
------+-------
 0.75 |    50 
 0.25 |    15 
(2 rows)

Outlier Detection Example
The following stored procedure call performs outlier detection for the age attribute of the 
CensusIncome data set: 

CALL nza..OUTLIERS('intable=nza..CensusIncome, incolumn=age, 
outtable=ci_age_out'); 

The output table contains a single column containing the values of the input attribute that fall 
outside the non-outlying range, which is below the 1st quartile or above the 3rd quartile by more 
than the inter-quartile range multiplied by a coefficient that defaults to 1.5. The multiplier value can 
be set to a different value via the multiplier argument to change the aggressiveness of outlier 
detection. In the sample data, the above call found no outliers, so using the following modified call 
demonstrates a more aggressive attempt by using multiplier=1: 

CALL nza..OUTLIERS('intable=nza..CensusIncome, incolumn=age, multiplier=1, 
outtable=ci_age_out1'); 
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Examining the contents of the output table: 

SELECT * FROM ci_age_out1 ORDER BY 1; 

reveals that age values above 85 are identified as outlying. 

Frequency Table Example
The following call demonstrates how to create a frequency table for a single discrete attribute, using 
the example of the education attribute in the CensusIncome data set: 

CALL nza..UNITABLE('intable=nza..CensusIncome, incolumn=education, 
outtable=ci_education_ft'); 

The output table contains the following columns: 

► education—distinct values of the education attribute specified as the input attribute; note that 
in normal usage, the column is named after the input attribute 

► count—the number of occurrences or absolute frequency of each value 

► freq—the relative frequency percentage of each value 

► cum—the cumulative percentage of each value, if ordered lexicographically 

Examining the output for the education attribute using 

SELECT * FROM ci_education_ft ORDER BY 1; 

reveals that 3.3% of the population have Masters degrees, 0.6% have Ph.D. degrees, and 23.8% are 
children. Further, those with 10th grade, 11th grade, and 12th grade education with no diploma 
account for 8.3%. 

To examine the distribution of education within subgroups corresponding to different income classes, 
a bivariate frequency table can be created as follows: 

CALL nza..BITABLE('intable=nza..CensusIncome, incolumn=income:x; education:y, 
outtable=ci_education_income_ft'); 

The output table contains columns corresponding to the two specified input attributes, containing all 
distinct combinations of their values, and a count column with the number of occurrences of each 
combination. It can be inspected as demonstrated below: 

SELECT * FROM ci_education_income_ft order by 1, 2; 

The same output can be produced by: 

SELECT income, education, count(*) 
FROM CensusIncome 
GROUP BY income, education 
ORDER BY income, education; 
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Histogram Example
Previous examples revealed a wealth of information about the distribution of the age attribute in the 
CensusIncome data set, but a histogram can give a much more detailed picture. The following 
example shows how it can be created: 

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age, 
outtable=ci_age_hist1'); 

The output table contains the following columns: 

► idx—the interval number 

► bleft—the left interval bound 

► bright—the right interval bound 

► counts—the number of instances with the value of the input attribute in the corresponding 
interval 

By default, intervals are right-closed, but this can be changed by specifying the right=FALSE 
argument. To examine the histogram data issue the following query: 

SELECT * FROM ci_age_hist1 ORDER BY 1; 

The above call runs the HIST procedure in automatic mode, so the number of equal-width intervals 
are determined automatically. For certain instances, however, it might be useful to explicitly specify 
the number of intervals:

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age, nbreaks=5, 
outtable=ci_age_hist2'); 

or even specify breaks to make the resulting intervals more meaningful: 

CREATE TABLE CensusIncome_age_breaks (break integer); 
INSERT INTO CensusIncome_age_breaks VALUES (0); 
INSERT INTO CensusIncome_age_breaks VALUES (5); 
INSERT INTO CensusIncome_age_breaks VALUES (12); 
INSERT INTO CensusIncome_age_breaks VALUES (18); 
INSERT INTO CensusIncome_age_breaks VALUES (25); 
INSERT INTO CensusIncome_age_breaks VALUES (35); 
INSERT INTO CensusIncome_age_breaks VALUES (50); 
INSERT INTO CensusIncome_age_breaks VALUES (65); 
INSERT INTO CensusIncome_age_breaks VALUES (80); 
INSERT INTO CensusIncome_age_breaks VALUES (90); 

CALL nza..HIST('intable=nza..CensusIncome, incolumn=age, 
btable=CensusIncome_age_breaks, bcolumn=break, outtable=ci_age_hist3'); 

When explicitly specifying histogram breaks, ensure they span the entire range of the attribute. 
Examining the output from: 

SELECT * FROM ci_age_hist3 ORDER BY 1; 

reveals a sufficiently detailed, but easily comprehended description of the distribution of the age 
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attribute. 

Pearson’s Correlation Example
The example call below illustrates how to measure the relationship between the alcohol and quality 
attributes in the WineQuality data set using Pearson’s correlation coefficient: 

CALL nza..CORR('intable=nza..WineQuality, incolumn=alcohol; quality'); 

The resulting value of about 0.44 indicates there is a linear relationship—albeit weak—between the 
two attributes, with more alcohol tending to give better quality. 

The correlation can be also calculated in subgroups determined by the values of a selected grouping 
attribute. Use the income attribute for grouping in the CensusIncome data set, and find the 
correlation between the age and wage_per_hour attributes: 

CALL nza..CORR('intable=nza..CensusIncome, incolumn=age; wage_per_hour, 
by=income, outtable=ci_corP_age_wage_per_hour_income'); 

This time an output table must be created, containing one column with correlation values, one 
column with distinct values of the selected grouping attribute, and one row for each of them. 
Inspecting the contents using 

SELECT * FROM ci_corP_age_wage_per_hour_income; 

verifies that there is no linear relationship between the age and wage_per_hour attributes both in 
high-income and low-income groups. 

You can compute a correlation matrix for two sets of attributes (computing in groups via the by 
parameter is also possible):

CALL nza..CORRELATION1000MATRIX('intable=nza..WineQuality, 
incolumn=fixed_acidity| volatile_acidity| citric_acid| residualsugar:X; 
density| pH| alcohol:Y, outtable=wq_cormat');

SELECT * from wq_cormat;

You can compute a list of correlations for a list of pairs (computing in groups via the by parameter is 
also possible):

CALL nza..CORRELATION500PAIRS('intable=nza..WineQuality, 
incolumn=fixed_acidity:volatile_acidity; citric_acid: residualsugar; density: 
pH; alcohol: fixed_acidity:, outtable=wq_corlst');

SELECT * from wq_corlst;

Spearman’s Correlation Example
The following call requests that Spearman’s rank correlation be calculated for the same pair of 
attributes, alcohol and quality, from the WineQuality data set: 
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CALL nza..SPEARMAN_CORR('intable=nza..WineQuality, incolumn=alcohol; 
quality');

The returned value is marginally greater than for Pearson’s correlation. 

CALL nza..SPEARMAN_CORR_S('intable=nza..WineQuality, incolumn=alcohol; 
quality');

It shows more information (percentage point, t-statistics and degrees of freedom).

Covariance Example
To calculate the covariance between the alcohol and quality attributes on the WineQuality data set 
one can issue the following call: 

CALL nza..COV('intable=nza..WineQuality, incolumn=alcohol; quality'); 

As with linear correlation, the covariance can be calculated in subgroups determined by the values of 
a specified grouping attribute. You can demonstrate this capability on the CensusIncome data set, 
using the income attribute for grouping and looking for the covariance of the age and 
wage_per_hour attributes: 

CALL nza..COV('intable=nza..CensusIncome, incolumn=age; wage_per_hour, 
by=income, outtable=ci_cov_age_wage_per_hour_income'); 

SELECT * FROM ci_cov_age_wage_per_hour_income; 

The output table contains only one column, COVARIANCE, containing the covariance value for each 
value of the specified grouping attribute. 

The covariance matrix for two sets of continuous attributes can be calculated as demonstrated by the 
following call: 

CALL nza..COVARIANCE1000MATRIX('intable=nza..WineQuality, 
incolumn=fixed_acidity| volatile_acidity| citric_acid| residualsugar:X; 
density| pH| alcohol:Y, outtable=wq_covmat');

SELECT * from wq_covmat;

This calculates the covariances for attribute pairs from the two specified attribute sets on the 
WineQuality data set. 

Note that computing in groups via the by parameter is also possible. 

You may compute a list of covariances for a list of pairs (the by parameter is also possible here). 

CALL nza..COVARIANCE500PAIRS('intable=nza..WineQuality, 
incolumn=fixed_acidity:volatile_acidity; citric_acid: residualsugar; density: 
pH; alcohol: fixed_acidity:, outtable=wq_covlst');

SELECT * from wq_covlst;
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Mutual Information Example
Mutual information can be used to measure the degree of relationship between the education and 
income discrete attributes on the CensusIncome data set as follows: 

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=education; 
income'); 

It can also be used for the sex and income attributes: 

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=sex; income'); 

The much lower result in the second example indicates that income is more strongly related to 
education than to gender. You can also examine the relationship between the education and sex 
attributes in subgroups corresponding to income levels: 

CALL nza..MUTUALINFO('intable=nza..CensusIncome, incolumn=education; sex, 
by=income, outtable=ci_mi_education_sex_income'); 

Select * FROM ci_mi_education_sex_income; 

The output table contains one row for each distinct value of the grouping value, containing the 
mutual information value within the corresponding group. In this instance, relationship appears to be 
weak in both groups. 

Conditional Entropy Example
A call computing the entropy of sex attributed:

CALL nza..entropy('intable=nza..CensusIncome, incolumn=sex');

being close to 1 reveals that both men and women are equally represented in the data.

The joint entropy of sex and income:

CALL nza..joint_entropy('intable=nza..CensusIncome, incolumn=sex;income');

is quite close to the sum of entropies for sex and for income so that it is no wonder that conditional 
entropy of income on sex 

CALL nza..cond_entropy('intable=nza..CensusIncome, incolumn=sex:X;income:Y');

is nearly identical with that for income, meaning sex has no significant impact of income.

Chi-Square Test Example
The following call demonstrates how to verify the significance of the relationship between the 
education and sex attributes on the CensusIncome data set using the χ 2 test: 

CALL nza..CHISQ_TEST('intable=nza..CensusIncome, incolumn=education; sex, 
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outtable=ci_chi2_education_sex'); 

SELECT * FROM ci_chi2_education_sex; 

The output table contains a single row with the value of the 2  statistic, the number of its degrees 
of freedom, and the corresponding value of the 2  cumulative distribution function value shown in 
the percentage column. If close to 1, this value justifies rejecting the null hypothesis. The obtained 
value of nearly 1 indicates the relationship between the attributes is statistically significant. The same 
calculation can be also repeated separately in the two different income groups: 

CALL nza..CHISQ_TEST('intable=nza..CensusIncome, incolumn=education; sex, 
by=income, outtable=ci_chi2_education_sex_income'); 

SELECT * FROM ci_chi2_education_sex_income; 

The results show that, while statistically significant in both groups, the relationship between 
education and gender is more prominent in the low-income group. 

Note that computing in groups via the by parameter is also possible here. 

t-Test Example
The following call demonstrates how to apply the t -test for a single mean to verify the null 
hypothesis that the mean value of the WineQuality data set quality attribute is 5: 

CALL nza..T_ME_TEST('intable=nza..WineQuality, incolumn=quality, mean=5, 
outtable=wq_t_quality_5'); 

SELECT * FROM wq_t_quality_5; 

The output table contains the test’s cumulative distribution function value (in the percentage 
column), the t statistic value, and the number of degrees of freedom. If the cumulative distribution 
function value is close to 0, for example, values of 0.05 or less, it justifies rejecting the null hypothesis 
of the true population mean being equal the specified value and recommends an alternative 
hypothesis of the true population mean being less than the specified value. If it is close to 1, for 
example, 0.95 or greater, it justifies rejecting the null hypothesis of the true population mean being 
equal to the specified value and recommends an alternative hypothesis of the true population mean 
being greater than the specified value. In this example, the returned value of nearly 1 suggests the 
true mean wine quality exceeds 0.5. 

The same test can be applied to verify the null hypothesis of the mean value of the 
weeks_worked_in_year in the population being equal 24 based on the CensusIncome data set: 

CALL nza..T_ME_TEST('intable=nza..CensusIncome, 
incolumn=weeks_worked_in_year, mean=24, 
outtable=ci_t_weeks_worked_in_year_24'); 

SELECT * FROM ci_t_weeks_worked_in_year_24; 
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The percentage column in the output table contains a cumulative distribution value of near 0 for the 
test statistic, which suggests that the true mean differs significantly from and is less than 24. The 
same hypothesis can be also verified in different income groups by specifying the by argument 
appropriately: 

CALL nza..T_ME_TEST('intable=nza..CensusIncome, 
incolumn=weeks_worked_in_year, mean=24, by=income, 
outtable=ci_t_weeks_worked_in_year_24_income'); 

SELECT * FROM ci_t_weeks_worked_in_year_24_income; 

As you can see, whereas the true mean is below 24 in the low-income group, it exceeds 24 in the 
high-income group. To further explore the dependence between the weeks_worked_in_year and 
income attributes, you can apply the unpaired t -test for two means to verify the null hypothesis 
that the true means of the former differ in the subpopulations determined by the latter as follows: 

CALL nza..T_UMD_TEST('intable=nza..CensusIncome, 
incolumn=weeks_worked_in_year, class=income, class1="50000+.", class2="-
50000.", outtable=ci_t_weeks_worked_in_year_income'); 

SELECT * FROM ci_t_weeks_worked_in_year_income; 

The percentage value of 1 indicates a statistically significant difference, with the mean value in the 
high-income group greater than in the low-income group. The same can be repeated for the 
wage_per_hour attribute: 

CALL nza..T_UMD_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour, 
class=income, class1="50000+.", class2="-50000.", 
outtable=ci_t_wage_per_hour_income'); 

SELECT * FROM ci_t_wage_per_hour_income; 

Here, too, the mean value in the high-income group is confirmed to be significantly greater than in 
the low-income group. 

The attribute used to split the data set into two groups does not have to be binary as long as you only 
consider instances with two different values. The following example demonstrates how the same 
unpaired t -test can be used to examine whether the mean value of the wage_per_hour attribute 
differs significantly between never married and divorced individuals, which are represented by 2 out 
of 7 possible values of the marital_status attribute: 

CALL nza..T_UMD_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour, 
class=marital_status, class1="Never married", class2=”Divorced”, 
outtable=ci_t_wage_per_hour_marital_status'); 

SELECT * FROM ci_t_wage_per_hour_marital_status; 

The percentage value near 0 indicates that the mean wage per hour value in the never married group is below 
that of the divorced group. 
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The following call demonstrates the regression line slope version of the t -test, applied to verify the 
null hypothesis that the alcohol and quality attributes are linearly related with a regression line 
slope of 5. 

CALL nza..T_LS_TEST('intable=nza..WineQuality, incolumn=alcohol:X; quality:Y, 
slope=5, outtable=wq_t_ls_alcohol_quality'); 

SELECT * FROM wq_t_ls_alcohol_quality; 

The obtained percentage value is well below 0.01, providing sufficient justification to reject the null 
hypothesis and indicates that the true regression line slope is less than the one specified via the 
slope parameter. 

Note that computing in groups via the by parameter is also possible here.

Mann-Whitney-Wilcoxon Test Example
To demonstrate the Mann-Whitney-Wilcoxon test, follow the same scenario as for the unpaired t -
test, which is its non-parametric counterpart. Start by verifying whether the weeks_worked_in_year 
attribute differs significantly between the two income groups: 

CALL nza..MWW_TEST('intable=nza..CensusIncome, incolumn=weeks_worked_in_year, 
class=income'); 

The procedure returns a string (VARCHAR object) containing:

► the values of the test statistic, tagged uStat 

► the parameters of the normal approximation of its distribution

► the corresponding cumulative distribution function value, a percentage, tagged pp 

The corresponding cumulative distribution function value is nearly 1, indicating a statistically 
significant difference, with the values in the high income group usually greater than in the low-
income group. The same can be repeated for the wage_per_hour attribute: 

CALL nza..MWW_TEST('intable=nza..CensusIncome, incolumn=wage_per_hour, 
class=income'); 

Again, the mean value in the high-income group is confirmed to be significantly greater than in the 
low-income group. 

Canonical Correlation Example
The following call demonstrates the usage of canonical correlation to find relationships between two 
sets of attributes of the WineQuality data set, one containing the fixed_acidity, volatile_acidity, 
citric_acid, and residualsugar attributes and the other containing the density, pH, and alcohol 
attributes: 

CALL nza..CANONICAL_CORR('intable=nza..WineQuality, incolumn=fixed_acidity:X; 
volatile_acidity:X; citric_acid:X; residualsugar:X; density:Y; pH:Y; 
alcohol:Y, outtable=wq_cancor'); 
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SELECT * FROM wq_cancor; 

The resulting output table contains a single row and a single column. The calculated results are 
presented in text form, and contain the highest achieved correlation value between canonical 
variates along with the corresponding canonical coefficient for the two specified sets of input 
attributes. The correlation of about 0.95 obtained in this example indicates the two sets of attributes 
in the WineQuality data set are closely related. 

One-Way ANOVA Example
To illustrate the one-way ANOVA algorithm, use a modified version of the WineQuality data set. 
Assume the alcohol attribute represents the treatment applied to wines, and the quality attribute 
represents the observed effect. To make it possible, the alcohol attribute is discretized using the 
equal-frequency algorithm into four intervals as follows: 

CALL nza..EFDISC('intable=nza..WineQuality, outtable=wq_efd, binprec=1, 
incolumn=alcohol:4'); 

CALL nza..APPLY_DISC('intable=nza..WineQuality, btable=wq_efd, 
outtable=WineQuality4, replace=TRUE'); 

To use the discretized alcohol attribute as the treatment, each of the values must have the same 
occurrence count, which is a theoretical application condition for the completely randomized design 
ANOVA. This is not strictly achieved by equal-frequency discretization. In this instance, it is enforced 
as follows:

CREATE TABLE WineQuality4s AS
(SELECT * FROM WineQuality4 WHERE alcohol=1 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=2 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=3 LIMIT 1100)
UNION
(SELECT * FROM WineQuality4 WHERE alcohol=4 LIMIT 1100);

Using the resulting data set, the completely randomized design of the one-way ANOVA test can be 
used: 

CALL nza..ANOVA_CRD_TEST('intable=WineQuality4s, incolumn=quality, 
treatment=alcohol');

The procedure returns a text string containing the full set of calculated quantities, including the value 
of the F -test statistic and the corresponding cumulative distribution function value, which is nearly 
1 in this example, indicating a significant relationship between the alcohol contents and the quality. 

You may want to look at several attributes, not just the quality attribute, at the same time.

CALL nza..ANOVA_CRD_TEST('intable=WineQuality4s, 
incolumn=quality;volatile_acidity ; citric_acid , treatment=alcohol,outtable 
= wqan');
As there will be more output rows now, you need to have an output table. By inspecting it, we see 
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that the alcohol differentiates not only the quality, but also other attributes like citric_acid or 
volatile_acidity. 

Manova Example
The MANOVA_ONE_WAY_TEST and MANOVA_TWO_WAY_TEST stored procedures have the following 
syntax:

CALL nza..MANOVA_ONE_WAY_TEST(NVARCHAR(ANY) paramString)
CALL nza..MANOVA_TWO_WAY_TEST(NVARCHAR(ANY) paramString)

Parameters are:

► paramString—input parameters specification
Type: NVARCHAR(ANY) 

► intable— the input table name
Type: NVARCHAR(ANY)

► outtable— the output table name
Type: NVARCHAR(ANY)

► factor1—the input table column that identifies a first factor
Type: NVARCHAR(ANY) 

► factor2—the input table column that identifies a second factor
For MANOVA_TWO_WAY_TEST only
Type: NVARCHAR(ANY) 

► incolumn—the input table observation columns, separated by a semicolon (;)
Type: NVARCHAR(ANY)

► by—the input table column that splits the table into subtables,  separated by a semicolon (;)
Type: NVARCHAR(ANY)

► type—columns (traditional) or trcv (task/row/column/value, where row is the default value)
Type: NVARCHAR(ANY)

► id—the input table column that uniquely identifies records
Type: NVARCHAR(ANY)

A string that confirms the execution of the process is returned. The output is contained in the output 
table of type TEXT.

To illustrate the MANOVA algorithm, the WineQuality data set is used. This data set examines how 
the pH value, the chlorides, and the density of the wine influence the wine quality.

In the example, the input table is converted to row-column-value (RCV) format, and then a MANOVA 
one-way stored procedure is called. The result is printed by calling the 
PRINT_MANOVA_ONE_WAY_TEST stored procedure. The resulting table shows the pH-values and the 
significance for the Wilks' test, the Roy's test, the Pillai's test, and the Hotelling's test.

CALL nza..COL2TRCV_MANOVA_ONE_WAY_TEST('intable=nza..winequality, 
incolumn=ph;chlorides;density,id=id, factor1=quality, outtable=trcv1');
CALL nza..MANOVA_ONE_WAY_TEST('intable=trcv1,  outtable=res_1');
CALL nza..PRINT_MANOVA_ONE_WAY_TEST('intable=res_1');
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Principal Component Analysis Example
To demonstrate the creation and application of Principal Component Analysis model this example 
uses the WineQuality data set: 

CALL nza..PCA('intable=nza..WineQuality, model=wq_pca, id=id, scaleData=TRUE, 
centerData=TRUE, forceEigensolve=FALSE');

To apply the model (project the data into the space spanned by the selected number of principal 
components of the corresponding dimensionality) the following call should be used: 

CALL nza..PROJECT_PCA('intable=nza..WineQuality, model=wq_pca, id=id, 
outtable=wq_proj4, pcNumber=4');
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C H A P T E R  7
Tree-Shaped Bayesian Networks 

Tree-shaped Bayesian networks formally belong to the data exploration category. However, this 
algorithm is considerably more complex than other data exploration algorithms and not as widely 
known, warranting detailed description. 

A Bayesian network can be considered a graphical representation of probabilistically described 
relationships within a set of attributes, allowing probabilistic inference to be performed. The 
representation is created by extracting the structural properties of the distribution from the data. 

Creating and using general Bayesian networks are algorithmically and computationally complex. Tree-
shaped Bayesian networks, however, constitute a simplified subclass of Bayesian networks with 
restrictions imposed on the type of attribute relationships that can be discovered and represented. 
The restrictions permit simpler and more efficient algorithms as well as more straightforward 
interpretation. Tree-shaped Bayesian networks may be not sufficient for highly-accurate prediction, 
but provide an excellent qualitative description of the relationship structure observed in the data. 

Background 

Bayesian networks can be used to represent a joint probability distribution of multiple discrete 
attributes. A Bayesian network consists of two essential parts: 

► structure—a directed acyclic graph, where nodes represent attributes and directed edges 
represent “direct influence” 

► conditional probability distributions—the conditional probability of a node given its parents. or 
the marginal distribution for the node, if there are no parent nodes 

A Bayesian network can be used in a formal probabilistic inference process, but even in informal 
interpretations, can be a valuable source of the following insights into the data: 

► determining primary and secondary relationships between attributes 

► which attributes are independent or relatively independent given other attributes 

► strength of the primary and secondary relationships 
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An analogous representation for continuous attributes is possible. Under the assumption of 
normality, dependencies between continuous attributes can be expressed in a simplified form of 
partial correlations. This is based on the following equation that holds for normal random variables 
X  and Y : 

E Y∣X  = EYrY
X−EX
 X

 (38)

where  X  is the standard deviation of X , Y  is the standard deviation of Y , E  is the expected 
value symbol, and r  is the correlation coefficient of X  and Y . The root cause of correlations is of 
interest when looking at Bayesian networks for continuous attributes. 

Apart from providing valuable insights about the relationship structure in the data, Bayesian 
networks can be considered predictive models and applied to new data. Unlike ordinary classification 
and regression models, the target attribute for Bayesian network prediction is not specified at the 
model building phase, but at the model application phase. In the most basic case, the network can be 
applied to predict any attribute of those for which it was created, based on the known values of the 
remaining attributes. When considering only continuous attributes and using correlations to describe 
their relationships, as discussed above, the Bayesian network implicitly represents a collection of 
regression models for each attribute. Note that the simplicity of this representation does not 
guarantee high prediction quality, particularly if there no sufficiently strong linear correlations in the 
data, but it can be still useful as a quick model prototyping approach. 

If the Bayesian network has the structure of a tree, spanning the specified set of attributes, then the 
inference process is simplified, because if Z  is on the path from X  to Y , then the correlation 
between X  and Y  can be decomposed as follows: 

r XY = r XZ⋅rZY  (39)

Another important property of a Bayesian network tree is that there exists a Chow-Liu algorithm 
approximating any joint probability distribution with a tree in an optimal way. 

In tree-shaped Bayesian networks, edge orientations become immaterial and therefore inference 
about which attribute is caused by which becomes impossible. As such, the edges in a tree-shaped 
Bayesian network should be considered undirected. All other structural insights, however, are 
possible. In addition, the overview of major attribute relationships becomes more comprehensive, 
which is important when the number of attributes numbers in the hundreds or more. 

Applications 

Bayesian network tree discovery algorithms can be applied whenever a Bayesian network is needed 
for:

► determining the major dependencies among attributes 
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► Creating a simplistic model to derive correlations between attributes from a small set of pre-
computed ones 

► identifying subsets of attributes that do not appear to be related to the same topic, by splitting 
the tree by the weakest links 

► identifying attributes of central importance, that is, those that are central in the network, with 
many links 

Available Functionality 

The IBM Netezza In-Database Analytics package implements the tree version of Bayesian networks 
for continuous attributes. It provides the stored procedures listed below. 

► TBNET1G—A spanning tree is constructed linking all specified attributes based on the strongest 
correlations, providing the user an overview of the most significant interrelations governing the 
whole set of attributes. 

► TBNET2G—A spanning tree is constructed linking all specified attributes based on the strongest 
correlations. The distinctive feature compared to TBNET1G and standard Bayesian network 
construction algorithms is that one specifies two subsets of attributes and the resulting tree is 
bipartite — nodes within each set are not directly connected. This feature is particularly useful 
when the two subsets of attributes characterize distinct objects or distinct parts of an object, and 
only “external” links between different objects/parts are of interest and not “internal” ones 
within. 

► BTBNET_GROW— has the functionality of TBNET1G with the additional possibility to include 
binary variable(s) by specifying either an identity relation (an attribute equals a value or not, for 
discrete attributes mainly) or a-greater-than-relation (for discretizing continuous one). These 
new variables will be treated like “continuous” with “truth” being represented by 1 and 
“falsehood” by 0. 

► TBNET_GROW—A spanning tree is constructed linking all specified attributes based on the 
strongest correlations. The generated model is suitable for predicting values of any attribute with 
the TBNET_APPLY procedure. 

► TBNET_APPLY—The Bayesian network generated by TBNET_GROW is used for value prediction 
in a continuous table based on the formula:

E Y∣X  = EY  r y
X−EX
 X

 (40)

► TANET_GROW— (tree-augmented network) A spanning tree is constructed linking all specified 
attributes based on the strongest correlations. Subsequently the coefficients are trained 
separately in classes identified by a class attribute. The generated model is suitable for predicting 
values of any attribute with the TANET_APPLY procedure.

► TANET_APPLY—The Bayesian network generated by TANET_GROW is used for value prediction in 
a continuous table in a way similar to TBN_APPLY, but with coefficients specific for particular 
classes. 
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► MTBNET_GROW— for each level of a class attribute, a separate spanning tree is constructed 
linking all specified attributes based on the strongest correlations. The generated model is 
suitable for predicting values of any attribute with the TANET_APPLY procedure.

► MTBNET_DIFF— lists the differences between trees at the different levels of the class attribute. 

Examples 

The functionality of the tree-shaped Bayesian networks implementation is illustrated by the 
examples using the WineQuality data set. 

The TBNET1G procedure, can be applied to all attributes of the data set in the following manner: 

CALL nza..TBNET1G('intable=nza..WineQuality, 
                   incolumn=fixed_acidity; 
                   volatile_acidity; 
                   citric_acid; 
                   residualsugar; 
                   chlorides; 
                   free_sulfur_dioxide; 
                   total_sulfur_dioxide; 
                   density; 
                   pH; 
                   sulphates; 
                   alcohol; 
                   quality, 
                   model=wq_tbn1'); 

The resulting model, specified via the model argument, consists of a table containing the network 
structure with each row representing a network edge and the following columns: 

► BNID—the internally assigned Bayesian network ID

► VARXID—the internally assigned ID of the first attribute of the edge 

► VARXNAME—the name of the first attribute of the edge 

► VARYID—the internally assigned ID of the second attribute of the edge 

► VARYNAME—the name of the second attribute of the edge 

► CORR—the linear correlation between the attributes of the edge 

Note that, since the network is undirected, the representation of an attribute being shown as the 
first or second on an edge carries no special meaning. 

You can inspect the network created for the WineQuality data set as follows: 

SELECT * FROM nza_meta_wq_tbn1_model ORDER BY ABS(CORR) DESC; 

Notice that residualsugar and density are the two most strongly correlated attributes. The density 
attribute is also highly correlated—negatively—to the alcohol attribute. The correlation values can 
be verified to match those returned by the CORR procedure: 

CALL nza..CORR('intable=nza..WineQuality, incolumn=residualsugar; density'); 
CALL nza..CORR('intable=nza..WineQuality, incolumn=density; alcohol'); 
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If you are particularly interested in attributes most related to the quality attribute, you can filter the 
corresponding edges by adding an appropriate WHERE clause to the above query:

SELECT * FROM nza_meta_wq_tbn1_model 
WHERE VARXNAME='QUALITY' OR VARYNAME='QUALITY' 
ORDER BY ABS(CORR) DESC; 

Other noteworthy optional parameters not illustrated in the above example include: 

► baseidx—the numeric ID to be assigned to the first attribute, for easier internal management 

► samplesize—the size of the sample to take if the number of instances/attributes is too large, 
where processing time may be too long for the user 

While the samplesize parameter is not required for the WineQuality data set (due to its small size) 
the following call demonstrates the effect of the baseidx parameter being set to 1: 

CALL nza..TBNET1G('intable=nza..WineQuality, 
                   incolumn=fixed_acidity; 
                   volatile_acidity; 
                   citric_acid; 
                   residualsugar; 
                   chlorides; 
                   free_sulfur_dioxide; 
                   total_sulfur_dioxide; 
                   density; 
                   pH; 
                   sulphates; 
                   alcohol; 
                   quality, 
                   baseidx=1, 
                   model=wq_tbn1_1'); 

SELECT * FROM nza_meta_wq_tbn1_1_model ORDER BY ABS(CORR) DESC; 

The node numbering starts from the specified value. This argument may be useful for configuring 
disjoint node number spaces when creating and analyzing several networks for the same data set 
using different attribute sets. 

With the TBNET2G procedure, the incolumn argument allows you to specify two disjoint attribute 
subsets, Each attribute name is followed by a colon (:) and either X or Y to distinguish the two sets. 
The algorithm considers only inter-subset links and not intra-subset links when creating the network 
structure. This is demonstrated in the example below, where the set of all attributes in the 
WineQuality data set is split into two subsets: 

CALL nza..TBNET2G('intable=nza..WineQuality, 
                   incolumn=fixed_acidity:X; 
                   volatile_acidity:X; 
                   citric_acid:X; 
                   residualsugar:X; 
                   chlorides:X; 
                   free_sulfur_dioxide:X; 
                   total_sulfur_dioxide:X; 
                   density:Y; 
                   pH:Y; 
                   sulphates:Y; 
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                   alcohol:Y; 
                   quality:Y, 
                   model=wq_tbn2'); 

You can examine the created structure using: 

SELECT * FROM nza_meta_wq_tbn2_model ORDER BY ABS(CORR) DESC; 

All the created edges link attributes from one set to attributes from the other set. In the second 
subset, it is the density attribute that has the most frequent and strongest relationships with the 
attributes from the first subset. 

The TBNET_GROW procedure is called in the same way as the TBNET1G procedure.

CALL nza..TBNET_GROW('intable=nza..WineQuality_train, 
                      incolumn=fixed_acidity; 
                      volatile_acidity; 
                      citric_acid; 
                      residualsugar; 
                      chlorides; 
                      free_sulfur_dioxide; 
                      total_sulfur_dioxide; 
                      density; 
                      pH; 
                      sulphates; 
                      alcohol; 
                      quality, 
                      model=wq_tbnm'); 

This call uses the training subset of the WineQuality data to allow subsequent evaluation of the 
predictions on the test subset. 

Examining the resulting output table: 

SELECT * FROM nza_meta_wq_tbnm_model ORDER BY ABS(CORR) DESC;  

reveals the generated contents to be richer. For each network edge the means and standard 
deviations of the two nodes being linked are calculated and stored, making it possible to apply the 
network for prediction. This is demonstrated by the following two calls, one predicting the quality 
attribute and the other predicting the density attribute on the test set: 

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=quality, 
outtable=WineQuality_quality_tbnm, model=wq_tbnm'); 

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=density, 
outtable=WineQuality_density_tbnm, model=wq_tbnm'); 

The quality of the predictions can be evaluated using the mean square error: 

CALL nza..MSE ('pred_table=WineQuality_quality_tbnm, 
pred_column=quality_pred, pred_id=id, true_table=nza..WineQuality_test, 
true_column=quality, true_id=id'); 

CALL nza..MSE ('pred_table=WineQuality_density_tbnm, 
pred_column=density_pred, pred_id=id, true_table=nza..WineQuality_test, 
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true_column=density, true_id=id'); 

Use the following auxiliary view to put the true and predicted values next to each other: 

CREATE VIEW WineQuality_tbnm_pred AS 
SELECT PQ.quality_pred, T.quality as quality, PD.density_pred, T.density as 
density 
FROM WineQuality_quality_tbnm PQ, WineQuality_density_tbnm PD, 
nza..WineQuality_test T
WHERE PQ.id=T.id AND PD.id=T.id; 

You can also calculate their test set correlations: 

CALL nza..CORR('intable=WineQuality_tbnm_pred, incolumn=quality_pred; 
quality');
CALL nza..CORR('intable=WineQuality_tbnm_pred, incolumn=density_pred; 
density'); 

In this example, the density attribute turns out to be a much better predictor than the quality 
attribute. The results obtained for the quality attribute, however, are comparable to those possible 
with the kNN or regression tree algorithms. For more information on kNN, see Nearest Neighbors. 
For more information on regression tree algorithms, see Regression Trees.

The TBNET_APPLY procedure accepts an optional type argument that can be used to select one of 
the following variations of the prediction algorithm: 

► best—using the most correlated neighbor node, which is the default value 

► neighbors—using weighted prediction of all neighbor nodes 

► nn-neighbors—the same as above, but with NULL-value nodes, that is, those corresponding to 
attributes that have missing values for the instance for which the prediction is calculated, 
skipped 

The previous two calls to TBNET_APPLY can be repeated with the prediction type set to neighbors: 

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=quality, 
type=neighbors, outtable=WineQuality_quality_tbnm_n, model=wq_tbnm'); 

CALL nza..TBNET_APPLY('intable=nza..WineQuality_test, id=id, target=density, 
type=neighbors, outtable=WineQuality_density_tbnm_n, model=wq_tbnm'); 

You can evaluate the prediction quality: 

CALL nza..MSE ('pred_table=WineQuality_quality_tbnm_n, 
pred_column=quality_pred, pred_id=id, true_table=nza..WineQuality_test, 
true_column=quality, true_id=id');

CALL nza..MSE ('pred_table=WineQuality_density_tbnm_n, 
pred_column=density_pred, pred_id=id, true_table=nza..WineQuality_test, 
true_column=density, true_id=id'); 

The achieved mean square error values are higher than with the default setting (type=best), which is 
desirable in most cases. 
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C H A P T E R  8
Discretization

Discretization algorithms can be divided into two main categories: 

► unsupervised—the target concept (class attribute) is not used in the criteria for setting interval 
bounds, 

► supervised—the target concept (class attribute) is taken into account when seeking the most 
appropriate interval bounds. 

Unsupervised algorithms are typically applied when discretization is performed without the intention 
of subsequently using the data for classification, or when a variety of classification tasks can be 
considered for the same data set, with different attributes used as the target concept. While both 
categories include algorithms of various levels of refinement and complexity, supervised algorithms 
tend to be more complex conceptually and computationally. 

Background 

IBM Netezza In-Database Analytics contains implementations of the following discretization 
algorithms: 

► equal-width discretization—an unsupervised discretization algorithm using the equal width 
criterion for interval bound setting 

► equal-frequency discretization—an unsupervised discretization algorithm using the equal 
frequency, that is, equal data count, criterion for interval bound setting 

► minimum-entropy discretization—a supervised discretization algorithm that identifies the most 
appropriate interval bounds by minimizing class distribution impurity 

The equal-width and equal-frequency algorithms are less complex, and therefore more 
computationally efficient. They can handle large numbers of attributes and the quality of the 
discretization intervals they produce are sufficient for several applications. 

The equal-width algorithm identifies the range of the discretized attribute and divides it evenly into a 
specified number of intervals. However. this approach is not robust with respect to outliers, which 
may throw off the algorithm by extending the attribute’s range, resulting in bad interval data. Use the 
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equal-width algorithm only after checking the discretized attributes for outliers and removing them, 
if necessary. 

The equal-frequency algorithm identifies interval bounds in a more robust way. It adapts to the 
actual data distribution by seeking intervals containing the values of the discretized attribute 
corresponding to the same number of instances. However, exact results may be impossible when the 
size of the data set does not divide evenly by the required number of intervals or when there are 
several instances where the discretized attribute takes the same values. For this reason, the 
algorithm allows the user to specify a parameter to control its disposition to modify the required 
number of intervals to achieve more uniform interval frequencies. 

The minimum-entropy discretization is a top-down method that starts from a single interval covering 
the whole attribute range and divides it into smaller intervals. It seeks interval bounds that minimize 
the class impurity of subsets of instances corresponding to particular intervals, measured by the 
entropy. For interval I , it is calculated as: 

E  I  =∑
d ∈C

−P d∣I  log2 P d∣I   (41)

where d  iterates over all classes, P d∣I =∣T I
d
∣

∣T I∣
 is the probability of class d  in interval I , 

estimated based on the subset of instances T I  where the attribute a  being discretized takes value 
in interval I : 

T I = { x∈T∣a x∈I }  (42)

and d  in the superscript denotes selection of instances of class d  only. Dividing intervals continues 
until an automatic stop criterion based on the minimum description length (MDL) principle is 
satisfied. 

Applications 

Discretization is one of the most commonly applied data transformations for data mining. Typically, it 
is performed as a preprocessing step before classification, when the classification algorithm to be 
applied requires discrete attributes or is more efficient using them. 

While the most common reason for discretizing continuous attributes is a modeling algorithm’s 
inability to use continuous attributes, there may be more reasons to consider it a useful data 
transformation even if the algorithm to be used subsequently supports continuous attributes 
directly: 

► it is likely to considerably reduce the computational effort of modeling 

► it usually results in a simpler and more readable model 

► it may help prevent overfitting by eliminating some opportunities to overfit 
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Available Functionality 

The following discretization functionality is available in IBM Netezza In-Database Analytics: 

1. the equal-width, equal-frequency, and minimum-entropy algorithms — the EWDISC, EFDISC, 
and EMDISC stored procedures, 

2. user-specified number of intervals as stop criteria for the equal-width and equal-frequency 
algorithms 

3. an automatic MDL-based stop criterion for the minimum-entropy algorithm 

4. output tables containing interval bounds on output 

5. output views containing the original data set with a discretized attribute attached 

The actual number of intervals is guaranteed to be the same as specified on input only for the equal-
width algorithm. The equal-frequency algorithm can produce fewer intervals if necessary to achieve a 
sufficiently uniform interval frequency. This is controlled by a precision parameter, binprec, that 
determines how large a discrepancy between the theoretically required and actual interval frequency 
is acceptable. The theoretically required interval frequency is the data set size divided by the number 
of requested intervals. 

Examples 
The example illustrates using each of the discretization algorithms in the IBM Netezza In-Database 
Analytics package to discretize all continuous attributes in the CensusIncome data set. The following 
three calls request that all the continuous attributes present in the data set be discretized using the 
equal-width, equal-frequency, and minimum-entropy algorithms. 

 CALL nza..EWDISC('intable=nza..CensusIncome_train, 
incolumn=age:5; 

wage_per_hour:4; 
capital_gains:3; 
capital_losses:3; 
dividends_from_stocks:3; 
num_persons_worked_for_employer:2; 
weeks_worked_in_year:5, 

outtable=ci_ewd');
 

CALL nza..EFDISC('intable=nza..CensusIncome_train, 
incolumn=age:5; 

wage_per_hour:4; 
capital_gains:3; 
capital_losses:3; 
dividends_from_stocks:3; 
num_persons_worked_for_employer:2; 
weeks_worked_in_year:5, 

binprec=1, outtable=ci_efd'); 

CALL nza..EMDISC('intable=nza..CensusIncome_train, 
target=income, 
incolumn=age; 
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wage_per_hour; 
capital_gains; 
capital_losses; 
dividends_from_stocks; 
num_persons_worked_for_employer; 
weeks_worked_in_year, 

outtable=ci_emd'); 

The equal-width and equal-frequency algorithms are instructed to create specific numbers of 
intervals for each attribute after the colons following the attribute names. The above calls requested 
five (5) intervals for the age and weeks_worked_in_year attributes, four (4) intervals for the 
wage_per_hour attribute, three (3) intervals for the capital_gains, capital_losses, and 
dividends_from_stocks attributes, and two (2) intervals for the 
num_persons_worked_for_employer attribute. 

The equal-frequency algorithm takes an additional binprec argument that specifies the tolerance for 
the frequency equality condition, which may be impossible to satisfy exactly. The actual number of 
instances in an interval can differ from the “theoretically” required number of instances per interval, 
calculated as the data set size divided by the number of requested intervals, by no more than 
binprec 100%. The value of 1 used in the example is the maximum, which instructs the algorithm to⋅  
accept even substantially unequal interval frequencies. However, it may still divide the discretized 
attribute range to less intervals than requested. For the minimum-entropy algorithm the class 
column with respect to which the supervised discretization process is performed is specified via the 
target argument. 

All the discretization procedures generate output tables containing interval bounds for each 
discretized attribute. These intervals can be applied to replace the original continuous attributes with 
their discretized versions both in the data set on which the intervals were identified, as well as on a 
new data set containing the same attributes. This capability is crucial whenever discretization is 
performed as part of a modeling process where one has to apply the discretization intervals 
identified on the training set to another data set for which the model is used to generate predictions. 

Regardless of the algorithm used to create discretization intervals, they can be applied to a data set 
in the same way, as demonstrated below for the training test: 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_ewd, 
outtable=CensusIncome_train_ewd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_efd, 
outtable=CensusIncome_train_efd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_train, btable=ci_emd, 
outtable=CensusIncome_train_emd, replace=TRUE'); 

The replace=TRUE argument requests that the original continuous attributes are not preserved in 
the output tables. 

You can then apply the same discretization intervals to the validation and test sets: 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_ewd, 
outtable=CensusIncome_val_ewd, replace=TRUE');
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CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_efd, 
outtable=CensusIncome_val_efd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_val, btable=ci_emd, 
outtable=CensusIncome_val_emd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_ewd, 
outtable=CensusIncome_test_ewd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_efd, 
outtable=CensusIncome_test_efd, replace=TRUE'); 

CALL nza..APPLY_DISC('intable=nza..CensusIncome_test, btable=ci_emd, 
outtable=CensusIncome_test_emd, replace=TRUE');
 

The continuous attributes in the validation and test sets have been discretized using the 
discretization intervals identified by each of the three discretization methods on the training set. This 
process should always be performed when using discretization as a data transformation on data that 
is to be used for predictive modeling. 
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C H A P T E R  9
Standardization and Normalization 

Standardization and normalization are arithmetic transformations applied to continuous attributes to 
modify their values to achieve a desired change of the range or distribution. 

Background 

The two basic standardization and normalization operations are specified as follows:

► standardization—subtract the mean and divide the difference by the standard deviation, so that 
the resulting modified attribute has mean 0 and standard deviation 1:

a ' x  =
a x −ma D

saD
 (43)

where ma D  and saD   denote the mean and standard deviation of attribute a  on data set D  
being transformed, 

► normalization—divide by the maximum absolute value, so that the resulting modified attribute 
has values in the [−1,1]  interval:

a ' x =
a x 

max x∈D ∣a x ∣
 (44)

More refined transformations, which use the length (Euclidean norm) of attribute value vectors, are 
sometimes useful. Specifically, let ∥a∥D  be the norm of the vector of values of attribute a  on data 
set D  being transformed: 
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∥a∥D = ∑
x∈D

a2
x  (45)

and let ∥a{i1 ,i 2 ,... ,i m}
 x∥  be the norm of the m -element vector of values of selected attributes 

a i1 , i2 , ... ,im
 for instance (row) x : 

∥a{i1 ,i 2 , ... ,im}
x ∥= ∑

k=1

m

a ik

2
x   (46)

The former can be called the column norm of attribute a  and the latter called the row norm of 
attributes a i1 , i2 , ... ,im

. Then the following additional types of normalization can be considered: 

► unit normalization—divide by the column norm, so that the resulting modified attribute has a 
column norm of 1:

a ' x  =
a x 
∥a∥

 (47)

► row normalization—for each attribute from a specified subset, divide by the corresponding row 
norm, so that the modified attributes have a row norm of 1 for each instance:

a ' ik
x  =

a i k
x 

∥a{i1 , i2 , ... , im}
x∥

 (48)

► vector normalization—for each attribute from a specified subset, divide by the maximum 
corresponding row norm, so that the modified attributes have row norms between 0 and 1:

a ' ik
(x )=

a i k
(x )

max x∈D∥a{i1 , i2 , ... , im}
( x)∥

 (49)

 

Applications 

The primary reason to apply standardization, normalization, and related transformation is to make 
the data better suited for some algorithms to be applied subsequently. This is typical for memory-
based classification and regression, as well as distance-based clustering algorithms. The quality of 
predictions generated by such algorithms strongly depends on the employed distance measures. An 
appropriate transformation may be necessary to ensure an attribute does not have too much or too 
little impact on the calculated distance. 
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Available Functionality 

The IBM Netezza In-Database Analytics package offers the following standardization and 
normalization functionality via the STD_NORM stored procedure: 

► standardization of one or more specified attributes 

► normalization of one or more specified attributes 

► unit normalization of one ore more specified attributes

► row normalization of a specified set of attributes 

► vector normalization of a specified set of attributes 

► multiple attributes transformed, possibly with different transformations, in one call 

Different standardization or normalization operations can be requested for different attributes in a 
single call to the procedure that implements this functionality. These operations are specified using 
the transform parameter that may contain several semicolon-separated transformation specifiers of 
the following form: 

► attr:L—leave attribute attr unchanged

► attr:S—standardize attribute attr

► attr:N—normalize attribute attr

► attr:U—apply unit normalization to attribute attr

► attr1/attr2/attr3:C—apply row normalization to attributes attr1, attr2, attr3, where one or 
more attributes must be specified

► attr1/attr2/attr3:V—apply vector normalization to attributes attr1, attr2, attr3, where one or 
more attributes must be specified 

All attributes being transformed must be numeric data types. An output table is created that contains 
appropriately modified attributes. 

Examples 

To illustrate the application of all the various types standardization and normalization, they are 
applied to transform continuous attributes in the CensusIncome data set as follows: 

► the age attribute is standardized 

► the wage_per_hour attribute is normalized 

► the dividends_from_stocks is unit-normalized 

► the capital_gains and capital_losses attributes are row-normalized 

► the num_persons_worked_for_employer and weeks_worked_in_year attributes are vector-
normalized 

These operations are performed by the following call: 

CALL nza..STD_NORM('intable=nza..CensusIncome,
                    incolumn=age:S;
                      wage_per_hour:N;
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                      dividends_from_stocks:U;
                      capital_gains/capital_losses:C;
                      num_persons_worked_for_employer/weeks_worked_in_year:V,
                    id=id,
                    outtable=ci_sn1'); 

The output table contains one column for each attribute being transformed, with a prefix attached to 
the name indicating the type of transformation applied, std_, nrm_, nru_ or nrc_. For vector-
normalized attributes the output column name is created by concatenating the names of the input 
columns used, separated by an underscore and prefixed by nrm_. 

For a more practical example, consider the following calls requesting that all continuous attributes in 
the CensusIncome data set be standardized. The operation is performed separately for the training, 
validation, and test subsets, and their resulting standardized versions can be used for creating and 
evaluating classification or clustering models. 

CALL nza..STD_NORM('intable=nza..CensusIncome_train,
incolumn=age:S;

wage_per_hour:S;
capital_gains:S;
capital_losses:S;
dividends_from_stocks:S;
num_persons_worked_for_employer:S; 

weeks_worked_in_year:S,
id=id, outtable=CensusIncome_train_std_num'); 

CREATE TABLE CensusIncome_train_std AS 
SELECT N.*, 

class_of_worker, 
detailed_industry_recode, 
detailed_occupation_recode, 
education, enroll_in_edu_inst_last_wk, 
marital_status, 
major_industry_code, 
major_occupation_code, 
race, 
hispanic_origin, 
sex, 
member_of_a_labor_union, 
reason_for_unemployment, 
full_or_part_time_employment_stat, 
tax_filer_stat, 
region_of_previous_residence, 
state_of_previous_residence, detailed_household_and_family_stat, 
detailed_household_summary_in_household, 
migration_code_change_in_msa, migration_code_change_in_reg, 
migration_code_move_within_reg, 
live_in_this_house_1_year_ago, 
migration_prev_res_in_sunbelt, 
family_members_under_18, 
country_of_birth_father, 
country_of_birth_mother, 
country_of_birth_self, 
citizenship, 
own_business_or_self_employed, 
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fill_inc_questionnaire_for_veterans_admin, 
veterans_benefits, 
year, 
income 

FROM CensusIncome_train_std_num N, nza..CensusIncome_train A 
WHERE N.id=A.id; 

CALL nza..STD_NORM('intable=nza..CensusIncome_val, 
incolumn=age:S; 

wage_per_hour:S; 
capital_gains:S; 
capital_losses:S; 
dividends_from_stocks:S;
num_persons_worked_for_employer:S;

weeks_worked_in_year:S, 
id=id, outtable=CensusIncome_val_std_num'); 

CREATE TABLE CensusIncome_val_std AS 
SELECT N.*, 

class_of_worker, 
detailed_industry_recode, 
detailed_occupation_recode, 
education, 
enroll_in_edu_inst_last_wk, 
marital_status, 
major_industry_code, 
major_occupation_code, 
race, 
hispanic_origin, 
sex, 
member_of_a_labor_union, 
reason_for_unemployment, 
full_or_part_time_employment_stat, 
tax_filer_stat, 
region_of_previous_residence, 
state_of_previous_residence, detailed_household_and_family_stat, 
detailed_household_summary_in_household, 
migration_code_change_in_msa, migration_code_change_in_reg, 
migration_code_move_within_reg, live_in_this_house_1_year_ago, 

       migration_prev_res_in_sunbelt, 
family_members_under_18, 
country_of_birth_father, 
country_of_birth_mother, 
country_of_birth_self, 
citizenship, 
own_business_or_self_employed, 
fill_inc_questionnaire_for_veterans_admin, 
veterans_benefits, 
year, 
income 

FROM CensusIncome_val_std_num N, nza..CensusIncome_val A 
WHERE N.id=A.id; 

CALL nza..STD_NORM('intable=nza..CensusIncome_test,
incolumn=age:S;

wage_per_hour:S;
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capital_gains:S;
capital_losses:S;
dividends_from_stocks:S;
num_persons_worked_for_employer:S; 

       weeks_worked_in_year:S,
id=id, outtable=CensusIncome_test_std_num');

 

CREATE TABLE CensusIncome_test_std AS 
SELECT N.*, 

class_of_worker, 
detailed_industry_recode, 
detailed_occupation_recode, 
education, 
enroll_in_edu_inst_last_wk, 
marital_status, 
major_industry_code, 
major_occupation_code, 
race, 
hispanic_origin, 
sex, 
member_of_a_labor_union, 
reason_for_unemployment, 
full_or_part_time_employment_stat, 
tax_filer_stat, 
region_of_previous_residence, 
state_of_previous_residence, detailed_household_and_family_stat, 
detailed_household_summary_in_household, 
migration_code_change_in_msa, migration_code_change_in_reg, 
migration_code_move_within_reg, live_in_this_house_1_year_ago, 
migration_prev_res_in_sunbelt, 
family_members_under_18, 
country_of_birth_father, 
country_of_birth_mother, 
country_of_birth_self, 
citizenship, 
own_business_or_self_employed, 
fill_inc_questionnaire_for_veterans_admin, 
veterans_benefits, 
year, 
income

FROM CensusIncome_test_std_num N, nza..CensusIncome_test A
WHERE N.id=A.id; 
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C H A P T E R  1 0
Data Imputation 

Background 

Data imputation is a practical transformation that provides values for missing attribute fields so that 
it is possible for algorithms that cannot process data sets with missing values to be used on the data 
set.

Imputation is one of the most popular approaches to missing value handling in data mining. Other 
possible approaches, each with their own limitations, include: 

► ignoring—skipping instances with missing values of one or more attributes 

► codomain extension—considering “missing” as an additional value added to an attributes 
codomain 

► internal processing—algorithm-specific techniques for internal missing value handling 

The ignoring approach is not practical when instances with missing values constitute a large fraction 
of the data set. Even if missing values are minimal, it may have negative impact on the quality of 
analysis results. 

The codomain extension is only applicable to discrete attributes, for which ”missing,” or any other 
term used, can be considered an actual value. This approach can give good results with predictive 
modeling algorithms as long as the distribution of missing values is the same in the training set used 
to create a model as in the data to which the model is subsequently applied.

The third approach, possible with some data mining algorithms, is likely to yield superior results, but 
typically adds considerable computational complexity. 

Compared to the above mentioned alternatives, the data imputation approach can be considered a 
useful general purpose solution that represents a good compromise between quality and complexity. 
The idea is to provide missing attribute values with reasonable “guessed” values, which are usually: 

► modes (the most frequent values) for discrete attributes 

► means or medians for continuous attributes 
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Applications 

Missing attribute values constitute the most widely encountered data quality issue that must be 
faced when analyzing real-world data sets. Many data mining algorithms cannot work directly with 
missing attribute values or require considerable additional computational effort to handle them 
internally. Filling them by imputation is a one-time transformation that enables subsequent analysis 
of the data set. It is worthwhile to consider for predictive modeling tasks—classification, regression, 
and clustering—where the trivial approach of ignoring missing values is usually inappropriate and 
refined internal missing value handling techniques are not available or are deemed too time-
consuming for large data sets. 

Available Functionality 

The IBM Netezza In-Database Analytics package offers the following imputation functionality via the 
IMPUTE_DATA stored procedure: 

► discrete attribute value imputation with modes (the most frequent values)

► continuous attribute value imputation with modes, means, or medians. 

The imputation method is specified via the method argument. 

Examples 

To illustrate the application of data imputation, the following queries create an artificially corrupted 
copy of the CensusIncome data set, specifically from the training, validation, and test subsets.), with 
5% of the values of two selected attributes, one discrete and one continuous, replaced by NULL: 

CREATE TABLE CensusIncome_train_miss AS SELECT * FROM 
nza..CensusIncome_train; 
CREATE TABLE CensusIncome_test_miss AS SELECT * FROM nza..CensusIncome_test; 
CREATE TABLE CensusIncome_val_miss AS SELECT * FROM nza..CensusIncome_val; 

UPDATE CensusIncome_train_miss SET capital_gains=NULL WHERE RANDOM()<0.05; 
UPDATE CensusIncome_test_miss SET capital_gains=NULL WHERE RANDOM()<0.05; 
UPDATE CensusIncome_val_miss SET capital_gains=NULL WHERE RANDOM()<0.05; 

UPDATE CensusIncome_train_miss SET sex=NULL WHERE RANDOM()<0.05; 
UPDATE CensusIncome_test_miss SET sex=NULL WHERE RANDOM()<0.05; 
UPDATE CensusIncome_val_miss SET sex=NULL WHERE RANDOM()<0.05; 

Now request that the imputation with medians is applied to the corrupted data: 

CALL nza..IMPUTE_DATA('intable=CensusIncome_train_miss, 
outtable=CensusIncome_train_imp, method=median'); 

CALL nza..IMPUTE_DATA('intable=CensusIncome_test_miss, 
outtable=CensusIncome_test_imp, method=median'); 
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CALL nza..IMPUTE_DATA('intable=CensusIncome_val_miss, 
outtable=CensusIncome_val_imp, method=median'); 

This performs the imputation operation using the selected method only for attributes to which it is 
applicable, that is, continuous attributes in the case of the median method. Attributes without 
missing values are left unchanged, which results in modification of only the corrupted capital_gains 
attribute. Now a second call can be used to perform imputation for the remaining corrupted discrete 
attribute sex: 

CALL nza..IMPUTE_DATA('intable=CensusIncome_train_imp, method=freq');

CALL nza..IMPUTE_DATA('intable=CensusIncome_test_imp, method=freq');

CALL nza..IMPUTE_DATA('intable=CensusIncome_val_imp, method=freq'); 

This replaces any remaining missing attribute values with the most frequent values, leaving any other 
attributes unchanged. Note that no output table has been specified, which instructs the procedure to 
modify the table passed as the input table produced by the previous call rather than create a new 
copy. This results in training and test subsets of the CensusIncome data with values of the 
capital_gains and sex attributes imputed with medians and modes, respectively. 
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C H A P T E R  1 1
Model Diagnostics 

Model diagnostics algorithms are computational techniques used to provide reliable estimates of the 
predictive utility of data mining models. Such estimates are necessary to select one out of several 
models that can be generated for the same task using different algorithms or parameter setups, and 
to decide whether the quality of a final model is sufficient for a particular application. 

Background 

Algorithms used for model quality assessment include: 

► model quality indicators 

► model evaluation procedures 

Model quality indicators are measures calculated based on the predictions generated by a given 
model on a given data set. They are task-specific, and different for different predictive modeling 
tasks. Model evaluation procedures are responsible for making sure the calculated indicators can 
serve as reliable model quality estimates on new, unseen data. They are task-independent and can be 
used for both the classification and regression tasks. 

Misclassification Error 
The misclassification error is the most commonly-used quality indicator for classification models. It is 
calculated for model h  on data set S  with respect to a target concept c (the true class labels of 
which are known on S ) as follows: 

eS
c
h=

∣{ x∈S∣hx ≠c x  }∣
∣S∣

 
(50)

This is the ratio of the number of instances from S  misclassified by model h  to the total number of 
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instances in S . You may also consider 1− eS
c
h  as the accuracy of a classification model. 

Confusion Matrix 
The misclassification error does not always adequately represent the quality of classification models. 
In some applications, particularly with unbalanced classes or non-uniform misclassification costs, it 
may be necessary to look deeper into predictions generated for instances of different classes. This is 
possible using the confusion matrix, which for any pair of classes d 1 , d 2∈ C provides the number of 
instances (from data set S used for the evaluation) of true class d 2 classified to class d 1 : 

M S
c
h[d 1 , d 2] = ∣ { x∈S ∣ h x = d 1 , c x =d 2 }∣  (51)

The distribution of misclassification mistakes represented by the confusion matrix can be described 
by a number of indicators, defined below. Assuming a two-class classification task with C={0,1}  
where 1 denotes the “positive” class and 0 denotes the “negative” class, the notation can be 
described by the following table: 

Predicted h(x)

Negative 
(0)

Positive 
(1)

Actual 
C(x)

Negative 
(0)

TN FP

Positive 
(1)

FN TP

The following table describes the terms used to refer to confusion matrix entries: 

Table 9: Confusion matrix entries defined

Term Description

TN The number of true negatives, M S
c
(h) [0, 0]

FN The number of false negatives, M S
c
(h) [0, 1]

FP The number of false positives, M S
c
(h) [1, 0]

TP The number of true positives, M S
c
(h) [1,1 ]
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Table 10: Confusion matrix-based quality indicators

Term Description

True positive rate The ratio of instances correctly classified as positive to all 

positive instances: TP
TP+FN

False positive rate The ratio of instances incorrectly classified as positive to all 

negative instances: 
FP

FP+TN

Positive predictive 
value

The ratio of instances correctly classified as positive to all 

instances classified as positive: TP
TP+FP

True negative rate The ratio of instances correctly classified as negative to all 

negative instances: TN
TN+FN

False negative rate The ratio of instances incorrectly classified as negative to all 

positive instances: 
FP

FP+TP

Recall/
sensitivity

The same as the true positive rate.

Precision The same as the positive predictive value.

Specificity The same as 1 - false positive rate, which can also be stated as:
TN

TN+FP

Accuracy The ratio of the total number of correctly classified instances:
TN+TP

TN+FN+FN+TP

►

These indicators describe the level at which the evaluated classifier succeeds or fails to correctly 
detect the positive class. Using all indicators is unnecessary as it results in redundant information; 
however, no single indicator can be considered sufficient, either. The following performance 
measures are usually used in complementary pairs: 

► true positive rate and false positive rate 

► precision and recall 

► sensitivity and specificity 

The true positive rate, also called recall or sensitivity, is a member of all these pairs, under those 
names. It represents the share of positive instances correctly detected by the classifier. It should be 
maximized, but a value of 1 results in a classifier that always predicts the positive class. Thus, it must 
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be accompanied by a complementary indicator. It could be the false positive rate, representing the 
share of negative instances that are incorrectly reported as positive or “false alarms.” This, too, 
should be minimized, and a trivial classifier achieving the perfect 0 false positive rate is the one 
issuing no alarms at all. 

Precision measures the share of all instances predicted as positive that are truly positive, which 
should be maximized. Specificity is the same as the 1's complement of the false positive rate. 

For classification tasks with more than two classes these indicators can be defined on a per-class 
basis, with instances of one class considered positive and instances of all other classes considered 
negative. 

Mean Absolute Error 
The mean absolute error (MAE) is used to evaluate the quality of regression models. For model h  it 
can be calculated on data set S  with respect to target function f  as follows: 

1
∣S∣∑x∈S

∣ f  x −h  x ∣  (52)

Mean Square Error 
A popular alternative quality measure for regression models is the mean square error (MSE): 

1
∣S∣∑x∈S

 f  x −h  x  
2

 (53)

It increases the impact of large differences between predicted and true values and has favorable 
analytical properties, due to its differentiability. It is also not uncommon to calculate the root mean 
square error (RMSE) as: 

 1
∣S∣
∑
x∈S

 f  x −h  x  
2

 (54)

which is sometimes more convenient because the error is expressed in the same units defined for 
the target function. 

Relative Absolute Error 
For some applications a relative error measure for regression models is desired, which relates the 
difference between predicted values and true target function values to the spread of the latter. This 
is achieved by the relative absolute error (RAE), calculated as: 
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∑ x∈S
∣ f  x −h  x ∣

∑ x∈S ∣ f  x −m f S ∣
 (55)

where m f (S )  is the mean target function value in S . 

Relative Square Error 
The relative square error (RSE), a squared analog of the relative absolute error, is defined similarly as 
follows:

∑ x∈S
( f ( x )−h ( x ) )

2

∑x∈ S ( f (x )−m f ( S ) )
2  (56)

It relates the mean square error to the variance of the target function values in the data set used for 
the evaluation. It is also common to use the difference between 1 and this quantity, referred to as 
the coefficient of determination.

Percentage Split 
The percentage split evaluation procedure, also referred to as holdout or split sample, is the most 
straightforward approach to model evaluation as it keeps the validation or test data separate from 
the training data. The idea is to randomly split the available data set into two subsets, one is used for 
model creation and the other used for model evaluation. It is common to use a 2:1 proportion for 
this partitioning. 

Although computationally inexpensive, the percentage split procedure is not always a sufficiently 
reliable evaluation procedure. If too many instances are held out for evaluation, the reduced training 
set size is likely to degrade the quality of the model to be evaluated, resulting in a pessimistic 
evaluation bias. On the other hand, when the validation or test set becomes too small, the 
evaluation variance increases. In both cases the reliability of the evaluation suffers, and it may be 
difficult to balance the bias and variance tradeoff. 

Despite these problems, the percentage split procedure remains the technique of choice whenever 
the size of the data set and the corresponding computational cost of model creation or prediction—
whichever dominates for a particular algorithm—prevents the application of more refined 
procedures. Note that for sufficiently large data sets the harmful effects of bias and variance are less 
likely to be significant. 

Cross-Validation 
The k-fold cross-validation procedure makes it possible to reduce the evaluation bias while keeping 
the evaluation variance acceptably low. It randomly splits the available data set D  into k  disjoint 
subsets of roughly the same size D1 , D 2 , ... , D k , and then iterates over these subsets. On the i th 
iteration a model is built using T i=∪ j≠i D j  as the training set, and applied to generate predictions 
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on Di . Once all k  iterations are completed, a predicted class label or target function value is 
generated for each instance in the data set, using the model built without this instance in the training 
set. The resulting vector of predictions can be compared to true class labels or target function values 
using one or more selected quality indicators. 

A single iteration of k -fold cross-validation is equivalent to the percentage split procedure, with 
k−1

k  of data selected for training and 1
k  of data selected for evaluation. For sufficiently large k  this 

does not reduce the training set size to an extent that is be likely to impact model quality, since the 
validation set is small, which accounts for reduced bias. Still, in k  iterations all available instances 
are used for model evaluation, which keeps the variance reasonably low unless k  is set too high. In 
practice, k  values of 10, 5, and 20, in that order of popularity, are most commonly used, which 
provide a good balance between bias, variance, and computational expense of model evaluation. 

Cross-validation virtualizes the training and validation/test set, by permitting all available instances to 
be used both for model creation and model evaluation—although not simultaneously. As long as the 
cost of creating and applying multiple models is not prohibitive, it is the recommended evaluation 
procedure. 

Available Functionality 
The IBM Netezza In-Database Analytics package provides implementations of the quality indicators 
and evaluation procedures described in this section. The stored procedures to run to perform the 
various calculations are: 

► CERROR—misclassification error calculation 

► CONFUSION_MATRIX—confusion matrix generation 

► CMATRIX_STATS—derived indicators calculation for true positive rate, false positive rate, and 
precision

► MSE—mean square error calculation

► MAE—mean absolute error calculation 

► RAE—relative absolute error calculation 

► RSE—relative square error calculation 

► PERCENTAGE_SPLIT—the percentage split procedure for classification algorithms 

► CROSS_VALIDATION—k-fold cross-validation for classification algorithms 

The quality indicators can be applied to tables containing predicted and true class labels or target 
function values. The evaluation procedures can be applied to arbitrary classification or regression 
algorithms available in IBM Netezza In-Database Analytics and permit passing arbitrary parameters to 
the selected modeling algorithms. 

Examples 

Examples for model quality indicators are demonstrated with the algorithms used to create 
classification and regression models. The examples shown in this section are limited to the evaluation 
procedures and are applied to evaluate decision tree models for the CensusIncome data set and 
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regression tree models for the WineQuality data set. These procedures generate tables with model 
predictions on output, which can be used to calculate arbitrary quality measures. See the Decision
Trees and Regression Trees sections for more detailed information about the modeling algorithms.

The classification and regression algorithm examples in this guide typically partition data into training 
and test sets, building models on the former and applying them to generate predictions on the latter 
with two separate stored procedure calls. The model building task can be automated using the 
TRAIN_TEST procedures. The procedure takes the training and test sets, as well as the algorithm 
name, and any additional parameters as input. It then generates the resulting model and test set 
predictions on output. The accuracy of these predictions is calculated and passed as the return value. 
The following call demonstrates how it can be used with decision trees and the CensusIncome data 
set: 

CALL nza..TRAIN_TEST('modelType=dectree, traintable=nza..CensusIncome_train, 
testtable=nza..CensusIncome_test, model=ci_tree1, id=id, target=income, 
eval=gini, minsplit=1000, outtable=CensusIncome_income1');

The eval and minsplit arguments are passed to the DECTREE procedure, which is invoked by 
TRAIN_TEST. The test set predictions stored in the created output table can now be evaluated using 
any applicable quality measures, such as the misclassification error or confusion matrix-based 
indicators. This is demonstrated below: 

CALL nza..CERROR('pred_table=CensusIncome_income0, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income0, id=id, target=income, 
matrixTable=ci_income0_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income0_cm'); 

The same procedure can be applied to evaluate a regression model, as demonstrated below for 
regression trees and the WineQuality data set: 

CALL nza..TRAIN_TEST('modelType=regtree, traintable=nza..WineQuality_train, 
testtable=nza..WineQuality_test, model=wq_regtree1, id=id, target=quality, 
minsplit=100, minimprove=0.05, outtable=WineQuality_quality1'); 

CALL nza..MSE('pred_table=WineQuality_quality0, 
true_table=nza..WineQuality_test, pred_id=id, true_id=id, pred_column=class, 
true_column=quality'); 

The test set accuracy, which is the return value of the TRAIN_TEST procedure, is not useful for 
regression, but the mean square error or another appropriate quality measure can be calculated 
externally, as in the example above. 

To use random rather than predefined data partitioning in the training and test subsets, applying the 
percentage-split evaluation procedure, you can issue a similar call: 

CALL nza..PERCENTAGE_SPLIT('intable=nza..CensusIncome, modelType=dectree, 
fraction=0.7, model=ci_tree_ps, id=id, target=income, eval=gini, 

00X6331-01 Rev. 2 135



In-Database Analytics Developer's Guide

minsplit=1000, outtable=CensusIncome_income_ps'); 

Here the CensusIncome table is internally split at random into a 70% training set and a 30% test set. 
The resulting model is stored under the name specified by the model argument, and the predictions 
on the internally selected test subset are stored in the table specified by the outtable argument. 
Their accuracy is passed as a return value. 

This can be repeated for the WineQuality regression as follows: 

CALL nza..PERCENTAGE_SPLIT(' intable=nza..WineQuality, modelType=regtree, 
fraction=0.7, model=wq_regtree_ps, id=id, target=quality, minsplit=100, 
minimprove=0.05, outtable=WineQuality_quality_ps'); 

CALL nza..MSE('pred_table=WineQuality_quality_ps, 
true_table=nza..WineQuality, pred_id=id, true_id=id, pred_column=class, 
true_column=quality'); 

Again, the test set accuracy returned by the procedure is not useful for regression, but any other 
more appropriate quality indicator can be calculated for the generated predictions table. 

The cross-validation procedure can be used in a similar manner, as demonstrated by this example: 

CALL nza..CROSS_VALIDATION('modelType=dectree, intable=nza..CensusIncome, 
folds=5, model=ci_tree_cv, id=id, target=income, eval=gini, 
minsplit=1000, outtable=CensusIncome_income_cv');

Again, the eval and minsplit arguments are passed to the DECTREE procedure, which is invoked by 
CROSS_VALIDATION. The complete CensusIncome data set is specified with the intable argument, to 
be internally split into 5 subsets (as specified by the folds argument). The procedure creates 5 
models, each using 4/5 of the data for training and the remaining 1/5 for testing. Notice that, since 
for k-fold cross-validation each instance from the provided data set is used both as a training instance 
(k-1 times) and as a test instance (once), predictions are generated for the complete data set. They 
are stored in the output table and their accuracy is passed as the return value from the procedure. 
Additionally, a model is created using the full data set and stored under a name specified by the 
model argument. This is convenient for typical usage scenarios, where cross-validation is performed 
to estimate the quality of the full-data model that is subsequently deployed.

The predictions stored in the created output table can now be evaluated by comparing them to 
correct class labels for the full CensusIncome data set:

CALL nza..CERROR('pred_table=CensusIncome_income_cv, 
true_table=nza..CensusIncome, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome, 
resulttable=CensusIncome_income0, id=id, target=income, 
matrixTable=ci_income0_cm'); 
 

CALL nza..CMATRIX_STATS('matrixTable=ci_income_cv_cm');

The final example shows how to perform 10-fold cross-validation for regression trees on the 
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WineQuality data set:

CALL nza..CROSS_VALIDATION('modelType=regtree, 
intable=nza..WineQuality_train, folds=10, model=wq_regtree_cv, id=id, 
target=quality, minsplit=100, minimprove=0.05, 
outtable=WineQuality_quality_cv'); 

CALL nza..MSE('pred_table=WineQuality_quality1, true_table=nza..WineQuality, 
pred_id=id, true_id=id, pred_column=class, true_column=quality'); 
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Random Sampling

Random sampling procedures are a vital component of many analytical systems. They can be used to 
select a test sample and a training sample for a model building process (machine learning). They can 
also be used to get a smaller sample of the training set, which you may do because of learning 
algorithm complexity considerations. In both cases, you would sample without replacement. 

Another application of sampling is the learning methods based on bootstrapping. This requires many 
independent samples from the same data, which are preferentially applied if the available data sets 
are small or for other reasons where the sample independence is vital. Samples with replacement 
are usually drawn in this case. 

In application, sampling is used for promotion campaigns, for example when you want only a 
representative set of customers to be subjects of an action.

In all cases, whether for use with scientific methods or business practices, uniform sampling is 
important. 

The random sampling procedure described in this section creates a random sample of the rows of a 
table. Using it, you can obtain an exact number of rows in the sample or you can let the system 
sample each row with a fixed probability. Sampling can be performed with or without replacement.

Available Functionality 

The Random_Sample stored procedure, covers the following functionality: 

► Creates random samples with a specified number of rows from a given table with replacement.

► Creates random samples with a specified number of rows from a given table without 
replacement.

► Allows you to specify the probability of each row to be in the sample.

► Allows you to specify the input table columns to keep in the sample.

► Allows you to specify the name of the output table (and to overwrite an existing table, if 
applicable).
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Example

Consider three execution examples of the RANDOM_SAMPLE procedure on the Adult data set. The 
first example illustrates the creation of a 1000-row random sample, with columns id and income, and 
with replacement. Replacement means that some rows from the source data set can be duplicated)

CALL nza..RANDOM_SAMPLE('intable=nza..adult, size=1000, outtable=adult_size, 
outsignature=id;income, outclear=true, replace=true, randseed=11213');

The second example shows creation of a random sample of the same size and the same output 
columns, but without replacement (rows can not be duplicated).

CALL nza..RANDOM_SAMPLE('intable=nza..adult, num=1000, outtable=adult_num, 
outsignature=id;income, outclear=true, replace=false, randseed=11213');

The last example shows creation of a random sample of a fixed faction equal to 0.3, without 
replacement. This means that (approximately) 30 percent of the source data set will be copied to the 
adult_frac table. Because the parameter outsignature is missing, all columns from the source data set 
will be copied to the output table.

CALL nza..RANDOM_SAMPLE('intable=nza..adult, fraction=0.3, 
outtable=adult_frac, outclear=true, replace=false, randseed=11213');
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Naive Bayes

The naive Bayes classifier is a simpler classification algorithm than most, which makes it quick and 
easy to apply. While it does not compete with more sophisticated algorithms with respect to 
classification accuracy, in some cases it may be able to deliver similar results in a fraction of the 
computation time. 

Background 

The naive Bayes classifier algorithm uses the Bayes theorem to calculate the conditional class 
probability of the given attribute values, called the posterior class probability: 

P  c  x  = d∣a1  x =v1 , a2  x =v2 , ... , an  x =v n

=
P c  x  = d ⋅P  a1  x =v1 ,a2  x =v 2 , ... , an  x =vn = v n∣c  x =d 

P  a1  x =v1 ,a2  x =v 2 , ... , an  x =vn = v n
 (57)

The numerator and denominator is referred to as the Bayes numerator and denominator, 
respectively. The calculation is based on the prior class probabilities P c x =d  , which can be 
directly estimated from the data, and on the joint inverse conditional attribute values probability 
given the class: 

P  a1  x =v1 , a2  x  = v2 , ... , an  x  = v n= vn∣c  x  = d   (58)

The joint inverse conditional attribute can be efficiently calculated as the product of per-attribute 
conditional attribute value probabilities P a i x=vi∣c x=d  , directly estimated from the data, 
assuming the conditional independence of attributes given the class. This assumption may be untrue 
in practice, which is why the algorithm is called “naive”. While violations of the independence 
assumption result in probability calculations yielding incorrect results, they may not directly affect 
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the accuracy of predictions, which may be correct even when using incorrect probabilities. The naive 
Bayes classifier has been found to predict well in several domains where the independence 
assumption is not satisfied. 

A result of this approach is that whenever the estimated probability of one attribute value within a 
class is 0, the posterior probability of this class is also calculated as 0. If this happens for all classes, 
no prediction is possible. One way to prevent this problem is to always replace zero probabilities with 
sufficiently small positive numbers. If there is no instance with the value of attribute a i  equal v i  in 
class d , the probability P a i x=vi∣c x=d   can be set to half of the probability estimated 
when there is one such instance. A more refined approach is to use a modified probability estimation 
technique, known as the m -estimation, where the per-class attribute value frequencies observed for 
training instances are augmented by the a priori assumed frequencies for a small number of 
“hypothetical” instances. Without specific domain knowledge, these prior frequencies are assumed 
to be equal for all attribute values within particular classes, and the number of included hypothetical 
instances is usually equal to the number of possible attribute values. 

Missing Value Support
Since Naive Bayes uses values of each attribute only for conditional probability calculations, assuming 
the conditional independence of attributes given the class, it handles missing values during model 
creation and prediction by ignoring them on a per-instance and per-attribute basis. More precisely, 
when estimating a conditional attribute-value given the class probabilities of the following form 
P a i x=vi∣c x=d   for each attribute a i , value v i , and class d , only instances with non-

missing values of a i  are taken into account. Similarly, when the product of such probabilities needs 
to be calculated during prediction for an instance x* :

∏
i=1

n

P(a i(x )=a i( x*)∣c( x)=d )  (59)

factors corresponding to missing a i( x*) are skipped.

For data sets with no missing values the behavior remains unchanged. Data sets with missing values 
can be used for both model creation and prediction.

Applications 

While classification accuracy is not the strongest point of the naive Bayes classifier, its other 
advantages make it well-suited to domains where classification models must be created quickly, 
without a significant computational effort, without the need for parameter tuning, and without any 
overfitting-prevention overhead. Similarly, it is well-suited to applications that require frequently 
creating numerous classification models, either because they are quickly outdated or because new 
classification tasks appear dynamically. There are some areas, however, where the naive Bayes 
classifier may compete with much more refined algorithms not only in efficiency, but also in 
accuracy. This may be the case for classification tasks with a large number of attributes, each of 
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which may have some marginal impact on the class, and where there are no strong relationship 
patterns permitting prediction based on the values of a small number of the most influential 
attributes. One such area where the naive Bayes classifier is among the most successful algorithms is 
text classification. 

Available Functionality 

The Netezza implementation of the naive Bayes classifier, exposed as the NAIVEBAYES stored 
procedure, covers the following functionality: 

► naive Bayes model building by estimating probabilities 

► support for discrete and continuous attributes

► all continuous attributes are automatically discretized using one of three algorithms:

▲ equal-width discretization—(the default) an unsupervised discretization algorithm using the 
equal width criterion for interval bound setting (disc=ew)

▲ equal-frequency discretization—an unsupervised discretization algorithm using the equal 
frequency, that is, equal data count, criterion for interval bound setting (disc=ef)

▲ minimum-entropy discretization—a supervised discretization algorithm that identifies the 
most appropriate interval bounds by minimizing class distribution impurity (disc=em)

► support column properties definition mechanism

► two methods of conditional attribute-value probability estimation 

▲ ordinary frequency-based estimation with replacing zero probabilities with small numbers 
corresponding to ½ of an instance 

▲ m -estimation with uniform priors and m  set to the number of attribute values for each 
attribute 

► predicting most likely class labels and class probabilities for all classes 

Examples 

Consider the application of the naive Bayes classifier to the CensusIncome data set. Input data can 
contain a mix of continuous and nominal attributes types. All types can be either detected 
automatically or user-specified. To define types manually, use the incolumn and coldeftype 
parameters (see Column Properties for more information). The naive Bayes classifier also allows you 
to define a discretization algorithm, as well as the number of bins:

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=ew, bins=20, id=id, 
target=income, model=ci_nb_ewd'); 

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=ef, bins=20, id=id, 
target=income, model=ci_nb_efd'); 

CALL nza..NAIVEBAYES('intable=CensusIncome_train, disc=em, id=id, 
target=income, model=ci_nb_emd'); 
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The created model is represented by a table containing one row for each attribute-value-class 
combination and the following columns: 

► attribute—the attribute 

► val—the value 

► class—the class 

► classvalcount—the number of occurrences of the corresponding value of the corresponding 
attribute within the given class in the training set 

► classcount—the number of occurrences of the given class in the training set 

► attrclasscount—the number of not null occurrences of the given class in the training set

► totalcount—the number of all instances in the training set 

These are sufficient for calculating prior class probabilities and conditional attribute value 
probabilities used for naive Bayes prediction. 

The three resulting models can be used to generate test set predictions as follows: 

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_ewd, intable=CensusIncome_test, 
outtable=CensusIncome_income_nb_ewd, outtableprob = 
CensusIncome_income_nb_ewd_prob'); 

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_efd, intable=CensusIncome_test, 
outtable=CensusIncome_income_nb_efd, outtableprob = 
CensusIncome_income_nb_efd_prob');

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_emd, intable=CensusIncome_test, 
outtable=CensusIncome_income_nb_emd,outtableprob =
CensusIncome_income_nb_emd_prob');

Because the Netezza Analytics ID for the Predict procedure is optional, it is not necessary to define it 
if its name in test data is the same as the name in training data.

Recall from the Discretization section that the test sets used for each model application have been 
discretized using the same intervals that were determined on the corresponding training sets. The 
specified output table contains the generated predictions and has two columns, id and class. 
Another output table is also created, with the _prob suffix appended to the name, containing one 
row for each instance and possible class, and the following columns: 

► id—the instance identifier 

► class—the class 

► prob—the Bayesian numerator of the class for the instance, which is the product of the class 
probability and the conditional instance attribute value probabilities 

► lnprob—the natural logarithm of prob 

The probabilities can be used to provide better insight into model predictions or modify model 
operation. The Bayesian numerators can be converted to regular probabilities by normalization: 
dividing by the sum of numerators for the same instance and all classes. This is demonstrated by the 
following query that adds the class probability to each instance and its predicted class label for the 
third model, obtained using the minimum-entropy discretization: 
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SELECT S.id, S.class, S.prob/S.sump as prob 
FROM (SELECT id, class, prob, sum(prob) OVER (PARTITION BY id) AS sump FROM 
CensusIncome_income_nb_emd_prob) S, CensusIncome_income_nb_emd P 
WHERE S.id=P.id AND S.class=P.class; 

The quality of the obtained predictions can be evaluated by calculating the misclassification error as 
follows: 

CALL nza..CERROR('pred_table=CensusIncome_income_nb_ewd, 
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income');

CALL nza..CERROR('pred_table=CensusIncome_income_nb_efd, 
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CERROR('pred_table=CensusIncome_income_nb_emd, 
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

The three models perform similarly; however, the first, which is based on equal-frequency 
discretization, is slightly worse than the other two. With the misclassification error levels above 0.23 
all three are considerably inferior to the models obtained in the examples presented in the Decision 
Trees section. The naive Bayes classifier does not appear to be particularly well-suited to the 
CensusIncome data set. 

To enable the m -estimation technique for avoiding 0 probabilities during prediction, you can specify 
the mestimation=TRUE argument for the PREDICT_NAIVEBAYES procedure, as demonstrated 
below: 

CALL nza..PREDICT_NAIVEBAYES('model=ci_nb_emd, intable=CensusIncome_test, 
mestimation=TRUE, outtable=CensusIncome_income_nb_emd_mest'); 

CALL nza..CERROR('pred_table=CensusIncome_income_nb_emd_mest, 
true_table=CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

After analysis, it can be determines that the technique has little impact on the quality of predictions 
generated for the CensusIncome data. 

More in-depth prediction quality analysis can be performed using the confusion matrix and the 
derived quality indicators, as demonstrated previously in the examples presented in the Decision 
Trees section. For the third model, obtained using the minimum-entropy discretization, proceed as 
follows: 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income_nb_emd, id=id, target=income, 
matrixTable=ci_income_nb_emd_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income_nb_emd_cm'); 
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The result sheds new light on the quality of naive Bayes predictions for the CensusIncome data. The 
large misclassification error translates to a high false positive rate of nearly 0.25, but also a 
surprisingly high true positive rate of more than 0.9, with the high-income class considered positive. 
While the false positive rate is poor, the true positive rate is significantly better than observed in the 
Decision Trees section. 

With Netezza Analytics 2.0 and later, all columns can be defined by types and roles.

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, id=id, 
target=class');

is equal to: 

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, incolumn= id:id; 
class:target');

To define nominal and continuous attributes manually, you can use the nom and cont types:

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, 
incolumn=SEPALLENGTH:nom;SEPALWIDTH:cont;PETALLENGTH:cont;PETALWIDTH:cont;cla
ss:target,id=id');

It is also possible to create one-column properties definitions and pass them to the model multiple 
times:

call nza..COLUMN_PROPERTIES('intable=nza..iris, outtable=iris_columns, 
coldeftype=cont, 
incolumn=PETALWIDTH:nom;PETALLENGTH:cont:ignore;class:nom:target;id:id');

select * from iris_columns;

CALL nza..NAIVEBAYES('model=NB_iris, intable=nza..iris, 
colPropertiesTable=iris_columns');
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Decision Trees

Background

In many classification applications it may be required or desirable not only to accurately classify 
instances, but also to inspect the model. The inspection makes it possible to explain its decisions, 
modify it, or combine with some existing background knowledge. In such applications, where both 
the high classification accuracy and human-readability of the model are required, the method of 
choice is typically going to be decision trees. 

A decision tree is a hierarchical structure that represents a classification model using a “divide and 
conquer” approach. Internal tree nodes represent splits applied to decompose the data set into 
subsets, and terminal nodes, also referred to as leaves, assign class labels to sufficiently small or 
uniform subsets. Splits are specified by logical conditions based on selected single attributes, with a 
separate outgoing branch corresponding to each possible outcome. 

The concept of decision tree construction is to select splits that decrease the impurity of class 
distribution in the resulting subsets of instances, and increase the domination of one or more classes 
over the others. The goal is to find a subset containing only or mostly instances of one class after a 
small number of splits, so that a leaf with that class label is created. This approach promotes simple 
trees, which typically generalize better. 

Creating and using decision tree models involves three major algorithmic sub-tasks: 

► decision tree growing 

► decision tree pruning 

► decision tree prediction 

Growing 
Decision tree growing consists of creating a decision tree from a given data set by appropriately 
selecting splits and assigning class labels to leaves when no further splits are required or possible. 
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This is performed in a top-down fashion, starting from a single root node. A table representing a 
training data set is used as input. This table contains a number of columns representing attributes as 
well as a single column designated as the class attribute. The expected output is an appropriate 
representation of a decision tree built based on the provided training set. 

Decision tree growing starts from a single node, corresponding to the complete training set. When a 
split is applied, each of the created descendant nodes corresponds to the appropriate subset of the 
training set, determined by the split outcome. Further splits can be applied to these nodes, resulting 
in new nodes corresponding to smaller subsets of instances, and so on. Nodes without further splits 
remain leaves. 

The decision tree growing process can be viewed as the repeated application of the following key 
operations: 

► stop criteria 

► class label assignment 

► split selection 

The stop criteria determine whether a split is applied in a node, or if it remains a leaf. The decision is 
based on the subset of training instances corresponding to the node. No split is applied when: 

► all instances in the corresponding subset are of the same class 

► the number of instances in the corresponding subset is less than a specified minimum 

► the level of the current node is greater than a specified maximum, with the level of the root 
node being 1, the level of its descendants being 2, and so on 

► the improvement of class impurity due to the best available split is less than a specified 
minimum

Class label assignment, although strictly necessary only for leaves, takes place for all nodes. The 
majority class label in the corresponding set of training instances is always assigned. The class label 
assignment is useful if the tree is subsequently pruned, which turns some nodes into leaves, and 
facilitates the human inspection of the tree structure. 

Split selection assigns minimum-impurity splits to nodes for which the stop criteria were not 
satisfied. The set of candidate splits includes binary equality-based splits for all discrete attributes 
and binary inequality-based splits for all continuous attributes. An impurity measure is applied to 
subsets corresponding to split outcomes to evaluate candidate splits. One commonly used impurity 
measure is the entropy, defined for node n  as follows: 

E (n) =∑
d ∈C

−P (d∣n) log2 P (d∣n)  (60)

where d iterates over classes, and P (d∣n) =
∣T n

d
∣

∣T n∣
is the probability of class d based on T n , the 

subset of training instances corresponding to node n , designated by T n , and the class in the 
superscript denotes selecting instances of this class only. Another popular impurity measure is the 
Gini index, calculated as: 
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G(n)=1−∑
d∈C

P (d∣n)2  (61)

If a split is considered for node n  that yields two descendant nodes, n1  and n2 , the selected 
impurity measure is applied to these descendant nodes and then the weighted average of their 
impurities is calculated to achieve the evaluation of the split, with the corresponding instance counts 
used as weights. Using the entropy this can be written as follows: 

E (n1 ,n2) = E (n1)
∣T n1
∣

∣T n∣
+E (n2)

∣T n 2
∣

∣T n∣
 (62)

The split that yields minimum impurity is selected. 

In all phases of the tree growing process it is possible to use instance or class weights to make the 
resulting decision tree model more sensitive to some instances or classes. Specifying a vector of 
numerical weights wx for each instance x instructs the algorithm to weight the training instances 
accordingly when creating the decision tree. Specifying per-class rather than per-instance weights is a 
convenient way to assign the same weight to all instances of the same class. This does not actually 
add any complexity to the algorithm. Note that all operations described above use training data only 
to count instances in particular nodes satisfying some conditions. The effect of using weights is 
replacing these counts by the corresponding sums of weights. For integer weights, this is equivalent 
to replicating instance x from the training set wx times.

The most important application of class weights is to make the decision tree growing algorithm cost-
sensitive by assigning each class d∈C  a weight wd=ρ[d ] , where [d ]  is the misclassification 
cost of predicting any class d '≠d  for instances of true class d . 

Pruning 
The goal of decision tree pruning is to reduce the risk of overfitting by removing overgrown subtrees 
that do not improve the expected accuracy on new data. While growing such subtrees may be 
prevented by appropriately selected more aggressive stop criteria, a separate pruning process is 
typically a more reliable approach. Decision tree pruning receives a decision tree on input and is 
intended to produce a pruned version, ideally with less risk of overfitting. 

There are two major categories of pruning algorithms: 

► using a separate pruning data set to estimate the expected accuracy on new data 

► using the training set for this estimate 

A separate pruning data set is considered more reliable, although it has the disadvantage of 
removing a large subset of data from the training set, which in turn may reduce the quality of the 
grown tree. The result is a good pruning method applied to a mediocre tree. Using the training set 
has the advantage of using the data economically, but must resort to heuristics to work around the 
inability to estimate the true new data performance. 
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Reduced error pruning (REP) is the standard algorithm of the first category. It iterates over the 
decision tree nodes in a bottom-up order and considers replacing each node and attached subtree 
with a single leaf, with the majority training set class. If the accuracy of the replacement leaf on the 
pruning set is more than that of the original subtree, the pruning operation is applied. The accuracy 
estimation is based on the instances from the pruning set that have reached the point where the 
node under consideration is located when propagated down the tree. The weighted accuracy may be 
optionally used instead of the ordinary accuracy to better handle unbalanced classes, when high 
accuracy values do not necessarily imply high predictive utility. It is calculated by averaging per-class 
accuracies.

As with growing, instance or class weights can be taken into account in the pruning process, which 
affects only the calculation of the accuracy of nodes and leaves. . 

Prediction 
Decision tree prediction consists of using a previously grown, and possibly pruned, decision tree to 
generate class predictions for a data set. It is performed by applying the splits from the tree nodes to 
propagate instances from the data set down to the corresponding leaves. Decision tree prediction 
takes a decision tree and a data set on input and uses the tree to predict class labels for the data set. 
It can be also used to predict class probabilities based on the class distribution of training instances in 
leaves. 

Missing Value Support
IBM Netezza In-Database Analytics supports the creation of decision trees for data sets that contain 
missing values. Many real-world data sets suffer from missing attribute value, yet decision tree 
growing is severely affected by missing values. In particular, the following operations cannot be 
performed in the usual manner if the values of one or more attributes are missing for some 
instances:

► class distribution calculation (class counts for each node-attribute-value)

► split evaluation (class impurity for each node-attribute-value)

► split application (splitting data based on equality- or inequality-based conditions)

which rely on the availability of attribute values. The fractional instance technique, applied to 
overcome the problem, splits an instance with a missing value of some attribute used for a split into 
appropriately weighted fractional instances, assuming that each split outcome is possible with a 
corresponding probability.

The basic idea of the fractional instance technique is to virtually replace an instance by fractional  
instances whenever a split is to be applied on an unknown attribute value. Each fractional instance 
corresponds to one possible split outcome. In the Netezza Analytics implementation, instances with 
an unknown attribute value are replaced by two fractional instances, corresponding to the left and 
right outgoing tree branches. Each instance is assigned its copy count, initialized either to 1 or its 
weight, if specified. Then, if the instance is fractionated it is multiplied by the corresponding split 
outcome probabilities, determined based on those instances for which the values of the split 
attribute are known.

150 00X6331-01 Rev. 2



Background

This technique is applied during all phases of decision tree processing: growing, pruning, and 
prediction. Whenever the number of instances in a subset is needed for stop criteria or split selection 
calculation during growing, the sum of the corresponding weights (copy counts) is used instead of 
ordinary subset counts. Similarly instance weights are taken into account for pruning criteria 
calculation. During prediction, whenever multiple fractions of the same instance arrive at multiple 
leaves, the predicted class label is determined by probability-based voting.

Missing value handling via the fractional instance technique increases the computational complexity 
of decision tree creation and application, but keeps the impact of missing values on model and 
prediction quality as low as possible. If the additional computational expense is undesirable, missing 
values may be imputed, as discussed in the Data Imputation section.

Applications 

Decision trees are considered among the most accurate classifiers. Unlike some algorithms, they can 
handle both discrete and numerical attributes by using them in symbolically-represented split 
conditions. The human readability of decision tree models is an additional advantage that makes 
them particularly well-suited to applications that require both high accuracy and interpretability of 
the classification model. The latter makes it possible for a human expert to verify the model or to 
combine it with some background knowledge. Application areas where this is likely to be needed 
include customer classification, fraud detection, and diagnostics. 

Available Functionality 

The Netezza implementation of decision trees provided by the DECTREE, GROW_DECTREE, 
PRUNE_DECTREE, PREDICT_DECTREE, and PRINT_MODEL stored procedures covers the following 
functionality: 

► top-down decision tree growing 

► support for discrete and continuous attributes 

► support for instance or class weights 

► binary equality-based splits for discrete attributes (attribute = value) 

► binary inequality-based splits for continuous attributes (attribute ≤ value) 

► class labels and probabilities assigned to leaves and internal nodes 

► split selection based on class impurity measures such as entropy or Gini index, with more 
definable via UDAs 

► several stop criteria: uniform class 

▲ no candidate splits left 

▲ not enough instances, that is, less than a specified minimum required for a split 

▲ not enough improvement of class impurity (less than a specified minimum required for a 
split) 

▲ reaching the maximum allowed tree depth 
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► reduced error pruning using accuracy or weighted accuracy pruning criteria

► class label and probability prediction 

► decision tree structure printing 

If the input table contains NULL attribute values (i.e., instances with missing attribute values), the 
fractional instance technique is automatically applied to handle them. The additional computational 
expense depends on the particular data set and the number of missing values, but typically there is a 
5-30% time increase compared to the same data sets with missing values removed or imputed. If this 
computational expense is undesirable, instances with missing values should be removed or missing 
values imputed. The Data Imputation  section describes and demonstrates how the latter can be 
accomplished. 

The number of nodes that must be created, which is controlled by the stop criteria, determines the 
computational effort required to grow (and subsequently prune or apply) the decision tree. Using 
appropriate parameter settings for the minimum number of instances required for a split, the 
minimum impurity improvement required for a split, or the maximum tree depth may save 
computation time. Default settings result in moderately complex trees and should be usually 
reasonable to start with, but may need adjusting for particular data sets.

Examples 

Consider creating a decision tree model for the CensusIncome data set. The following call requests 
growing a tree based on the CensusIncome_train table, using the id column as a unique instance 
identifier, and the income column as the class: 

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id, 
target=income,model=ci_tree1, eval=gini, minimprove=0.005, minsplit=1000'); 

The resulting decision tree is stored as the ci_tree1 model. The Gini index is used as a class impurity 
measure for split evaluation, and no further splits are attempted when there are less than 1000 
instances left or if the maximum available split does not improve the impurity by at least 0.005. 

Although the tree was grown with stop criteria settings of minsplit=1000 and minimprove=0.005, 
which may partially prevent overfitting, it is still likely to benefit from pruning. This is performed by 
the following code, using the CensusIncome_val table as the pruning set: 

CALL nza..PRUNE_DECTREE('model=ci_tree1, valtable=nza..CensusIncome_val'); 

If the id and target arguments are not specified in the call of the pruning procedure, as above, they 
will default to those previously specified for tree growing. The pruning operation modifies the 
specified decision tree in-place. The modified tree can be inspected using the same SQL call. Note 
the substantial reduction in tree size, from several hundred nodes to just a few dozen. The tree can 
be inspected as demonstrated before, by looking at the contents of the ci_tree1 table, but a more 
readable printout is produced by calling the PRINT_DECTREE function: 

CALL nza..PRINT_MODEL('model=ci_tree1'); 

The resulting output is presented below: 
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 -- decision tree model: "CI_TREE1" --
CAPITAL_GAINS <= 7298
| DIVIDENDS_FROM_STOCKS <= 0
| | if true then class -> - 50000.
| | WEEKS_WORKED_IN_YEAR <= 44
| | | if true then class -> - 50000.
| | | SEX = Female
| | | | DIVIDENDS_FROM_STOCKS <= 3750
| | | | | EDUCATION = Masters degree(MA MS MEng MEd MSW MBA)
| | | | | | if true then class -> - 50000.
| | | | | | EDUCATION = Doctorate degree(PhD EdD)
| | | | | | | if true then class -> 50000+.
| | | | | | | EDUCATION = Prof school degree (MD DDS DVM LLB JD)
| | | | | | | | if true then class -> 50000+.
| | | | | | | | if false then class -> - 50000.
| | | | | if false then class -> - 50000.
| | | | CAPITAL_LOSSES <= 1887
| | | | | DIVIDENDS_FROM_STOCKS <= 359
| | | | | | if true then class -> - 50000.
| | | | | | MAJOR_OCCUPATION_CODE = Professional specialty
| | | | | | | if true then class -> 50000+.
| | | | | | | MAJOR_OCCUPATION_CODE = Executive admin and managerial
| | | | | | | | if true then class -> 50000+.
| | | | | | | | if false then class -> - 50000.
| | | | | if false then class -> 50000+.
| CAPITAL_GAINS <= 9562
| | if true then class -> - 50000.
| | if false then class -> 50000+.

Each line in this textual tree representation corresponds to a node or a leaf, and the indentation 
reflects the tree level. For a node, the split condition is printed; for each leaf, the assigned class label 
is printed. Each node is followed by its left and right subtrees. For example, according to the printout 
presented above, the root node splits on the capital_gains attribute by comparing it with a threshold 
value of 7298. The left branch (capital_gains ≤ 7298) leads to a descendant node that splits on the 
dividends_from_stocks attribute, and the right branch (capital_gains > 7298) to a node that uses 
the capital_gains attribute again, comparing it with 9562. This node has two descendant leaves, 
labeled with low (- 50000.) and high (50000+.) income class labels.. 

For convenience, the growing and pruning phases can be performed by a single call: 

CALL nza..DECTREE('intable=nza..CensusIncome_train, 
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree2, 
eval=gini, minimprove=0.005, minsplit=1000'); 

This is equivalent to the separate grow and prune calls presented above. If the DECTREE 
procedure is called without specifying the pruning set via the valtable argument, no pruning is 
performed. 

The accuracy quality measure is used for the pruning criterion by default, but the alternative 
weighted accuracy measure may be requested by specifying the qmeasure=wacc argument for 
PRUNE_DECTREE or DECTREE, as demonstrated below:

CALL nza..DECTREE('intable=nza..CensusIncome_train, 
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree3, 
eval=gini, minimprove=0.005, minsplit=1000, qmeasure=wacc'); 
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It may be actually more appropriate for unbalanced classes, being equally sensitive to the accuracy 
obtained for all classes.

The next two calls demonstrate the effect of other stop criteria that can be specified for decision tree 
growing: 

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id, 
target=income, model=ci_tree4, eval=gini, minimprove=0.0, maxdepth=5'); 

CALL nza..GROW_DECTREE('intable=nza..CensusIncome_train, id=id, 
target=income, model=ci_tree5, eval=gini, minimprove=0.01, minsplit=1000'); 

The first limits the tree depth to 5 (the default maximum depth is 62) while setting the impurity 
improvement needed for split to 0, and the other requests that a split must improve the class 
impurity by at least 0.01 for at least 1000 instances to be accepted. The trees grown by these calls 
are considerably smaller than those created before. 

To evaluate the performance of the created decision tree on the CensusIncome test set, proceed as 
follows: 

CALL nza..PREDICT_DECTREE('model=ci_tree1, intable=nza..CensusIncome_test, 
outtable=CensusIncome_income1, prob=TRUE'); 

This applies the ci_tree1 decision tree to generate predictions on the test set, which are stored in the 
CensusIncome_income1 table. Both predicted class labels and their probabilities are generated. The 
column used as a unique instance identifier does not need to be passed using the id argument if it is 
the same as previously during tree creation, but otherwise it may be explicitly specified.

You can then calculate the misclassification error achieved by the tree on the test set: 

CALL nza..CERROR('pred_table=CensusIncome_income1, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

The obtained error level may appear low, but subsequent inspection via the confusion matrix, using 
the following call to the CONFUSION_MATRIX procedure: 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income1, id=id, target=income, 
matrixTable=ci_income1_cm'); 

SELECT * FROM ci_income1_cm ORDER BY 1, 2; 

This reveals that the tree’s performance may not be be very good. While it is successful at detecting 
the low-income class, it usually fails to correctly predict the high-income class. This may not be 
surprising given the sparser representation of the high income in the data. If you consider the high-
income class as positive and the low-income class as negative, you can describe the performance as 
yielding a satisfactorily low false positive rate with a very low true positive rate. These indicators can 
be calculated as follows, with the class argument used to specify which class is considered positive: 

CALL nza..FPR('matrixTable=ci_income1_cm, class=50000+.'); 
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Alternatively, a more extensive and comprehensible description of the model’s performance based 
on the confusion matrix can be printed using the CMATRIX_STATS procedure: 

CALL nza..CMATRIX_STATS('matrixTable=ci_income1_cm'); 

The output includes, in particular, the true positive rate and the false positive rate with each class 
considered positive.

Similarly, examining the performance of the ci_tree3 model created with weighted accuracy-based 
pruning, expected to handle unbalanced classes, better:

CALL nza..PREDICT_DECTREE('model=ci_tree3, intable=nza..CensusIncome_test, 
outtable=CensusIncome_income3, prob=TRUE'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income3, id=id, target=income, 
matrixTable=ci_income3_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income3_cm'); 

we may find some increase of the true positive rate for the high-income class.

Another way to look for improvement is to exploit the probabilistic prediction capability of decision 
trees. When dealing with a two-class task, as in this example, you can predict class labels by explicitly 
comparing estimated class probabilities against a cutoff value that is different from the default 
implicit 0.5 cutoff corresponding to predicting the most probable class. This possibility is 
demonstrated below using a cutoff value of 0.8 for the low-income class, which favors the high-
income class. 

CREATE VIEW CensusIncome_income3p AS SELECT id, CASE WHEN class='- 50000.' 
AND prob>=0.8 THEN '- 50000.' ELSE '50000+. ' END AS class FROM 
CensusIncome_income3; 

The modified predictions can be evaluated using the confusion matrix:

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income3p, id=id, target=income, 
matrixTable=ci_income3p_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income3p_cm'); 

This evaluation reveals a further increase of the true positive rate, at the cost of some increase of the 
false positive rate. These are more useful predictions, despite a slightly greater overall error. While 
the default maximum-probability classification minimizes the misclassification error, by shifting the 
probability cutoff value you effectively incorporate misclassification costs into the prediction process 
and minimize the mean misclassification cost. The 0.8 cutoff for the low income class corresponds to 
a 4:1 misclassification cost matrix—in which failing to detect the high-income class is 4 times more 
costly than failing to detect the low-income class: 0.8=4 /45 . 
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Another approach to incorporating misclassification costs in decision tree classification is to 
appropriately weight training instances during tree growing (and pruning instances during tree 
pruning, if the latter is performed). This allows instances of the more important/harder to 
predict/less frequent class, for which making mistakes is more costly, to receive more weight. An 
appropriate class weight table, representing the same 4:1 cost matrix assumed above, can be created 
and used for creating a decision tree model: 

CREATE TABLE CensusIncome_weights AS SELECT DISTINCT income as class, CASE 
WHEN income='50000+.' THEN 4 ELSE 1 END AS weight FROM 
nza..CensusIncome_train; 

CALL nza..DECTREE('intable=nza..CensusIncome_train, 
valtable=nza..CensusIncome_val, id=id, target=income, model=ci_tree1w, 
weights=CensusIncome_weights, valweights=CensusIncome_weights, eval=gini, 
minimprove=0.005, minsplit=1000'); 

The weights argument is used to specify the table containing class or instance weights for tree 
growing, and the valweights argument specifies the weights table for pruning. For class weights 
these are usually the same, but for instance weights they would be different if the training and 
pruning sets were different (as they normally should). Class weights are specified using a table that 
includes the class and weight columns, as demonstrated above, with the values of the former 
matching the possible classes. To specify instance weights, a table including the id and weight 
columns are required, with the values of the former matching instance identifiers from the training 
or pruning set. This could be useful to make the model more sensitive to some particular instances, 
but class weights are sufficient and more convenient to incorporate per-class misclassification costs.

The resulting decision tree – likely to be larger, as more splits yielding a sufficient impurity 
improvemement may be found with more weight put to the less frequent class – can be evaluated in 
the same way as before: 

CALL nza..PREDICT_DECTREE('model=ci_tree1w, intable=nza..CensusIncome_test, 
outtable=CensusIncome_income1w, prob=TRUE'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income1w, id=id, target=income, 
matrixTable=ci_income1w_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income1w_cm');

and observed to exhibit indeed a substantially higher improvement of the true positive rate than 
obtained previously by altering the prediction probability cutoff. In this case, the specified 
misclassification costs were incorporated directly into the tree structure by the growing and pruning 
process and not only into the prediction process, as with the probabilistic classification using the 
minimum-cost rule. 

The decision tree algorithm can be applied to data sets with missing attribute values either directly, 
using the internal missing value handling capability, or after processing them with the data 
imputation algorithm, as described in the Data Imputation  section. There, corrupted versions of the 
CensusIncome training, validation, and test set were created and then repaired by imputation. The 
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two attributes used for that demonstration, capital_gains and sex, are used by the trees generated 
in this section and appear highly in the tree structure (the capital_gains attribute is used for the root 
node split), as seen in the printout of ci_tree1 presented above. The following SQL code recreates 
and evaluates the tree using the corrupted version of the training, pruning, and test data sets after 
imputation: 

CALL nza..DECTREE('intable=CensusIncome_train_imp, 
valtable=CensusIncome_val_imp, id=id, target=income, model=ci_tree1imp, 
eval=gini, minimprove=0.005, minsplit=1000'); 

CALL nza..PREDICT_DECTREE('model=ci_tree1imp, intable=CensusIncome_test_imp, 
outtable=CensusIncome_income1imp, prob=TRUE'); 

CALL nza..CERROR('pred_table=CensusIncome_income1imp, 
true_table=CensusIncome_test_imp, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=CensusIncome_test_imp, 
resulttable=CensusIncome_income1imp, id=id, target=income, 
matrixTable=ci_income1imp_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income1imp_cm'); 

The following sequence of calls repeats the same process directly using the corrupted data sets 
without imputation:

CALL nza..DECTREE('intable=CensusIncome_train_miss, 
valtable=CensusIncome_val_miss, id=id, target=income, model=ci_tree1miss, 
eval=gini, minimprove=0.005, minsplit=1000'); 

CALL nza..PREDICT_DECTREE('model=ci_tree1miss, 
intable=CensusIncome_test_miss, outtable=CensusIncome_income1miss, 
prob=TRUE'); 

CALL nza..CERROR('pred_table=CensusIncome_income1miss, 
true_table=CensusIncome_test_miss, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=CensusIncome_test_miss, 
resulttable=CensusIncome_income1miss, id=id, target=income, 
matrixTable=ci_income1miss_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income1miss_cm'); 

The quality of predictions clearly depends on the particular random distribution of missing values, 
which were generated at random, but in general internal missing value handling takes somewhat 
more time, but is likely to deliver better results in some situations. 
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Output Table Data Formats

The following tables are generated when you build decision trees:

► NZA_META_<model_name>_MODEL

► NZA_META_<model_name>_NODES

► NZA_META_<model_name>_PREDICATES

► NZA_META_<model_name>_COLUMNS

► NZA_META_<model_name>_COLUMN_STATISTICS

► NZA_META_<model_name>_DISCRETE_STATISTICS

► NZA_META_<model_name>_NUMERIC_STATISTICS

NZA_META_<model_name>_MODEL
The NZA_META_<model_name>_MODEL table contains information about the entire tree model. 
The table contains only one line and has the following layout:

Table 11: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of tree model, always classification.

MAXSPLIT SMALLINT Maximal number of splits from a node.

DEPTH SMALLINT Depth of the tree.

MISSINGVALUE-
STRATEGY

VARCHAR(32) Strategy for handling the case where a 
predicate evaluates to UNKNOWN. Possible 
values are 'lastPrediction', 'nullPrediction', 
'defaultChild', and 'weightedConfidence'.

MISSINGVALUE-
PENALTY

DOUBLE Factor to be applied to the confidence 
every time the default child (or surrogate 
node) strategy has to be applied.

NUMLEAVES BIGINT Number of leaf nodes contained in the 
model.

NUMNODES BIGINT Number of nodes contained in the model.

NZA_META_<model_name>_NODES
The NZA_META_<model_name>_NODES table contains all tree nodes in the model together with 
some explanatory information. The table further encodes the tree structure because it contains the 
predecessor (parent) node for every node.
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The table contains one line for each tree node and has the following layout:

Table 12: Columns of the NZA_META_<model name>_NODES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

NAME NVARCHAR(100) Name of the node (defaults to NODEID).

DESCRIPTION NVARCHAR(10000) Textual node description (defaults to 
NULL).

SIZE DOUBLE Number of data records in the node.

RELSIZE DOUBLE Relative size of the node: Size of the 
current node divided by the size of root 
node (NODEID 1).

ISLEAF BOOLEAN Indicates whether the node is a leaf node.

PARENT BIGINT NODEID of parent node.

CLASS <target column type> Prediction made for records in this node.

IMPURITY DOUBLE The class impurity measure of this node.

DEFAULTCHILD BIGINT NODEID of default child node, which is 
used as successor if the predicate cannot 
be evaluated. If MISSINGVALUE-
STRATEGY is not ‘defaultChild‘ this value 
is NULL.

NZA_META_<model_name>_PREDICATES
The NZA_META_<model_name>_PREDICATES table contains all simple predicates and all simple set 
predicates in the model. The predicate of a given node indicates which condition must be true to be 
reached from its parent. The predicate of the root node is true.

The table has the following layout:

Table 13: Columns of the NZA_META_<model name>_PREDICATES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model 
having the predicate. The root node has 
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Column Data Type Purpose

NODEID 1.

COLUMNNAME NVARCHAR(128) Name of the column referenced by the 
predicate. It is NULL when the predicate is 
'true', 'false', 'isMissing' or 'isNotMissing'.

OPERATOR VARCHAR(16) Operator used by the predicate. Possible 
operators are 'true' and 'false', 'equal', 
'notEqual', 'lessThan', 'lessOrEqual', 
'greaterThan', 'greaterOrEqual', 'isMissing', 
and 'isNotMissing' for simple predicates, 
and 'isIn' or 'isNotIn' for simple set 
predicates.

VALUE NVARCHAR(16000) Column value referenced by the predicate. 
It is NULL when COLUMNNAME is NULL.

NZA_META_<model_name>_COLUMNS
The NZA_META_<model_name>_COLUMNS contains all columns that are used by the data mining 
algorithm. From this table, you can determine, which columns are required for the model 
application.

The table contains one line for each model column and has the following layout:

Table 14: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME NVARCHAR(128) Name of an input column

DATATYPE VARCHAR(64) SQL data type of COLUMNNAME

OPTYPE VARCHAR(16) Operational type of COLUMNNAME: 
possible values are ‘categorical‘, ‘ordinal‘ 
and ‘continuous‘.

USAGETYPE VARCHAR(16) Usage type: possible values are ‘ignored‘, 
‘active‘, ‘predicted‘, 
‘supplementary‘,‘frequencyWeight‘, 
‘analysisWeight‘,and ‘group‘.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model 
training process relative to other columns. 
The default value is 1.0.
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Column Data Type Purpose

IMPORTANCE DOUBLE Indicates the column’s importance for the 
data mining model as determined by the 
algorithm. The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment: possible values are 
‘asIs‘, ‘asMissingValues‘ and 
‘asExtremeValues‘

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric 
field. Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric 
field. Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are 
contained in the valid value range or not: 
possible values are ‘openClosed‘, 
‘openOpen‘, ‘closedOpen‘, and 
‘closedClosed‘. 

NZA_META_<model_name>_COLUMN_STATISTICS
The NZA_META_<model_name>_COLUMN_STATISTICS contains statistical information about the 
active columns for each node. The contents and the existence of this table depend on the value of 
the parameter statistics when the model is built.

The table has the following layout:

Table 15: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is null 
if the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in 
COLUMNNAME for NODEID. 

MINIMUM DOUBLE Minimum value. The value is null if the 
column is not numeric.
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Column Data Type Purpose

MAXIMUM DOUBLE Maximum value. The value is null if the 
column is not numeric.

MEAN DOUBLE Mean value. The value is null if the column 
is not numeric.

VARIANCE DOUBLE Variance. The value is null if the column is 
not numeric.

VALIDFREQ BIGINT Frequency of valid values.

MISSINGFREQ BIGINT Frequency of missing values.

INVALIDFREQ BIGINT Frequency of invalid values.

IMPORTANCE DOUBLE Importance of the column for data records 
in NODEID towards predicting the target.

NZA_META_<model_name>_DISCRETE_STATISTICS
The NZA_META_<model_name>_DISCRETE_STATISTICS table contains statistical information about 
the values of active categorical columns for each node. The contents of this table depend on the 
value of the parameter statistics when the model is built.

The table has the following layout:

Table 16: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of input column.

VALUE NVARCHAR(16000) Value occurring in COLUMNNAME.
If the column is numeric, the value is a 
string representation of the true column 
value.

COUNT DOUBLE Number of occurrences of records with 
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with 
VALUE. The relative frequency is based on 
all records, including those with invalid or 
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Column Data Type Purpose

null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID) 
-RELFREQUENCY(1)

NZA_META_<model_name>_NUMERIC_STATISTICS
The NZA_META_<model_name>_NUMERIC_STATISTICS contains statistical information about the 
values of active continuous columns for each node. The contents and the existence of this table 
depend on the value of the parameter statistics when the model is built.

The table has the following layout:

Table 17: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of a numeric input column.

FROMVALUE DOUBLE Lower interval boundary; null indicates 
negative infinity.

TOVALUE DOUBLE Upper interval boundary; null indicates 
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are 
contained. Possible values are 
‘openClosed‘, ‘openOpen‘, ‘closedOpen‘, 
and ‘closedClosed‘. 

COUNT DOUBLE Number of occurrences of records in the 
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the 
interval. The relative frequency is based on 
all records, including those with invalid or 
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID) 
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

00X6331-01 Rev. 2 163



In-Database Analytics Developer's Guide

Column Data Type Purpose

VARIANCE DOUBLE Variance of all values in the interval.
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C H A P T E R  1 5
Nearest Neighbors

The nearest neighbor family of classification and regression algorithms is frequently referred to as 
memory-based or instance-based learning, and sometimes also as lazy learning. These terms 
correspond to the main concept of this approach, which is to replace model creation by memorizing 
the training data set and using it appropriately to make predictions. 

Background 

The basic nearest neighbor (NN) algorithm makes classification or regression predictions for an 
arbitrary instance x  by identifying a training instance x NN∈T  that is closest to x  and returning its 
class label c x NN   or target function value f x NN   as the predicted class label or target function 
value for x . 

The kNN algorithm extends this idea by permitting a specified number k≥1  of closest training 
instances to be used rather than just one. For the classification task the predicted class label is 
determined by the voting of these nearest neighbors, that is, the majority class label in the set of the 
selected k  instances is returned. For the regression task their target function values are averaged to 
achieve the predicted value to return. The choice of k provides an opportunity to control the 
tradeoff between overfitting prevention (which may be important particularly for noisy data) and 
resolution (capability to yield different predictions for similar instances). It usually has to be 
individually adjusted for a particular data set, with typical values ranging from 1 to several dozen. 

The voting mechanism used in the kNN algorithm for the classification task makes it possible to 
specify class weights, to make the prediction process more sensitive to some classes. Specifying a 
vector of numerical weights for each class instructs the algorithm to weight the training instances of 
particular classes accordingly when voting. In this manner, the kNN algorithm can be made cost-
sensitive by assigning each class d∈C  a weight wd=[d ] , where [d ]  is the misclassification 
cost of predicting any class d '≠d  for instances of true class d .

The kNN algorithms essentially make two decisions: 

► memory representation—how to store the training set so that the search for the nearest 

00X6331-01 Rev. 2 165



In-Database Analytics Developer's Guide

neighbors can be organized efficiently 

► distance calculation—how to measure the distance (dissimilarity) between instances 

Only the distance calculation is discussed here, as memory representation is an implementation issue 
that for IBM Netezza In-Database Analytics is resolved by the database implementation environment. 

The most commonly used distance measure for the kNN algorithm is the Euclidean distance, 
calculated for instances x1  and x2 , described by attributes a1,a2 ,... , an , as follows: 

 x1 , x2 = ∑i=1

n

a i  x1−a i  x2  
2

 (63)

This assumes continuous attributes, but can be also used with mixed sets containing some 
continuous and some discrete attributes, by replacing the difference a ix1−a i x2  for discrete 
attribute a i  by 0 if a ix1=a i x2  or 1 otherwise. The Euclidean distance can be considered a 
special case of the Minkowski metric for p=2 : 

 px1 , x2 = ∑
i=1

n

∣ai  x1 −a i  x2 ∣
p

1
p

 (64)

The value of p  can be used to control the relative impact of larger differences on the calculated 
distance. Two other common special cases are obtained for p=1  and p=∞ : 

1x1 , x 2=∑
i=1

n

∣a ix1−a ix2∣
 (65)

∞ x1 , x2=max i=1, ,n∣a i x1−a i x2∣  (66)

The latter is also known as the maximum distance and former is also known as the Manhattan 
distance. The related Canberra distance uses a slightly different formula: 

1 ' x1 , x2=∑
i=1

n ∣ai  x1−ai  x2∣

∣a i x1∣∣a i x2∣
 (67)

All these distance measures can be applied to instances described with discrete attributes in the 
same way as the Euclidean distance. 

Distance functions based on attribute value differences may yield misleading neighbor selection 
when the attributes used to describe the data differ significantly in their ranges or dispersion. One or 
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a few attributes with the largest range or dispersion may have the dominating impact on the 
calculated distance and make other attributes negligible, which is not necessarily desirable. To 
prevent this problem, it is recommended to apply standardization or normalization transformations 
to continuous attributes before using them for the kNN algorithm with such distance functions. 

In some applications it may be more appropriate to judge similarity or dissimilarity based on 
correlations rather than differences of their attribute values. This is justified if instances considered 
similar may have even substantially different attribute values which exhibit the same “low-high 
pattern,” that is, the same attributes tend to have high or low values for the compared instances. This 
is the case, for example, for text documents described by attributes defined as word frequencies, 
where it is not the difference of word occurrence counts that matters, but the common subsets of 
the most frequent and/or the least frequent words. Useful similarity measures in such situations are 
the linear or rank correlation and the cosine distance of the attribute value vectors for the instances. 
The latter is the cosine of the angle between the attribute value vectors, and is calculated as: 

cos x1 , x2=
∑
i=1

n

ai x1⋅ai x2

∥a x1∥⋅∥a x2∥

 (68)

where ∥a x∥ designates the Euclidean norm of the vector of attribute values for instance x : 

∥a  x∥= ∑
i=1

n

ai
2
x  (69)

This is actually a closeness or similarity rather than distance measure, as it is maximized for the most 
similar instances for which their attribute value vectors are nearly parallel, pointing to roughly the 
same direction. 

Searching for nearest neighbors is the computational bottleneck of the kNN algorithm that may 
reduce its utility for large data sets. There are two major types of approaches to overcoming this 
limitation: 

► improved memory organization—using appropriate data structures for storing training 
instances that permit efficient search, for example, k -d trees 

► data set subsampling—using heuristic techniques to limit the number of instances for which the 
distance function must be calculated 

Improved memory organization is applicable for in-memory implementations and not applicable in 
the case of in-database implementation. Data subsampling is therefore adopted, using the core set 
subsampling technique. It reduces the amount of computation required for kNN prediction several 
times without affecting the accuracy significantly. 
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Applications 

The kNN algorithm often yields highly accurate predictions, competitive with the most accurate 
models available. This accuracy potential makes it attractive for applications that demand high 
accuracy but do not require the availability of an explicit human-readable model. Their quality, 
however. depends largely on the distance measure. Therefore, the kNN algorithm is best suited to 
applications where sufficient domain knowledge is available to support the selection of an 
appropriate measure. 

By following the lazy learning principle, the kNN algorithm postpones all computation needed to 
generate predictions until they are required. This makes the prediction process much more expensive 
computationally than for other algorithms since operating by creating a model is relatively cheap to 
apply. This limits the effectiveness of using the nearest neighbor approach in applications that 
demand frequent predictions based on large data sets, particularly online real-time prediction with a 
stream of continuously arriving new instances. It is therefore a better choice for applications where 
predictions are requested sparingly, but whose accuracy is of extreme importance. However, with 
core set-based speedup techniques, the kNN algorithm may still be useful for large data sets and 
frequently requested predictions as well. 

Available Functionality 

The implementation of the kNN algorithm provides the following functionality via the KNN and 
PREDICT_KNN stored procedures: 

► classification (voting) and regression (averaging) predictions 

► support for class weights during classification 

► optional standardization of continuous attributes (enabled by default) 

► a choice of predefined distance measures: Euclidean, Manhattan, Canberra, maximum, and user 
defined measures via UDFs 

► support for both continuous and discrete attributes in difference-based distance calculation (the 
difference between discrete values is 0 if equal and 1 otherwise) 

► rows from the input table containing NULL values are ignored. 

Examples 

To illustrate the kNN algorithm, it is applied to the classification task on the CensusIncome data. 
Although the actual work is performed by the algorithm only when predictions are requested, for 
consistency with other algorithms the “model building” procedure must be called first as 
demonstrated below: 

CALL nza..KNN('intable=nza..CensusIncome_train, id=id, target=income, 
model=ci_knn'); 

The model specified via the model argument contains a table with a copy of the provided input table, 
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with rows containing NULL values removed and an appropriate distribution applied. This is the model 
representation for the kNN algorithm, that is the “memorized” training set. To apply such a model, 
call the corresponding prediction procedure: 

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id, 
target=income, distance=euclidean, outtable=CensusIncome_income_eu3nn, k=3'); 

It is in the prediction procedure where the opportunity to specify the value of k  and distance 
measure is available. The above call uses k=3  and the Euclidean distance. Continuous attributes are 
standardized before distance calculation. Standardization is recommended, so it is enabled by 
default, but can be disabled using the stand=FALSE argument. 

It may take a considerable time to generate kNN predictions, since for each test set instance the 
training set is searched for its nearest neighbors. The amount of computation needed for this search 
is greatly reduced using the fast mode. Fast mode is enabled by default but can be switched off by 
specifying the fast=FALSE argument, which forces an exact, exhaustive nearest neighbor search 
(recommended only for very small data sets). 

The predictions can be evaluated by calculating the misclassification error: 

CALL nza..CERROR('pred_table=CensusIncome_income_eu3nn, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

Optionally, the calculation can be sped up using core set subsampling (enabled by default) and the 
confusion matrix: 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income_eu3nn, id=id, target=income, 
matrixTable=ci_income_eu3nn_cm');

CALL nza..CMATRIX_STATS('matrixTable=ci_income_eu3nn_cm'); 

To compare, the predictions for k=5 instead of k=3 can be generated and evaluated: 

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id, 
target=income, distance=euclidean, outtable=CensusIncome_income_eu5nn, k=5'); 

CALL nza..CERROR('pred_table=CensusIncome_income_eu5nn, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income_eu5nn, id=id, target=income, 
matrixTable=ci_income_eu5nn_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income_eu5nn_cm'); 

and the predictions generated using the Manhattan instead of Euclidean distance: 

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id, 
target=income, distance=manhattan, outtable=CensusIncome_income_mh3nn, k=3'); 
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CALL nza..CERROR('pred_table=CensusIncome_income_mh3nn, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income_mh3nn, id=id, target=income, 
matrixTable=ci_income_mh3nn_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income_mh3nn_cm'); 

Using all three parameter setups shows that the high-income class tends to be incorrectly detected, 
resulting in a low true positive rate value, with the high-income class considered positive. Use class 
weights to make the algorithm more sensitive to this class, as demonstrated for decision trees. The 
following SQL query creates the weights table with the high-income class weighted 4 more times 
than the low-income class: 

CREATE TABLE CensusIncome_weights AS SELECT DISTINCT income as class, CASE 
WHEN income='50000+.' THEN 4 ELSE 1 END AS weight FROM 
nza..CensusIncome_train; 

This weights table can then be used for kNN prediction as follows, assuming the second of the three 
parameter setups demonstrated above: 

CALL nza..PREDICT_KNN('intable=nza..CensusIncome_test, model=ci_knn, id=id, 
target=income, weights=CensusIncome_weights, distance=manhattan, 
outtable=CensusIncome_income_mh3nnw, k=3');
 

CALL nza..CERROR('pred_table=CensusIncome_income_mh3nnw, 
true_table=nza..CensusIncome_test, pred_id=id, true_id=id, pred_column=class, 
true_column=income'); 

CALL nza..CONFUSION_MATRIX('intable=nza..CensusIncome_test, 
resulttable=CensusIncome_income_mh3nnw, id=id, target=income, 
matrixTable=ci_income_mh3nnw_cm'); 

CALL nza..CMATRIX_STATS('matrixTable=ci_income_mh3nnw_cm'); 

The true positive rate is considerably increased, at the cost of increased false positive rate (decreased 
precision). 

To illustrate the application of the kNN algorithm to regression, the following sequence of calls use 
the WineQuality data set to generate and evaluate predictions with k=3 and the Euclidean distance 
measure: 

CALL nza..KNN('intable=nza..WineQuality_train, model=wq_knn, id=id, 
target=quality'); 

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id, 
target=quality, distance=euclidean, k=3, outtable=WineQuality_quality_3nn'); 
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CALL nza..MSE('pred_table=WineQuality_quality_3nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE('pred_table=WineQuality_quality_3nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

The same can be repeated with k=1 and k=5: 

CALL nza..PREDICT_KNN ('model=wq_knn, intable=nza..WineQuality_test, id=id, 
target=quality, distance=euclidean, k=1, outtable=WineQuality_quality_1nn'); 

CALL nza..MSE ('pred_table=WineQuality_quality_1nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id');

CALL nza..MAE ('pred_table=WineQuality_quality_1nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..PREDICT_KNN ('model=wq_knn, intable=nza..WineQuality_test, id=id, 
target=quality, distance=euclidean, k=5, outtable=WineQuality_quality_5nn'); 

CALL nza..MSE ('pred_table=WineQuality_quality_5nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE ('pred_table=WineQuality_quality_5nn, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

For easier comparison of the predicted and true target attribute value, the following SQL query 
creates an auxiliary view: 

CREATE VIEW WineQuality_knn_pred AS SELECT P3NN.class AS pred_value_3nn, 
P1NN.class AS pred_value_1nn, P5NN.class AS pred_value_5nn, T.quality as 
true_value 
FROM WineQuality_quality_3nn P3NN, WineQuality_quality_1nn P1NN, 
WineQuality_quality_5nn P5NN, nza..WineQuality_test T
WHERE P3NN.id=T.id AND P1NN.id=T.id AND P5NN.id=T.id; 

The correlation between the predictions of each regression tree and the true target attribute values 
can then be calculated: 

CALL nza..CORR('intable=WineQuality_knn_pred, incolumn=pred_value_3nn; 
true_value');

CALL nza..CORR('intable=WineQuality_knn_pred, 
incolumn=pred_value_1nn;true_value');
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CALL nza..CORR('intable=WineQuality_knn_pred, 
incolumn=pred_value_5nn;true_value'); 

The results may appear disappointing, but better models may not result even with considerably more 
refined algorithms since the quality attribute is not easily predictable in the WineQuality data set. 

Finally, the following calls demonstrate the effects of disabling two useful and usually recommended 
features of the kNN algorithm, attribute standardization and core set-based subsampling, also known 
as fast mode. These experiments are performed with k=5 , which appeared to outperform k=3 and 
k=1 according to the results obtained before. 

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id, 
target=quality, distance=euclidean, k=5, stand=FALSE, 
outtable=WineQuality_quality_5nn_nostand'); 

CALL nza..MSE ('pred_table=WineQuality_quality_5nn_nostand, 
pred_column=class, pred_id=id, true_table=nza..WineQuality_test, 
true_column=quality, true_id=id'); 

CALL nza..MAE ('pred_table=WineQuality_quality_5nn_nostand, 
pred_column=class, pred_id=id, true_table=nza..WineQuality_test, 
true_column=quality, true_id=id'); 

CALL nza..PREDICT_KNN ('intable=nza..WineQuality_test, model=wq_knn, id=id, 
target=quality, distance=euclidean, k=5, fast=FALSE, 
outtable=WineQuality_quality_5nn_nofast'); 

CALL nza..MSE ('pred_table=WineQuality_quality_5nn_nofast, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE ('pred_table=WineQuality_quality_5nn_nofast, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

Disabling attribute standardization increases the error substantially, due to the considerable 
differences in the ranges, means, and standard deviations of the attributes in the WineQuality data 
set. Switching off fast mode, on the other hand, reduces the error marginally, which is also to be 
expected. This improvement is achieved at the cost of increased computation time, which is 
noticeable even for such a small data set. It takes about 3 times longer to generate predictions 
without the fast mode enabled, and for larger data sets the effect is usually much more substantial. 
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Linear Regression

Background 

Linear regression is a simple but very useful and commonly applied approach to the regression task, 
even though it only performs direct modeling of linear relationships. It is the thing that limits its 
applicability – a linear model representation – that makes it fast, efficient, and easy to use (compared 
to more refined regression algorithms).

Linear regression adopts a particularly simple form of a parametric model representation, in which 
the model's output for an instance x  is calculated as:

h x =w0∑
i=1

n

w i a ix =∑
i=0

n

w i ai x
 

(70)

where w0 ,w1 ,... ,wn  are model parameters (also called weights) and a 0  is an attribute defined as 
constantly equal 1 , introduced for notational convenience. With this representation, the model 
applied to any instance calculates the linear combination (or a dot product, more precisely speaking) 
of its attribute values and parameter values. The parameter w i  corresponding to attribute ai  can be 
interpreted as representing its impact on the model's prediction with all other attributes held fixed.

Creating a linear regression model based on a given data set, commonly referred to as fitting a model 
to the data, consists of model parameter estimation, that is, identifying model parameters that 
optimize an adopted quality measure, typically the mean square error. Linear regression algorithms 
may differ in the particular technique applied to parameter estimation, with the least squares 
method being the most common choice. It is based on linear algebra transformations of the training 
set, represented by a matrix with ∣T∣  rows, corresponding to instances, and n1  columns, 
corresponding to attributes a0 , a1 , , an  (with the artificial attribute a0  constantly equal 1  
included). To make it possible, all attributes have to be continuous. Any discrete attributes in the 
original data need therefore to be numerically encoded via a number of binary attributes (treated as 
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continuous) indicating their different possible discrete values.

Let A  denote such a numerical matrix training set representation, w  denote the column vector of 
model parameters w 0 ,w 1 , ,w n , and y  denote the column vector of target function values for 
training instances, corresponding to consecutive rows of A . Then the perfect parameter vector 
would satisfy the following overdetermined matrix equation:

A⋅w= y  (71)

A least mean squares solution of this equation, leading to a parameter vector that minimizes the 
mean square error, can be obtained as follows:

AT
⋅A⋅w=AT

⋅y  (72)

w=AT
⋅A−1

⋅AT
⋅y  (73)

That is, by inverting the n1×n1   matrix AT
⋅A . The calculation of model parameters is 

typically accompanied by testing the statistical significance of the model's fit to the data (using the F-
test) as well as the statistical significance of particular attributes (by using the t-test to verify whether 
the corresponding model parameters significantly differ from 0 ).

Compared to more complex nonlinear regression, linear regression might appear inferior as being 
capable of modeling linear or nearly-linear relationships only. While this limitation is important, the 
following equally important advantages of linear regression still make it attractive for many 
applications:

► efficiency: the parameter estimation process is computationally efficient

► ease of use: no complex algorithm setup is required

► interpretability: model parameters are (relatively) easy to interpret, at least compared to 
nonlinear regression

► robustness: the parameter estimation process is not prone to false local minima of the mean 
square error

Their common root is at the simplicity of the parameter estimation process for linear models, which 
boils down to the minimization of a quadratic function (since the mean square error is quadratic with 
respect to model parameters).

The limitation resulting from the linear representation can be partially alleviated by applying one of 
the following two strategies, making it possible to approximate nonlinear relationships with linear 
models:

► data decomposition: decompose the data set into a number of regions and fit separate linear 
models to these regions, thus creating a piecewise-linear representation,

► data transformation: transform the data by creating a new set of attributes, nonlinearly 
dependent on the original ones, which may make it possible to approximate the target function 
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linearly.

Applications

Linear regression can be applied to all regression tasks as the first reasonable attempt to create a 
regression model. For many real-world domains the quality of linear models may turn out to be 
satisfactory, but otherwise it at least provides a solid baseline for further modeling attempts. It may 
be particularly worthwhile to consider whenever its advantages (efficiency, easy of use, 
interpretability, and robustness) are important and there is no strong evidence for the nonlinearity of 
the relationship between the target function and attributes or other strategies (data decomposition 
or data transformation) are used to overcome the nonlinearity. It is particularly common to see linear 
models applied for financial prediction, demand forecasting, production volume prediction, etc.

Available Functionality

The Netezza Analytics implementation of linear regression provided by the LINEAR_REGRESSION, 
PREDICT_LINEAR_REGRESSION stored procedures covers the following functionality:

► fitting linear model with or without the intercept term

► multiple regression 

► fitting the model based on colinear or nearly-colinear attributes (using Moore-Penrose 
pseudoinversion) 

► standard LSE procedure using QR decomposition

► model diagnostics

► support for discrete and continuous attributes

The input table can contain NULL values, that is, instances with missing attribute values, but since all 
such values are replaced by 0.0, it is highly recommended to remove or impute them prior to model 
fitting or prediction. The Data Imputation  section describes and demonstrates how the latter can be 
accomplished. You can obtain similar functionality by using the Generalized Linear Models procedure 
with the identity link setting and the Gaussian distribution setting. If you have data sets with few 
attributes, the procedure might then work faster.

Examples

Consider creating a linear regression model for predicting the quality attribute from the WineQuality 
data set. The following call builds a linear regression model and provides additional diagnostic 
information: 

CALL nza..LINEAR_REGRESSION('intable=nza..WineQuality_train, id=id, 
target=quality, model=wq_lr, includeIntercept=TRUE, 
calculateDiagnostics=TRUE, useSVDSolver=TRUE'); 

The linear regression model coefficients and the values of diagnostic measures can be inspected by 
looking into the model table (the name of the model table takes the form nza_meta_<name of the 
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model>_model): 

SELECT var_name, value, pval FROM nza_meta_wq_lr_model;

Apart from the values of model coefficients, the model table provides diagnostic measures when 
these measures are requested by the caller.

Model coefficients are described by the following characteristics:

► the coefficient value (the VALUE column)

► the attribute (predictor variable) column (the VAR_NAME column)

► the target function (predicted variable) column name (the PREDICTED_NAME column)

► the identifier of the attribute (predictor variable) in the coefficient matrix (the VAR_ID column)

► the identifier of the target function (predicted variable) in the coefficients matrix (the 
PREDICTED_ID column)

► the identifier of the attribute value (predictor variable level) for discrete attributes (the LEVEL_ID 
column)

► the identifier of the target function value (predicted variable level) for discrete attributes (the 
PREDICTED_LEVEL_ID column)

The following measures are diagnostic measures: 

► the standard deviation of the fitted coefficients (the ST_DEV column)

► the t-test statistic (and corresponding p-value) for the hypothesis that a given coefficient is equal 
to 0.0 (the TVAL and PVAL columns)

The constructed linear regression model can be applied to new data using following call: 

CALL nza..PREDICT_LINEAR_REGRESSION('intable=nza..WineQuality_test, id=id, 
model=wq_lr, outtable=wq_lr_pred'); 

provided that the table containing data has the same structure (attribute column names, not 
necessarily in the same order as original set) as the table used for model construction.

The CensusIncome data set, which contains some nominal variables, provides an example of a more 
complicated linear regression model:

   CREATE TABLE CensusIncome_restr AS
   SELECT * FROM nza..CensusIncome WHERE wage_per_hour>0;

   CALL nza..LINEAR_REGRESSION('intable=CensusIncome_restr, 
                                incolumn=CLASS_OF_WORKER; 
                                      DETAILED_INDUSTRY_RECODE;
                                      DETAILED_OCCUPATION_RECODE; 
                                      EDUCATION;
                                      ENROLL_IN_EDU_INST_LAST_WK; 
                                      MARITAL_STATUS;
                                      MAJOR_INDUSTRY_CODE; 
                                      MAJOR_OCCUPATION_CODE; 
                                      RACE;
                                      HISPANIC_ORIGIN; 
                                      SEX;
                                      MEMBER_OF_A_LABOR_UNION; 
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                                      REASON_FOR_UNEMPLOYMENT; 
                                      FULL_OR_PART_TIME_EMPLOYMENT_STAT; 
                                      TAX_FILER_STAT;
                                      REGION_OF_PREVIOUS_RESIDENCE; 
                                      STATE_OF_PREVIOUS_RESIDENCE; 
                                      DETAILED_HOUSEHOLD_AND_FAMILY_STAT; 
                                      DETAILED_HOUSEHOLD_SUMMARY_IN_HOUSEHOLD; 
                                      MIGRATION_CODE_CHANGE_IN_MSA;
                                      MIGRATION_CODE_CHANGE_IN_REG; 
                                      MIGRATION_CODE_MOVE_WITHIN_REG; 
                                      LIVE_IN_THIS_HOUSE_1_YEAR_AGO;
                                      MIGRATION_PREV_RES_IN_SUNBELT; 
                                      COUNTRY_OF_BIRTH_FATHER; 
                                      COUNTRY_OF_BIRTH_MOTHER; 
                                      COUNTRY_OF_BIRTH_SELF;
                                      CITIZENSHIP;
                                      OWN_BUSINESS_OR_SELF_EMPLOYED; 
                                      FILL_INC_QUESTIONNAIRE_FOR_VETERANS_ADMIN; 
                                      VETERANS_BENEFITS;
                                      YEAR;
                                      INCOME; 
                                      FAMILY_MEMBERS_UNDER_18;

         AGE:cont;
         WAGE_PER_HOUR:cont, 

                                coldeftype=nom, 
                                coldefrole=ignore,

          target=wage_per_hour, 
                                model=census_restr_wage,  
                                id=id,  
                                calculateDiagnostics=TRUE');

Output Table Data Formats

NZA_META_<model_name>_MODEL Table
The NZA_META_<model_name>_MODEL table contains details about linear model coefficients as 
well as model diagnostic measures. The table contains one line for each continuous predictor and 
one line for each level of nominal predictor, at a given predicted variable.

Table 18: Columns of the V_NZA_COMPONENTS view

Primary key columns: VAR_ID, LEVEL_ID, PREDICTED_ID

Column Name Column Type Description

VAR_ID INTEGER Index of the attribute in table used for model 
construction. Special variables are encoded using 
negative values: 

► 1: model intercept

► 2: R^2

► 3: RSS (Residual Sum of Squares)
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Column Name Column Type Description

► 4: estimator of variance of predicted variable

VAR_NAME NVARCHAR Name of the attribute in input table, or name of 
the special variable: (Intercept), [R^2], [RSS], or 
[Y_VAR_EST].

LEVEL_ID INTEGER Identifier of predictor level in the dictionary 
created for nominal attributes. For continuous 
attributes it is always set to 1. For model 
diagnostics variable it is set to 0.

LEVEL_NAME Name of the nominal variable level.

PREDICTED_ID Index of the predicted variable (distinguishes 
groups of coefficients in case of multiple 
regression).

PREDICTED_NAME Name of the predicted variable.

LEVEL_NAME Name of the nominal variable level.

PREDICTED_ID Index of the predicted variable (distinguishes 
groups of coefficients in case of multiple 
regression).

PREDICTED_NAME Name of the predicted variable.

PREDICTED_LEVEL_ID Always 1.

PREDICTED_LEVEL_NA
ME

Not used.

VALUE Value of the coefficient or special variable.

ST_DEV Standard deviation of given model coefficient 
value (when calculation of diagnostics was 
requested, -1 otherwise).

TVAL The value of the T test statistics for a given model 
coefficient (when calculation of diagnostics was 
requested, -1 otherwise).

PVAL The p-value of the two sided T test for a given 
model coefficient (when calculation of diagnostics 
was requested, -1 otherwise).
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C H A P T E R  1 7
Regression Trees

Regression trees are decision trees adapted to the regression task, which store numeric target 
attribute values instead of class labels in leaves, and use appropriately modified split selection and 
stop criteria. 

Background 

As with decision trees, regression tree nodes decompose the data into subsets, and regression tree 
leaves correspond to sufficiently small or sufficiently uniform subsets. Splits are selected to decrease 
the dispersion of target attribute values, so that they can be reasonably well predicted by their mean 
values at leaves. The resulting model is piecewise-constant, with fixed predicted values assigned to 
regions to which the domain is decomposed by the tree structure. 

Creating and using regression tree models involves three major algorithmic subtasks: 

► regression tree growing 

► regression tree pruning

► regression tree prediction 

Since they are direct analogs of their decision tree counterparts, only the differences are highlighted 
here. 

Growing 
The purpose of growing is to create a regression tree from a given data set by appropriately selecting 
splits to minimize the target attribute dispersion and assigning target values to leaves when no 
further splits are required or possible. The three key operations performed when growing regression 
trees are the same as for decision trees: 

► stop criteria 

► target value assignment 
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► split selection 

Stop criteria for regression trees prevent applying further splits when: 

► the number of instances in the corresponding subset is less than a specified minimum 

► the level of the current node is greater than a specified maximum 

► the improvement of target value dispersion to the best available split is less than a specified 
minimum 

Target values, assigned to both leaves and internal nodes, are mean target function values for the 
corresponding subsets of instances. Candidate splits, as with decision splits, are evaluated based on 
the average dispersion in the subsets obtained after the split. 

A natural target value dispersion measure, used for both stop criteria and split selection, is the 
variance. For node n  it is calculated as: 

s f n =
1
∣T n∣
∑
x∈T n

 f  x −m f n  
2

 (74)

where T n  denotes the subset of training instances associated with node n , and:

m f (n)=
1
∣T n∣
∑
x∈T n

f ( x)  (75)

 

is the mean target function value in node n . 

Pruning 
Regression tree pruning may be used for overfitting prevention, just like for decision trees. The 
predictive utility of all nodes of a previously grown regression tree is verified and those that do not 
improve the expected prediction quality on new data are replaced by leaves. The decision is based on 
pruning criteria. The same reduced error pruning (REP) algorithm as for decision trees is employed, 
with a separate pruning set used to compare the predictive quality of nodes and leaves that could 
replace them. The mean square error is the most commonly used quality indicator, but other 
regression quality measures discussed in the Model Diagnostics  section could be also adopted for 
this purpose, including the linear or rank correlation.

Prediction 
Regression tree prediction consists of using a previously grown regression tree to generate 
predictions for a data set. It is performed by applying the splits from the tree nodes to propagate 
instances from the data set down to the corresponding leaves. Regression tree prediction takes a 
regression tree and a data set on input and uses the tree to predict the target attribute values for the 
data set. 
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Missing Value Support
Missing value support for regression trees is implemented using the same fractional instance 
technique described in the Missing Value Support section of Decision Trees. For data sets with no 
missing values, the behavior remains unchanged. Data sets with missing values that could not be 
processed can be used for both regression tree model creation and prediction. This increases 
computational expense, but keeps the impact of missing values on model and prediction quality as 
low as possible.

Applications 

The main advantage of regression trees as regression models is their human-readability. The tree 
structure not only predicts target function values, but also explains which attributes are used and 
how they are used to arrive at these predictions. Regression trees are usually applied when this 
advantage is important and outweighs the disadvantage related to the piecewise-constant 
approximation that they provide to the target function. One consequence of the model’s output 
being a step function is that small changes of attribute values may yield no changes of the model’s 
output at all as long as the change is within a single “step,” or substantial changes when moving to a 
neighboring “step.” This is inconvenient in some applications, where the regression model is 
expected to gently respond to input changes. 

Available Functionality 

The implementation of regression trees provided by the REGTREE, PREDICT_REGTREE, and 
PRINT_MODEL stored procedures covers the following functionality:

► top-down regression tree growing

► support for discrete and continuous attributes

► binary equality-based splits for discrete attributes where attribute = value 

► binary inequality-based splits for continuous attributes (attribute ≤ value), 

► split selection based on target attribute dispersion (variance, with more definable via UDFs) 

► several stop criteria 

▲ sufficiently small target attribute dispersion 

▲ not enough instances, less than a specified minimum required for a split 

▲ not enough improvement of target attribute dispersion, less than a specified minimum 
required for a split 

▲ reaching a maximum allowed tree depth 

► regression tree pruning using the reduced error pruning algorithm with the mean square error, 
coefficient of determination, linear correlation, or rank correlation as quality indicators, 

► target attribute mean and variance prediction 

► regression tree structure printing
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If the input table contains NULL attribute values (for example, in instances with missing attribute 
values), the fractional instance technique is automatically applied to handle them. The additional 
computational expense depends on the particular data set and the number of missing values, but 
typically there is a 5-30% time increase compared to the same data sets with missing values removed 
or imputed. If this computational expense is undesirable, instances with missing values should be 
removed or missing values imputed. The Data Imputation section describes and demonstrates how 
the latter can be accomplished. 

Consider that the computational effort needed to grow a regression tree depends on the number of 
nodes that must be created, which is controlled by the stop criteria. Using appropriate parameter 
settings for the minimum number of instances required for a split, the minimum dispersion 
improvement required for a split, or the maximum tree depth may save computation time. Default 
settings result in moderately complex trees.

Examples

Consider creating regression trees for predicting the quality attribute from the WineQuality data set. 
The following calls build three regression trees, differing in the applied stop criteria and pruning. 

CALL nza..REGTREE('intable=nza..WineQuality_train, id=id, target=quality, 
model=wq_regtree1, minsplit=200, minimprove=0.025'); 

CALL nza..REGTREE('intable=nza..WineQuality_train, id=id, target=quality, 
model=wq_regtree2, maxdepth=8, minimprove=0.025'); 

CALL nza..REGTREE('intable=nza..WineQuality_train, 
valtable=nza..WineQuality_prune, id=id, target=quality, model=wq_regtree3, 
minimprove=0.025'); 

In each case the algorithm was instructed to stop when the variance reduction due to the best split 
fell below 0.025. Additionally, for the first tree, no splitting was attempted after reaching less than 
200 instances. For the second tree a maximum depth of 8 was specified. This yields a somewhat 
larger tree. The third tree was grown without restrictions for the number of instances being split or 
tree depth, but with pruning applied (which turns out to yield a tree that is actually quite similar to 
the first). This was achieved by specifying the pruning data set via the valtable argument. With this 
argument specified, the REGTREE procedure calls both GROW_REGTREE and PRUNE_REGTREE, 
whereas the previous calls are equivalent to GROW_REGTREE alone. 

More readable output is produced by the PRINT_REGTREE procedure: 

CALL nza..PRINT_MODEL('model=wq_regtree1');

CALL nza..PRINT_MODEL('model=wq_regtree2');
 

CALL nza..PRINT_MODEL('model=wq_regtree3'); 

The printout obtained for the last tree is presented below: 
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 -- regression tree: "WQ_REGTREE3" --
ALCOHOL <= 10.8
| VOLATILE_ACIDITY <= 0.25
| | VOLATILE_ACIDITY <= 0.205
| | | DENSITY <= 0.99784
| | | | if true then class value -> 5.9153094462541
| | | | CITRIC_ACID <= 0.3
| | | | | if true then class value -> 7.0357142857143
| | | | | if false then class value -> 6.0333333333333
| | | if false then class value -> 5.6896551724138
| | if false then class value -> 5.3559748427673
| ALCOHOL <= 11.733333333333
| | FREE_SULFUR_DIOXIDE <= 13
| | | if true then class value -> 5.125
| | | VOLATILE_ACIDITY <= 0.47
| | | | if true then class value -> 6.2088452088452
| | | | if false then class value -> 4.25
| | FREE_SULFUR_DIOXIDE <= 10
| | | if true then class value -> 5.7727272727273
| | | PH <= 3.29
| | | | RESIDUALSUGAR <= 1.7
| | | | | VOLATILE_ACIDITY <= 0.58
| | | | | | DENSITY <= 0.99035
| | | | | | | if true then class value -> 6.3636363636364
| | | | | | | if false then class value -> 5.85
| | | | | | if false then class value -> 5.25
| | | | | FREE_SULFUR_DIOXIDE <= 20
| | | | | | if true then class value -> 6.2666666666667
| | | | | | VOLATILE_ACIDITY <= 0.15
| | | | | | | if true then class value -> 7.8
| | | | | | | ALCOHOL <= 12.4
| | | | | | | | if true then class value -> 6.5752212389381
| | | | | | | | if false then class value -> 6.8989898989899
| | | | if false then class value -> 6.967032967033

Each line in this textual tree representation corresponds to a node or a leaf, and the indentation 
reflects the tree level. For a node the split condition is printed; for a leaf, the assigned class label is 
printed. Each node is followed by its left and right subtrees. This is exactly the same representation 
as for decision trees. 

The following calls apply all the three regression trees created above to the test set, storing 
predictions in the WineQuality_quality1, WineQuality_quality2, and WineQuality_quality3 tables: 

CALL nza..PREDICT_REGTREE('model=wq_regtree1, intable=nza..WineQuality_test, 
outtable=WineQuality_quality1, var=TRUE'); 

CALL nza..PREDICT_REGTREE('model=wq_regtree2, intable=nza..WineQuality_test, 
outtable=WineQuality_quality2, var=TRUE'); 

CALL nza..PREDICT_REGTREE('model=wq_regtree3, intable=nza..WineQuality_test, 
outtable=WineQuality_quality3, var=TRUE'); 

If the id argument skipped in calls to PREDICT_REGTREE, as above, the column specified during 
model creation is used as the unique instance identifier. The achieved prediction quality can be 
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evaluated using the MSE and MAE errors: 

CALL nza..MSE('pred_table=Winequality_quality1, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE('pred_table=WineQuality_quality1, pred_column=class, 
pred_id=id, true_table=nza..Winequality_test, true_column=quality, 
true_id=id'); 

CALL nza..MSE('pred_table=WineQuality_quality2, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE('pred_table=WineQuality_quality2, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MSE('pred_table=WineQuality_quality3, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE('pred_table=WineQuality_quality3, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

Despite size differences, the quality of predictions generated using the trees does not differ 
substantially, although the pruned tree appears to outperform the other two.

For easier comparison of the predicted and true target attribute value, the following SQL query 
creates an auxiliary view: 

CREATE VIEW WineQuality_regtree_pred AS SELECT P1.class AS pred_value1, 
P2.class AS pred_value2, P3.class AS pred_value3, T.quality as true_value 
FROM WineQuality_quality1 P1, WineQuality_quality2 P2, WineQuality_quality3 
P3, nza..WineQuality_test T WHERE P1.id=T.id AND P2.id=T.id AND P3.id=T.id; 

Using this view, you can calculate the correlation between the predictions of each regression tree 
and the true target attribute values: 

CALL nza..CORR('intable=WineQuality_regtree_pred, 
incolumn=pred_value1;true_value');

CALL nza..CORR('intable=WineQuality_regtree_pred, 
incolumn=pred_value2;true_value');

CALL nza..CORR('intable=WineQuality_regtree_pred, 
incolumn=pred_value3;true_value'); 

The predictions do not correlate very strongly with the true values, which indicates that these 
regression trees failed to fully capture the relationship between the wine quality and 
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physicochemical features. This result indicates that the relationship is not sufficiently strong in the 
available data set. Of the three trees, again the last one (pruned) turns out the best, and the second 
one (the largest tree) is the worst, although the differences are rather minor.

The same evaluation process can be repeated using the training set only:

CALL nza..PREDICT_REGTREE('model=wq_regtree1, intable=nza..WineQuality_train, 
outtable=WineQuality_train_quality1, var=TRUE'); 

CALL nza..PREDICT_REGTREE('model=wq_regtree2, intable=nza..WineQuality_train, 
outtable=WineQuality_train_quality2, var=TRUE'); 

CALL nza..PREDICT_REGTREE('model=wq_regtree3, intable=nza..WineQuality_train, 
outtable=WineQuality_train_quality3, var=TRUE'); 

CREATE VIEW WineQuality_regtree_train_pred AS SELECT P1.class AS pred_value1, 
P2.class AS pred_value2, P3.class AS pred_value3, T.quality as true_value 
FROM WineQuality_train_quality1 P1, WineQuality_train_quality2 P2, 
WineQuality_train_quality3 P3, nza..WineQuality_train T WHERE P1.id=T.id AND 
P2.id=T.id AND P3.id=T.id; 

CALL nza..CORR('intable=WineQuality_regtree_train_pred, 
incolumn=pred_value1;true_value');

CALL nza..CORR('intable=WineQuality_regtree_train_pred, 
incolumn=pred_value2;true_value');

CALL nza..CORR('intable=WineQuality_regtree_train_pred, 
incolumn=pred_value3;true_value'); 

Clearly, the obtained training set-based quality estimates are in no way reliable estimates of the 
expected new data prediction quality, but they show how well the models actually fit the training 
data. Not surprisingly, their predictions are somewhat (but not vastly) better than those of the test 
set. For example, the second tree, which was the worst in the previous example, now appears to be 
the best. This is a clear indication that it is actually overfitted.

The following example creates corrupted copies of the training, pruning, and test subsets of the 
WineQuality data set to demonstrate the missing value handling capability of the Netezza regression 
tree algorithm. In each case, 5% of values for two selected attributes of the WineQuality data set are 
removed:

CREATE TABLE WineQuality_train_miss AS SELECT * FROM nza..WineQuality_train;
UPDATE WineQuality_train_miss SET alcohol=NULL WHERE random()<0.05;
UPDATE WineQuality_train_miss SET volatile_acidity=NULL WHERE random()<0.05;

CREATE TABLE WineQuality_prune_miss AS SELECT * FROM nza..WineQuality_prune;
UPDATE WineQuality_prune_miss SET alcohol=NULL WHERE random()<0.05;
UPDATE WineQuality_prune_miss SET volatile_acidity=NULL WHERE random()<0.05;

CREATE TABLE WineQuality_test_miss AS SELECT * FROM nza..WineQuality_test;
UPDATE WineQuality_test_miss SET alcohol=NULL WHERE random()<0.05;
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UPDATE WineQuality_test_miss SET volatile_acidity=NULL WHERE random()<0.05;

The two affected attributes are those most frequently used by the previously created trees, so the 
modifications will definitely degrade the model and prediction quality.

The following call creates a regression tree using the modified training and pruning data set, with 
same parameter setup as previously for the last, most successful tree:

CALL nza..REGTREE('intable=WineQuality_train_miss, 
valtable=WineQuality_prune_miss, id=id, target=quality, 
model=wq_regtree3miss, minimprove=0.025'); 

It takes slightly longer than before for the original data with no missing values. Here is how the 
resulting tree can be applied to the modified test set:

CALL nza..PREDICT_REGTREE('model=wq_regtree3miss, 
intable=WineQuality_test_miss, outtable=WineQuality_quality3miss, var=TRUE'); 

You can verify this by printing the tree:

CALL nza..PRINT_REGTREE('model=wq_regtree3');

You will see that it still uses the alcohol and volatile_acidity attributes. Evaluating the predictions 
using the mean square error and the mean absolute error reveals some degradation of prediction 
quality (as expected):

CALL nza..MSE('pred_table=WineQuality_quality3miss, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

CALL nza..MAE('pred_table=WineQuality_quality3miss, pred_column=class, 
pred_id=id, true_table=nza..WineQuality_test, true_column=quality, 
true_id=id'); 

Output Table Data Formats

The following tables are generated when you build regression trees:

► NZA_META_<model_name>_MODEL

► NZA_META_<model_name>_NODES

► NZA_META_<model_name>_PREDICATES

► NZA_META_<model_name>_COLUMNS

► NZA_META_<model_name>_COLUMN_STATISTICS

► NZA_META_<model_name>_DISCRETE_STATISTICS

► NZA_META_<model_name>_NUMERIC_STATISTICS

NZA_META_<model_name>_MODEL
The NZA_META_<model_name>_MODEL table contains information about the entire tree model. 
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The table contains only one line and has the following layout:

Table 19: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of tree model, always regression.

MAXSPLIT SMALLINT Maximal number of splits from a node.

DEPTH SMALLINT Depth of the tree.

MISSINGVALUE-
STRATEGY

VARCHAR(32) Strategy for handling the case where a 
predicate evaluates to UNKNOWN. Possible 
values are 'lastPrediction', 'nullPrediction', 
'defaultChild', and 'weightedConfidence'.

MISSINGVALUE-
PENALTY

DOUBLE Factor to be applied to the confidence 
every time the default child (or surrogate 
node) strategy has to be applied.

NUMLEAVES BIGINT Number of leaf nodes contained in the 
model.

NUMNODES BIGINT Number of nodes contained in the model.

NZA_META_<model_name>_NODES
The NZA_META_<model_name>_NODES table contains all tree nodes in the model together with 
some explanatory information. The table further encodes the tree structure because it contains the 
predecessor (parent) node for every node.

The table contains one line for each tree node and has the following layout:

Table 20: Columns of the NZA_META_<model name>_NODES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

NAME NVARCHAR(100) Name of the node (defaults to NODEID).

DESCRIPTION NVARCHAR(10000) Textual node description (defaults to 
NULL).

SIZE DOUBLE Number of data records in the node.

RELSIZE DOUBLE Relative size of the node: Size of the 
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Column Data Type Purpose

current node divided by the size of root 
node (NODEID 1).

ISLEAF BOOLEAN Indicates whether the node is a leaf node.

PARENT BIGINT NODEID of parent node.

CLASS <target column type> Prediction made for records in this node.

IMPURITY DOUBLE The class impurity measure of this node.

DEFAULTCHILD BIGINT NODEID of default child node, which is 
used as successor if the predicate cannot 
be evaluated. If MISSINGVALUE-
STRATEGY is not ‘defaultChild‘ this value 
is NULL.

NZA_META_<model_name>_PREDICATES
The NZA_META_<model_name>_PREDICATES table contains all simple predicates and all simple set 
predicates in the model. The predicate of a given node indicates which condition must be true to be 
reached from its parent. The predicate of the root node is true.

The table has the following layout:

Table 21: Columns of the NZA_META_<model name>_PREDICATES table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model 
having the predicate. The root node has 
NODEID 1.

COLUMNNAME NVARCHAR(128) Name of the column referenced by the 
predicate. It is NULL when the predicate is 
'true', 'false', 'isMissing' or 'isNotMissing'.

OPERATOR VARCHAR(16) Operator used by the predicate. Possible 
operators are 'true' and 'false', 'equal', 
'notEqual', 'lessThan', 'lessOrEqual', 
'greaterThan', 'greaterOrEqual', 'isMissing', 
and 'isNotMissing' for simple predicates, 
and 'isIn' or 'isNotIn' for simple set 
predicates.

VALUE NVARCHAR(16000) Column value referenced by the predicate. 
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Column Data Type Purpose

It is NULL when COLUMNNAME is NULL.

NZA_META_<model_name>_COLUMNS
The NZA_META_<model_name>_COLUMNS contains all columns that are used by the data mining 
algorithm. From this table, you can determine, which columns are required for the model 
application.

The table contains one line for each model column and has the following layout:

Table 22: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME NVARCHAR(128) Name of an input column

DATATYPE VARCHAR(64) SQL data type of COLUMNNAME

OPTYPE VARCHAR(16) Operational type of COLUMNNAME: 
possible values are ‘categorical‘, ‘ordinal‘ 
and ‘continuous‘.

USAGETYPE VARCHAR(16) Usage type: possible values are ‘ignored‘, 
‘active‘, ‘predicted‘, 
‘supplementary‘,‘frequencyWeight‘, 
‘analysisWeight‘,and ‘group‘.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model 
training process relative to other columns. 
The default value is 1.0.

IMPORTANCE DOUBLE Indicates the column’s importance for the 
data mining model as determined by the 
algorithm. The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment: possible values are 
‘asIs‘, ‘asMissingValues‘ and 
‘asExtremeValues‘

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric 
field. Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric 
field. Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are 
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Column Data Type Purpose

contained in the valid value range or not: 
possible values are ‘openClosed‘, 
‘openOpen‘, ‘closedOpen‘, and 
‘closedClosed‘. 

NZA_META_<model_name>_COLUMN_STATISTICS
The NZA_META_<model_name>_COLUMN_STATISTICS contains statistical information about the 
active columns for each node. The contents and the existence of this table depend on the value of 
parameter statistics when the model is built.

The table has the following layout:

Table 23: Columns of the NZA_META_<model name>_COLUMN_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is null 
if the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in 
COLUMNNAME for NODEID. 

MINIMUM DOUBLE Minimum value. The value is null if the 
column is not numeric.

MAXIMUM DOUBLE Maximum value. The value is null if the 
column is not numeric.

MEAN DOUBLE Mean value. The value is null if the column 
is not numeric.

VARIANCE DOUBLE Variance. The value is null if the column is 
not numeric.

VALIDFREQ BIGINT Frequency of valid values.

MISSINGFREQ BIGINT Frequency of missing values.

INVALIDFREQ BIGINT Frequency of invalid values.
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Column Data Type Purpose

IMPORTANCE DOUBLE Importance of the column for data records 
in NODEID towards predicting the target.

NZA_META_<model_name>_DISCRETE_STATISTICS
The NZA_META_<model_name>_DISCRETE_STATISTICS table contains statistical information about 
the values of active categorical columns for each node. The contents and the existence of this table 
depend on the value of the parameter statistics when the model is built.

The table has the following layout:

Table 24: Columns of the NZA_META_<model name>_ DISCRETE_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of input column.

VALUE NVARCHAR(16000) Value occuring in COLUMNNAME.
If the column is numeric, the value is a 
string representation of the true column 
value.

COUNT DOUBLE Number of occurrences of records with 
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with 
VALUE. The relative frequency is based on 
all records, including those with invalid or 
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID) 
-RELFREQUENCY(1)

NZA_META_<model_name>_NUMERIC_STATISTICS
The NZA_META_<model_name>_NUMERIC_STATISTICS contains statistical information about the 
values of active continuous columns for each node. The contents and the existence of this table 
depend on the value of the parameter statistics when the model is built.

The table has the following layout:
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Table 25: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

NODEID BIGINT Index value of the node in the tree model. 
The root node has NODEID 1.

COLUMNNAME NVARCHAR(128) Name of a numeric input column.

FROMVALUE DOUBLE Lower interval boundary; null indicates 
negative infinity.

TOVALUE DOUBLE Upper interval boundary; null indicates 
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are 
contained. Possible values are 
‘openClosed‘, ‘openOpen‘, ‘closedOpen‘, 
and ‘closedClosed‘. 

COUNT DOUBLE Number of occurrences of records in the 
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the 
interval. The relative frequency is based on 
all records, including those with invalid or 
null values.

DEVIATION DOUBLE RELFREQUENCY(NODEID) 
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

VARIANCE DOUBLE Variance of all values in the interval.
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K-Means Clustering 

Background 

The k-means algorithm is the most widely-used clustering algorithm that uses an explicit distance 
measure to partition the data set into clusters. 

The main concept behind the k-means algorithm is to represent each cluster by the vector of mean 
attribute values of all training instances assigned to that cluster, called the cluster’s center. There are 
direct consequences of such a cluster representation: 

► the algorithm handles continuous attributes only, although workarounds for discrete attributes 
are possible 

► both the cluster formation and cluster modeling processes can be performed in a 
computationally efficient way by applying the specified distance function to match instances 
against cluster centers 

The algorithm operates by performing several iterations of the same basic process. Each training 
instance is assigned to the closest cluster with respect to the specified distance function, applied to 
the instance and cluster center. All cluster centers are then re-calculated as the mean attribute value 
vectors of the instances assigned to particular clusters. The cluster centers are initialized by randomly 
picking k training instances, where k is the desired number of clusters. The iterative process should 
terminate when there are either no or sufficiently few changes in cluster assignments. In practice, 
however, it is sufficient to specify the number of iterations, typically a number between 3 and 36. 

The range of reasonable distance (or dissimilarity) measures is the same as discussed for the kNN 
algorithm in the Nearest Neighbors section, including all the standard difference-based measures: 
Euclidean, Manhattan, Canberra, and Maximum. For k-means, two additional distance measures are 
available--Norm_Euclidean and Mahalanobis. The Norm_Euclidean is the default measure used for k-
means clustering. 
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Normalized Euclidean Distances
For clustering data when the variables of input data have different scales, the normalized Euclidean 
distance option is better suited than Euclidean distance. The normalized Euclidean distance is: 

d n(x , y )=√ (∑ (x i− yi)
2
/σ i

2
)  (76)

where, s
i
 is standard deviations for categorical variables, (xi-yi) is 0 if xi=yi and 1 otherwise with s

i
= 1. 

Mahalanobis Distances
The Mahalanobis Distance (MD) is a useful distance measure for cluster analysis and classification. 
Unlike the Euclidean distance, the MD takes the correlations of the input data into account and is 
scale-invariant. However, calculation of the MD can be expensive, especially if there is a large 
number of dimensions, due to the calculation of inverse covariance matrices and matrix 
multiplications. 

The MD is an abstract distance between two entities. 

► MD with same set of variables

For a group of observations with the same set of (possibly correlated) variables, the MD between 
an observation x=(x 1, x2, x 3,... , xn)

T  and the center of a group G  with mean u=(u1, u2, u3,... , un)
T  

and covariance matrix S  is defined as:

DM ( x ,G)=√ (x – u)T S−1(x – u)  (77)

For categorical variable values, (xi−ui)  is a generalized deviation of categorical variable xi .

Automatic Transformation
For k-means, distances are applied to a pair consisting of an instance and a cluster center rather than 
two instances. Beyond that, it may be necessary to transform continuous attributes by 
standardization or normalization for difference-based distance measures, to avoid the potentially 
misleading effect of substantially different ranges or dispersions. A transform option is available in 
the NZA..KMEANS algorithm to automatically transform one or more columns of input data when the 
input variables have different scales. The following auto_transform options are supported:

► L – leave as is

► S – standardize

► N – normalize

Discrete Attributes
As with nearest neighbors, handling discrete attributes requires appropriate distance measures. The 
standard difference-based measures can be modified for this purpose by replacing the value 
difference used for continuous attributes by a discrete difference: 0 when the compared values are 
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equal and 1 otherwise. The cluster representation must be modified, as well. Instead of mean 
attribute values the most frequent values (modes) can be used for discrete attributes in cluster 
centers. 

The randomness of cluster initialization may yield different results in several independent runs, and it 
is a widespread practice to invoke the algorithm several times to choose the most satisfactory 
clustering with respect to quality criteria or preferences for a given application. 

The clustering model created by the k-means algorithm is fully specified by the list of created cluster 
centers as well as with the distance measure used. 

Statistics
Statistical information may not be necessary for certain applications. To save space and time, 
statistics are not collected by default. An additional parameter is supported by all model building 
procedures that support collection of enriched statistics. This parameter governs the level of detail of 
the statistics.

Regardless of the statistics settings, all information needed to score the model is stored. For the k-
means algorithm, this includes the distance function, mean values for each cluster and continuous 
column, and modal values for each categorical column.

If statistics=all[:N] or statistics=values:N, then all statistical information is stored down to the 
individual column value level. Discrete statistics are limited to at most N distinct values. The default 
value of N is 100. The default statistics parameter is none.

If statistics=columns, all statistical information is stored down to the individual column level, omitting 
value level statistics. NZA_META_<model_name>_DISCRETE_STATISTICS and 
NZA_META_<model_name>_NUMERIC_STATISTICS are not created.

If statistics=none, only statistical information necessary for scoring is stored.

Applications 

The k-means algorithm usually compares well to more refined and computationally expensive 
clustering algorithms with respect to the quality of results. Its capability to work with arbitrary 
distance functions, which may, if necessary, incorporate domain-specific knowledge, makes it 
convenient for many applications. For practical applications of the algorithm, the range of possible 
values of the k parameter is sufficiently small to be examined by running the algorithm several times 
with different values of k. The extreme situations of partitioning the data into more than a dozen 
clusters, or a few dozen is not useful. A given application is likely to narrow down the range to a few 
k values. 

Available Functionality 

The IBM Netezza In-Database Analytics package contains the implementation of the k -means 
algorithm and are exposed as the KMEANS and PREDICT_KMEANS stored procedures with the 
following features: 
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► support for both continuous and discrete attributes 

▲ in difference-based distance calculation—the difference between discrete values is 
assumed to be 0 if they are equal and 1 otherwise 

▲ in cluster center representation—modes (the most frequent values) are used instead of 
means for discrete attributes 

► a choice of predefined distance functions: Normalized Euclidean (the default), Euclidean, 
Manhattan, Canberra, Mahalanobis, maximum, and other user-defined functions via UDFs 

► stop criterion satisfied on convergence or after a specified maximum number of iterations 
performed 

► a choice to auto-transform a list of columns of input data

► cluster membership prediction for new data 

Rows from the input table containing NULL values are ignored. 

Examples 

To illustrate the k-means algorithm, apply it to create a clustering model for the CensusIncome data 
set. The income attribute, representing the class, is not used for clustering. This is achieved by the 
following call, specifying it as the target attribute to be ignored by the algorithm: 

CALL nza..KMEANS('intable=nza..CensusIncome_train, id=id, target=income, k=5, 
maxiter=3, distance=euclidean, model=ci_km5c, outtable=ci_km5m_out'); 

This call uses the Euclidean as a distance measure and creates 5 clusters within at most 3 iterations. 
Five output tables are created. One output table is specified via the outtable argument, which 
contains cluster membership information for each instance from the 'intable' training data set with 
the distance from the cluster’s center. Four meta tables are specified via the model argument: 

NZA_META_<model>_MODEL
NZA_META_<model>_CLUSTERS
NZA_META_<model>_COLUMNS,
NZA_META_<model>_COLUMN_STATISTICS

The NZA_META_<model>_MODEL contains information pertaining to the entire clustering model. 
The NZA_META_<model_name>_CLUSTERS contains all clusters in the model together with some 
cluster information (cluster centers, which are mean attribute values for each cluster, along with the 
cluster size and the sum of squared distances between cluster members and the center). The 
NZA_META_<model>_COLUMNS contains all columns used by the Kmeans clustering and scoring. 
The NZA_META_<model>_COLUMN_STATISTICS contains column statistics information.

You can use the PRINT_KMEANS procedure to inspect the built model. For example:

CALL nza..PRINT_KMEANS('model=ci_km5c, mode=clusters');
Sample output might be:

| CLUSTERID | NAME | SIZE   | RELSIZE            | WITHINSS        | DESCRIPTION |
+-----------+------+--------+--------------------+-----------------+-------------+
| 1         | 1    | 3603   | 0.025733508556409  | 89551928909.02  |             |
| 2         | 2    | 6650   | 0.047495928920378  | 3965395356.2001 |             |
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| 3         | 3    | 464    | 0.0033140016570008 | 1430862970383   |             |
| 4         | 4    | 126396 | 0.90275119275491   | 15122880034.032 |             |
| 5         | 5    | 2899   | 0.020705368111305  | 307725114544.09 |             |

The created cluster model can be inspected by directly looking into the ci_km5c cluster table: 

SELECT * FROM nza_meta_ci_km5c_clusters ORDER BY clusterid; 

The table contains one row for each cluster and one column for each attribute used for clustering 
with the mean attribute value for continuous attributes and the most frequent value for discrete 
attributes. The following additional diagnostic columns are also included: 

► clusterid—the cluster identification number 

► size—the number of training instances in the cluster 

► withinss—the sum of squared distances between training instances assigned to the cluster and the 
cluster center 

A more readable cluster description can be obtained by selecting only the diagnostic columns and 
skipping the columns representing cluster centers: 

SELECT clusterid, size, withinss FROM nza_meta_ci_km5c_clusters ORDER BY 
clusterid;

The ci_km5m_out members table contains one row for each training instances and the following 
columns: 

► id—the instance identifier 

► cluster_id—the identifier of the cluster to which the instance is assigned 

► distance—the distance between the instance and the cluster center, according to the distance 
measure used for the clustering 

It can be used to calculate additional indicators based on the assignment of training instances to 
clusters. For example, the following query can be used to determine the distribution of the income 
attribute, not used for clustering, within the obtained clusters: 

SELECT cluster_id, income, count(*)
FROM ci_km5m_out O, nza..CensusIncome_train T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income; 

The following example demonstrates how to describe the distribution of the continuous age 
attribute within the clusters by moments: 

CREATE VIEW ci_km5m_age AS
SELECT cluster_id, age
FROM ci_km5m_out O, nza..CensusIncome_train T
WHERE O.id=T.id; 

CALL nza..MOMENTS('intable=ci_km5m_age, incolumn=age, by=cluster_id, 
outtable=ci_km5m_age_moments');
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SELECT * FROM ci_km5m_age_moments; 

Refer to the section on data exploration algorithms for more details on distribution moments:

Since the cluster sizes of the clustering obtained with k=5 are extremely unbalanced, with one very 
large cluster dominating the others, it may be reasonable to consider a smaller value of k. The 
following code repeats the example presented above for k=2. 

CALL nza..KMEANS('intable=nza..CensusIncome_train, id=id, target=income, k=2, 
maxiter=3, distance=euclidean, model=ci_km2c, outtable=ci_km2m_out'); 

SELECT clusterid, size, withinss FROM nza_meta_ci_km2c_clusters ORDER BY 
clusterid;  

SELECT cluster_id, income, count(*) FROM ci_km2m_out O, 
nza..CensusIncome_train T WHERE O.id=T.id GROUP BY cluster_id, income ORDER 
BY cluster_id, income; 

CREATE VIEW ci_km2m_age
AS SELECT cluster_id, age
FROM ci_km2m_out O, nza..CensusIncome_train T
WHERE O.id=T.id; 

CALL nza..MOMENTS('intable=ci_km2m_age, incolumn=age, by=cluster_id, 
outtable=ci_km2m_age_moments');

SELECT * FROM ci_km2m_age_moments ORDER BY cluster_id; 

After adjusting the k value, the clusters are much more balanced. 

The clustering model created based on the training set can be applied to new data. This is 
demonstrated by the following call, using the same distance and transform options from the model, 
which generates cluster membership assignments for the CensusIncome test set using the clustering 
created for k=5.

The k-means clustering options used to build the k-means model (distance, transform, etc.), and 
statistics of columns and clusters (cluster’s variance and covariance information, cluster’s mean 
values, etc.) are saved in meta tables NZA_META_<model>_CLUSTERS, 
NZA_META_<model>_COLUMNS, and NZA_META_<model>_COLUMN_STATISTICS for k-means 
scoring, regardless of whether the statistics collection is enabled or not. The same measures used for 
building the clusters are used to score and predict new clusters. 

Note: The distance option is no longer required when calling PREDICT_KMEANS. The same distance 
option used to build the model is used for scoring. The distance option is accepted, for compatibility 
reasons, but the value specified is ignored.

CALL nza..PREDICT_KMEANS('intable=nza..CensusIncome_test, id=id, 
outtable=ci_km5m_test, model=ci_km5c');  

The output table contains one row for each instance from the specified data set and the same 
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columns described above. It can be used to determine the distribution of the income attribute within 
the obtained clusters on the test set as follows: 

SELECT cluster_id, income, count(*)
FROM ci_km5m_test O, nza..CensusIncome_test T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income; 

As discussed previously, it may be reasonable to standardize or normalize continuous columns when 
applying the k-means algorithm with difference-based distance functions. Use transform=S to 
standardize all continuous columns; use transform=N to normalize all continuous columns. For 
example, entering transform=age:N;income:N normalizes only age and income columns and leaves 
the other columns as is. 

CALL nza..KMEANS('intable=CensusIncome_train, id=id, target=income, k=2, 
maxiter=3, distance=euclidean, model=ci_std_km2c, outtable=ci_std_km2m_out, 
transform=S'); 

SELECT clusterid, size, withinss
FROM nza_meta_ci_std_km2c_clusters
ORDER BY clusterid; 

SELECT cluster_id, income, count(*)
FROM ci_std_km2m_out O, nza..CensusIncome_train T
WHERE O.id=T.id
GROUP BY cluster_id, income
ORDER BY cluster_id, income; 

Note: Columns with constant values do not contribute to clustering. These columns cannot be 
transformed because the variance value is 0. Auto-transformation may generate an error message if 
one or more columns cannot be transformed due to its variance or a mean value close to 0. The error 
message includes column name, column's mean value, and column's variance value. For example:

NOTICE: WARNING: Transformation of column 'BONUS' failed, mean(BONUS)=1000, 
variance(BONUS)=0.

You can either selectively list each transformed column individually or preprocess the intable to 
exclude columns that cannot be transformed. 

Output Table Data Formats

NZA_META_<model name>_MODEL Table
The NZA_META_<model name>_MODEL contains information pertaining to the entire clustering 
model. The table contains one line. Note that information common to all model types, such as 
OWNERID can be found in NZA_META_MODELS. Following are the table columns.
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Table 26: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

MODELCLASS VARCHAR(32) Type of clustering model, either center-
based or distribution-based.

COMPARISONTYPE VARCHAR(16) Type of record comparison, either distance 
or similarity.

COMPARISONMEASURE VARCHAR(32) Function used to aggregate individual 
column distances (or similarities), for 
example, squaredEuclidean.

NUMCLUSTERS INTEGER Number of clusters contained in the model.

NZA_META_<model name>_CLUSTERS Table
The NZA_META_<model name>_CLUSTERS table contains a list of all clusters in the model and some 
cluster information. The table contains one line for each cluster. Following are the table columns.

Table 27: Columns of the NZA_META_<model name>_CLUSTERS table

Column Data Type Purpose

CLUSTERID (primary 
key column)

INTEGER Index value of the cluster in the cluster 
model. If CLUSTERID is 0, the row pertains 
to all input records.

NAME NVARCHAR(100) Name of the cluster. The default value is 
CLUSTERID. Use the function 
set_ClusterName to change the value of 
this field

DESCRIPTION NVARCHAR(10000) Textual cluster description. The default 
value is NULL. Use the function 
set_ClusterName to change the value of 
this field

SIZE BIGINT Number of data records in the cluster.

RELSIZE DOUBLE Relative size of the cluster: SIZE/SIZE(0).

WITHINSS DOUBLE A measure of the cluster homogeneity: the 
sum of squared distances between records 
of the cluster and the cluster center.
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NZA_META_<model name>_COLUMNS Table
The NZA_META_<model name>_COLUMNS table contains all columns used by the data mining 
algorithm: the user can determine from this table which columns are required for model application. 
The table contains one line for each model column.

Note that the table may contain both columns from the original user input table and columns 
internally created by the auto-transform option. For model application, only the original columns are 
required because the transformed values are determined by the scoring algorithm. Parameter values 
for the transformations, such as the mean value of a column, can be found in NZA_META_<model 
name>_COLUMN_STATISTICS. For some mining functions only a subset of the usage types is possible.

Following are the table columns.

Table 28: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

COLUMNNAME (primary 
key column)

NVARCHAR(128) Name of an input column.

DATATYPE VARCHAR(64) SQL data type of the column.

OPTYPE VARCHAR(16) Operational type of the column. Possible 
values are: categorical, ordinal, and 
continuous.

USAGETYPE VARCHAR(16) Usage type. Possible values are ignored, 
active, predicted, supplementary, 
frequencyWeight, analysisWeight,and group.

COLUMNWEIGHT DOUBLE A priori factor of contribution to the model 
training process relative to other columns. The 
default value is 1.0.

AUTOTRANSFORM CHAR(1) Method of column transformation applied 
automatically by the KMEANS procedure. 
Possible values are: 'S' for standardization, 'N' 
for normalization, and 'L' or null for leave as is.

TRANSFORMEDCOLUMN NVARCHAR(128) Column name after transformation, Value is 
null if the column has not been transformed.

COMPAREFUNCTION VARCHAR(16) Function used to compare a pair of column 
values. Possible values are: absDiff, delta, and 
equal.

IMPORTANCE DOUBLE Indicates the column’s importance for the data 
mining model as determined by the algorithm. 
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Column Data Type Purpose

The value is between 0 and 1.

OUTLIERTREATMENT VARCHAR(16) Outlier treatment. Possible values are: asIs, 
asMissingValues, and asExtremeValues.

LOWERLIMIT DOUBLE Lower limit of valid values in a numeric field. 
Null indicates negative infinity.

UPPERLIMIT DOUBLE Upper limit of valid values in a numeric field. 
Null indicates positive infinity.

CLOSURE VARCHAR(12) Indicates whether the outlier limits are 
contained in the valid value range or not. 
Possible values are: openClosed, openOpen, 
closedOpen, and closedClosed. 

STATISTICSTYPE VARCHAR(16) Indicates which type of statistics are available 
for the column. Possible values are: 
► discrete--statistics available from 

NZA_META_<model 
name>_DISCRETE_STATISTICS,

► numeric--statistics available from 
NZA_META<model 
name>_NUMERIC_STATISTICS,

► column--statistics available only from 
NZA_META_<model name>_COLUMNS

► null--no statistics available

NZA_META_<model name>_COLUMN_STATISTICS Table
The NZA_META_<model name>_COLUMN_STATISTICS contains one line for each cluster. Following 
are the table columns.

Table 29: Columns of the NZA_META_<model name>_COLUMNS table

Column Data Type Purpose

CLUSTERID (primary 
key column)

INTEGER Index value of the cluster in the cluster model. 
If CLUSTERID is 0, the row pertains to all input 
records.

COLUMNNAME 
(primary key column)

NVARCHAR(128) Name of an input column.

CARDINALITY BIGINT Number of distinct values. The value is NULL if 
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Column Data Type Purpose

the column is continuous.

MODE NVARCHAR (16000) Most frequent discrete value in the column for 
CLUSTERID. 

MINIMUM DOUBLE Minimum value. The value is NULL if the 
column is not numeric.

MAXIMUM DOUBLE Maximum value. The value is NULL if the 
column is not numeric.

MEAN DOUBLE Mean value. The value is NULL if the column is 
not numeric.

VARIANCE DOUBLE Unbiased sample variance. The value is NULL if 
the column is not numeric.

VALIDFREQ BIGINT Number of valid values.

MISSINGFREQ BIGINT Number of missing values.

INVALIDFREQ BIGINT Number of invalid values.

IMPORTANCE DOUBLE Normalized chi-square value, which indicates 
if the column distribution in the cluster is 
significantly different from the overall column 
distribution. The normalized chi-square value 
is the factor by which the chi-square value 
differs from the chi-square value that is 
sufficient for 99.99% significance (considering 
degrees of freedom). This field is currently not 
supported. Value: null

NZA_META_<model name>_COVARIANCES Table
The NZA_META_<model name>_COVARIANCES table represents the covariance matrix and its 
inverse. These matrices are symmetric, that is, cov(c1, c2) = cov(c2, c1). Therefore, only one of the 
two combinations is stored. Note that if one of the columns is categorical (or both), covariance is not 
defined, and the values of COVARIANCE and INVERSE pertain to a generalized covariance. The table 
has one line for each cluster. Following are the table columns.
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Table 30: Columns of the NZA_META_<model name>_COVARIANCES table

Column Data Type Purpose

CLUSTERID (primary 
key column)

INTEGER Index value of the cluster in the cluster model. 
If CLUSTERID is 0, the row pertains to all input 
records.

COLUMNNAME1 
(primary key column)

NVARCHAR(128) Name of a first input column.

COLUMNNAME2 
(primary key column)

NVARCHAR(128) Name of a second input column.

COVARIANCE DOUBLE If COLUMNAME1 = COLUMNNAME2, the 
variance of the first input column. Otherwise, 
the covariance of the first and the second 
input column.

INVERSE DOUBLE Values of the inverse of the covariance matrix.

NZA_META_<model name>_DISCRETE_STATISTICS Table
The NZA_META_<model name>_DISCRETE_STATISTICS table provides statistics about a cluster. 
Following are the table columns.

Table 31: Columns of the NZA_META_<model name>_DISCRETE_STATISTICS table

Column Data Type Purpose

CLUSTERID (primary 
key column)

INTEGER Index value of the cluster in the cluster model. 
If CLUSTERID is 0, the row pertains to all input 
records.

COLUMNNAME NVARCHAR(128) Name of an input column.

VALUE NVARCHAR(16000) Value occurring in the input column. Note that 
the column may be numeric, in which case the 
value is a string representation of the true 
column value.

COUNT BIGINT Number of occurrences of records with 
VALUE.

RELFREQUENCY DOUBLE Percentage of occurrences of records with 
VALUE. The relative frequency is based on all 
records, including those with invalid or null 
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Column Data Type Purpose

values.

DEVIATION DOUBLE RELFREQUENCY(CLUSTERID) 
-RELFREQUENCY(0)

NZA_META_<model name>_NUMERIC_STATISTICS Table
The NZA_META_<model name>_NUMERIC_STATISTICS table provides statistics about a cluster. 
Following are the table columns.

Table 32: Columns of the NZA_META_<model name>_NUMERIC_STATISTICS table

Column Data Type Purpose

CLUSTERID (primary 
key column)

INTEGER Index value of the cluster in the cluster model. 
If CLUSTER_ID is 0, the row pertains to all 
input records.

COLUMNNAME 
(primary key column)

NVARCHAR(128) Name of a numeric input column.

FROMVALUE (primary 
key column)

DOUBLE Lower interval boundary. NULL indicates 
negative infinity.

TOVALUE (primary key 
column)

DOUBLE Upper interval boundary. NULL indicates 
positive infinity.

CLOSURE VARCHAR(12) Indicates whether the interval limits are 
contained. Possible values are openClosed, 
openOpen, closedOpen, and closedClosed. 

COUNT BIGINT Number of occurrences of records in the 
interval.

RELFREQUENCY DOUBLE Percentage of occurrences of records in the 
interval. The relative frequency is based on all 
records, including those with invalid or NULL 
values.

DEVIATION DOUBLE RELFREQUENCY(CLUSTERID) 
-RELFREQUENCY(0)

MEAN DOUBLE Mean of all values in the interval.

VARIANCE DOUBLE Variance of all values in the interval.
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Divisive Clustering

The divisive clustering algorithm is a computationally efficient, top-down approach to creating 
hierarchical clustering models. Conceptually, it can be thought of as a wrapper around the k -means 
algorithm (with a specialized method for initial centroid setting), running the algorithm several times 
to divide clusters into subclusters. The internal k-means algorithm assumes a fixed k=2  value. 

The divisive clustering algorithm may return different results for the same data set and the same 
random generator seed when you use different input data distribution or a different number of 
dataslices. This is due to the behavior of the random number generator, which generates random 
sequences depending on the number of dataslices and data distribution. The algorithm returns the 
same model when you use the same machine, the same input data distribution, and the same 
random seed.

Background 

The cluster formation process of the divisive clustering algorithm begins with a single cluster 
containing all training instances, then the first invocation of k -means divides it into two subclusters 
by creating two descendant nodes of the clustering tree. Subsequent invocations divide these 
clusters into more subclusters, and so on, until a stop criterion is satisfied. Stop criterion can be 
specified by the maximum clustering tree depth or by the minimum required number of instances for 
further partitioning. The resulting hierarchical clustering tree can be used to classify instances by 
propagating them down from the root node, and choosing at each level the best matching sub-
cluster with respect to the instance’s distance from sub-cluster centers. 

The internal k-means process of the divisive clustering algorithm operates using the ordinary k-
means algorithm (with the modified initial centroid generation), discussed in the K-Means Clustering 
section, using a fixed value of k=2 and working with the subset of data from the parent cluster. The 
initial centroid generation consists two steps: random generation n>>k candidates and then selection 
of outermost pair of candidates. The cluster center representation and distance measures remain the 
same. The numbering scheme for clusters in a clustering tree is the same as decision trees: the root 
node is number 1, and the descendants of node number i  have numbers 2 i and 2 i1 . 
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Additionally, leaves, which are clusters with no subclusters, are designated by negative numbers. 

Applications 

The divisive clustering algorithm is primarily designed for applications where a cluster hierarchy is 
required for large data sets, for which the alternative agglomerative clustering approach is 
impractical. The need for a hierarchical clustering model may result from two needs. 

► To discover and symbolically represent the similarity patterns in the data more completely and in 
more detail than with flat clustering. Divisive clustering makes it possible to see what similarity-
based cluster can be identified as well as also how diverse they are internally, and how they can 
be further decomposed. This is useful for applications where the clustering model is intended to 
represent some knowledge about the domain, derived from the analyzed data set. Consider, for 
example, hierarchical customer segmentation that provides more insight into different customer 
profiles, or hierarchical document clustering, which roughly represents a topic hierarchy with 
different levels of generality and specificity. 

► To enable using a single clustering model with varying “resolution.” Divisive clustering makes it 
possible to dynamically choose the clustering level of interest, separately for particular instances. 
This is particularly important when clustering is used to make inference about new instances, 
such as in hidden attribute prediction and anomaly detection applications, where adjusting the 
clustering level is a means of balancing the specificity and reliability of predictions. 

Available Functionality 

The implementation of the divisive clustering algorithm available in IBM Netezza In-Database 
Analytics via the DIVCLUSTER and PREDICT_DIVCLUSTER stored procedures provides the following 
functionality: 

► cluster formation via repetitive application of the k-means algorithm with k=2 

► stop criteria for hierarchy creation specified by the maximum clustering tree depth (number of 
cluster levels) or by the minimum number of instances in a cluster required for further 
partitioning 

► seed for random generator setting

► stop criteria for a single k-means division satisfied on convergence or reaching a specified 
maximum number of iterations 

► a choice of predefined distance functions: Euclidean, Manhattan, Canberra, maximum, with 
more user-definable measures available via UDFs 

► cluster membership prediction for new data 

Rows from the input table containing NULL values are ignored. 
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Examples 

To illustrate the divisive clustering algorithm, follow the pattern of the k-means examples and 
exclude the income attribute, representing the class, which can be achieved by specifying it as the 
target attribute. The following call creates a 3-level clustering tree, using the Euclidean distance 
measure and performing no more than 10 k-means iterations to divide each cluster into subclusters. 

CALL nza..DIVCLUSTER('intable=nza..CensusIncome_train, id=id, target=income, 
maxiter=10, distance=euclidean, maxdepth=3, model=ci_dc3t, 
outtable=ci_dc3m'); 

The model specified via the model argument is stored in one table (named 
NZA_META_<model>_MODEL) and consists of a cluster table NZA_META_CI_DC3T_CLUSTERS, 
containing cluster centers for each cluster from the created clustering tree. There is one column for 
each attribute with the mean attribute value for continuous attributes and the most frequent value 
for discrete attributes and the following additional columns: 

► clusterid—the cluster identification number 

► size—the number of training instances in the cluster 

► withinss—the sum of squared distances between training instances assigned to the cluster and 
the cluster center 

You can view the contents of this table ordered with respect to the absolute value of the clusterid 
column, due to the convention of negating leaf numbers: 

SELECT * FROM NZA_META_ci_dc3t_MODEL ORDER BY abs(cluster_id); 

The other output table, specified via the outtable argument, provides cluster membership 
information for training instances for the leaves of the tree. It contains the following columns for 
each instances from the training set: 

► id—the instance identifier 

► cluster_id—the identifier of the leaf cluster to which the instance is assigned 

► distance—the distance between the instance and the cluster center, according to the distance 
measure used for the clustering 

The resulting clustering tree is heavily unbalanced, with the majority of training instances assigned to 
a single leaf: 

SELECT cluster_id, count(*) 
FROM ci_dc3m
GROUP BY cluster_id
ORDER BY abs(cluster_id); 

As demonstrated for the k-means algorithm, the cluster membership table can be used to calculate 
various indicators based on attribute distribution within clusters, meaningful for particular 
applications. The following example demonstrates how the mutual information can be calculated and 
how the 2  test can be performed to verify the relationship between cluster membership and the 
income attribute, which was not used for clustering. For details on the mutual information and the 
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
2  test, refer to the Data Exploration section. 

CREATE VIEW ci_dc3m_income AS SELECT cluster_id, income FROM ci_dc3m M, 
nza..CensusIncome_train T WHERE M.id=T.id; 

CALL nza..MUTUALINFO('intable=ci_dc3m_income, incolumn=income;cluster_id, 
outtable=ci_dc3m_income_mutinf');

SELECT * FROM ci_dc3m_income_mutinf; 

CALL nza..CHISQ_TEST('intable=ci_dc3m_income, incolumn=cluster_id;income, 
outtable=ci_dc3m_income_chisq');

SELECT * FROM ci_dc3m_income_chisq; 

The results indicate a strong dependency between cluster membership and income. 

The resulting hierarchical clustering model can be used for making predictions for new instances. This 
predicts cluster membership on a selected level of the clustering tree. Unless explicitly specified via 
the level argument, it defaults to the bottom level. The following call generates cluster membership 
predictions on the test set using the second level of the previously created 3-level clustering tree 
model: 

CALL nza..PREDICT_DIVCLUSTER('model=ci_dc3t, level=2, 
intable=nza..CensusIncome_test, id=id, outtable=ci_dc3m_test'); 

The format of the output table is the same as the training set cluster membership table created 
during model creation and can be used to calculate various indicators in the same way. 
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TwoStep Clustering

TwoStep clustering is a data mining algorithm for large data sets. It is faster than traditional methods 
because it typically scans a data set only once before it saves the data to a clustering feature (CF) 
tree. TwoStep clustering can make clustering decisions without repeated data scans, whereas other 
clustering methods scan all data points, which requires multiple iterations. Non-uniform points are 
not gathered, so each iteration requires a reinspection of each data point, regardless of the 
significance of the data point. Because TwoStep clustering treats dense areas as a single unit and 
ignores pattern outliers, it provides high-quality clustering results without exceeding memory 
constraints. 

The TwoStep algorithm has the following advantages:

► It automatically determines the optimal number of clusters. You do not have to manually create 
a different clustering model for each number of clusters. 

► It detects input columns that are not useful for the clustering process. These columns are 
automatically set to supplementary. Statistics are gathered for these columns but they do not 
influence the clustering algorithm. 

► The configuration of the CF tree can be granular, so that you can balance between memory usage 
and model quality, according to the environment and needs. 

Background 

To cluster data, the TwoStep clustering algorithm does the following actions:

1. The algorithm scans all data and builds a clustering feature (CF) tree. This tree is built by 
arranging the input records in a way that similar records become part of the same tree node. If 
there is a memory issue, the tree is rebuilt with an increased threshold and outliers are 
removed. 

2. The leaves of the CF tree are clustered hierarchically in memory. The clustering is done by 
calculating the n * (n-1) / 2 distances between each pair of leaves and merging the two clusters 
with the smallest distance. The process of calculating distances between clusters and merging 
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the closest two is repeated until the root of the tree is reached. All data is contained in one 
cluster, thus forming a binary tree.

Starting with the root node of the binary tree, the child node with the worst quality is added. 
The process of adding child nodes continues until the number of clusters that is determined 
automatically or that is specified by the user is reached. The number of clusters that is 
determined automatically is also the optimal number of clusters.

3. The clustering result is refined by a final pass over the data where each record is assigned to 
the closest cluster. This behavior is similar to the behavior of the K-means algorithm.

Applications 

The TwoStep algorithm takes the following steps:

1. In the preprocessing step, a CF-tree is built with a limited number of intermediate clusters. The 
build is controlled by the maxleaves parameter. Thus, you can exchange model quality with a 
high maxleaves value for good performance with a low maxleaves value according to your 
needs.

2. In the refinement step, the final model is built. For this reason, TwoStep is especially suitable 
for large data sets.

Unlike the K-Means and divisive clustering algorithms, the TwoStep algorithm can determine an 
optimal number of clusters. Furthermore, it supports log-likelihood distance. This distance is a 
distribution-based distance measure that is suitable for nominal and numerical attributes. 

Available Functionality 

The implementation of the TwoStep clustering algorithm is available in IBM SPSS In-Database 
Analytics through the TWOSTEP, PREDICT_TWOSTEP, PRINT_TWOSTEP, EXPORT_PMML or 
PMML_MODEL stored procedures.

TwoStep procedure
The TwoStep procedure generates a clustering model.

This model has the following elements:

► Support for nominal and numerical attributes

► Support for missing values

► Predefined distance measures: Log-likelihood (the default), Euclidean, Norm_Euclidean

PREDICT_TWOSTEP Procedure
The PREDICT_TWOSTEP procedure applies a TwoStep clustering model on an input table. 

This model has the following elements:
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► Cluster membership prediction for new data 

► Support for missing values

PRINT_TWOSTEP Procedure
The PRINT_TWOSTEP procedure prints details of a TwoStep clustering model.

PMML-related Procedures
The EXPORT_PMML and PMML_MODEL convert a TwoStep clustering model to PMML format.

Examples 

To illustrate the TwoStep algorithm, a clustering model for the Iris data set is created in the following 
example.

The example uses the following assumptions and settings:

► Norm_Euclidean distance is the distance measure.

► For nominal attributes, statistics are limited to the 25 most frequent values. 

► For numerical attributes, discrete statistics are calculated only for attributes with 25 or fewer 
different values. If the number of values is greater than 25, continuous statistics are calculated by 
building buckets.

In this example, the following call is issued: 

CALL nza..TWOSTEP('model=irisb, intable=nza..iris, 
distance=norm_euclidean, id=id, statistics=values:25'); 

Unlike K-Means, you do not have to specify the wanted number of clusters to be found. 

The call generates a clustering model that is represented by the following tables:

►  NZA_META_IRISB_MODEL

►  NZA_META_IRISB_CLUSTERS

►  NZA_META_IRISB_COLUMNS

►  NZA_META_IRISB_COLUMN_STATISTICS

►  NZA_META_IRISB_DISCRETE_STATISTICS

►  NZA_META_IRISB_NUMERIC_STATISTICS

Based on these tables, you can convert the "irisb" model to the PMML format and write it to the 
file /tmp/irisb.pmml  by issuing the following call:

CALL nza..EXPORT_PMML('model=irisb, file=/tmp/irisb.pmml');

You can extract information about centers of cluster 1 and cluster 2 regarding attributes "CLASS" and 
"PETALLENGTH" by issuing the following call: 

CALL nza..PRINT_BIRCH('model=irisb, mode=centers, 
clusters=1;2,columns=class;petallength'); 
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The call issues the requested information in tabular form, similar to the following table:

| CLUSTERID | COLUMNNAME  | CARDINALITY | MODE       | MINIMUM | MAXIMUM 
| MEAN  | VARIANCE          | COUNT |
+-----------+-------------+-------------+------------+---------+---------
| 1         | CLASS       | 3           | versicolor |         | 
|       |                   | 50    |
| 1         | PETALLENGTH |             |            | 1       | 1.9 
| 1.464 | 0.028364102564103 | 50    |
| 2         | CLASS       | 3           | setosa     |         | 
|       |                   | 100   |
| 2         | PETALLENGTH |             |            | 3       | 6.9 
| 4.906 | 0.671688          | 100   |
+-----------+-------------+-------------+------------+---------+---------

You can predict cluster affiliation for the new iris_test data set, by issuing the following call:

CALL nza..PREDICT_TWOSTEP('model=irisb, intable=nza..iris_test, id=id, 
outtable=irisb_out'); 

The call generates the irisb_out outtable that has one record for each record from the iris_test in-
table. The iris_test intable is identified by the ID.

The table looks as follows: 

 ID  | CLUSTER_ID |    DISTANCE
-----+------------+-----------------
   2 |          1 | 1.4026800339739
  30 |          1 | 1.1851532469099
  58 |          2 | 2.5620498130415
  66 |          2 | 1.3337242870809 

You can read the table as follows: 

The record from the  iris_test intable with the ID 2 is assigned to cluster 1 of the irisb model. Its 
distance to the center of cluster 1 is 1.4026800339739. The distance was measured with the 
Norm_Euclidean measure, which was also used to generate the irisb model.

Output Table Data Formats

The models that are created by the TwoStep algorithm are stored in several tables, in the same 
manner as the K-Means models. For details of the TwoStep models, see the descriptions in the K-
Means section as shown in the following tables.

TwoStep Procedure Output Tables
Table 33: Columns of the NZA_META_<model name>_MODEL table

Table Name (Link) Description

NZA_META_<model name>_MODEL Table Generic information on the model

NZA_META_<model name>_CLUSTERS Generic information on the clusters
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Table Name (Link) Description

NZA_META_<model name>_COLUMNS
Table

Generic information on the input columns that are 
used to build the model

NZA_META_<model
name>_COLUMN_STATISTICS Table

Statistics on the input columns that are used to 
build the model

NZA_META_<model
name>_DISCRETE_STATISTICS Table

Statistics on the values of the discrete input 
columns (nominal or numeric) that are used to 
build the model

NZA_META_<model
name>_NUMERIC_STATISTICS Table

Statistics on the intervals of the numeric input 
columns that were discretized due to their num-
ber of values bigger than <n>
This table is only filled in when parameter statist-
ics is set to all or values:<n>, and there are nu-
meric input columns containing more than <n> 
values.

PRINT_TWOSTEP Procedure 
The PRINT_TWOSTEP procedure returns the following output, depending on the setting of the mode 
parameter:

Table 34: Columns of the NZA_META_<model name>_MODEL table

If mode is... Output is of a SELECT statement on the...

clusters NZA_META_<model name>_CLUSTERS Table

centers NZA_META_<model name>_COLUMN_STATISTICS Table

statistics Joined tables:
• NZA_META_<model name>_DISCRETE_STATISTICS Table

• NZA_META_<model name>_NUMERIC_STATISTICS Table 
This mode displays a complete result only if the model was 
built with statistics=values or statistics=all.
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Association Rules 

Association rules mining is a popular method for discovering interesting and useful patterns in a large 
scale transaction database. The database contains transactions which consist of a set of items and a 
transaction identifier (e.g., a market basket). Association rules are implications of the form X -> Y 
where X and Y are two disjoint subsets of all available items. X is called the antecedent or LHS (left 
hand side) and Y is called the consequent or RHS (right hand side). Discovered association rules have 
to satisfy user-defined constraints on measures of significance and interest. 

Background 

The Apriori algorithm organizes the search for frequent itemsets by systematically considering 
itemsets of increasing size in consecutive iterations. Due to its method of calculation, the number of 
candidates identified by the Apriori algorithm may be overwhelming for extremely large data sets or 
a low support threshold. Because of this limitation, the FP-growth algorithm is provided in the IBM 
Netezza In-Database Analytics package instead. 

The FP-growth algorithm avoids candidate generation as well as multiple passes through the data by 
creating a data structure called a frequent pattern tree, or FP-tree. This tree is a compact 
representation of the data set contents sufficient for finding frequent itemsets. Nodes of the tree 
represent single items and store their occurrence counts. Only items with sufficiently high support, 
frequent item-sets of size 1, are represented. Branches, called node-links, in the FP-tree connect 
nodes that represent items co-occurring for some instances in the data set. There is also a frequent 
item header table that points to nodes corresponding to particular items. 

The tree is built by identifying all frequent items and their counts, then consecutively “inserting” 
each transaction to the tree. This requires exactly two scans of the data set, regardless of its size or 
support threshold level. The FP-tree is used to identity frequent itemsets using a frequent pattern 
growth process, which traverses the tree by following node-links in an appropriate way. 

By avoiding explicit candidate generation, the FP-growth algorithm reduces the number of data set 
scans. It can also perform efficiently, regardless of the threshold support. 
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Applications 

Unlike most other data mining tasks, algorithms used for association rule mining do not differ in their 
output for the same data and support threshold, since they find all sufficiently supported association 
rules. There is no space for an inductive bias as in classification, regression, or clustering algorithms. 
Where association rule mining algorithms differ is computational efficiency. The FP-growth 
algorithm, more efficient than the Apriori algorithm in most cases, is therefore applicable to all 
practical instantiations of the association rule mining tasks. It is particularly well-suited to 
applications where large data sets must be mined or many rules must be created, even with relatively 
low support values. This is where its efficiency advantages are most likely to manifest themselves and 
considerably reduce the computational time needed for frequent itemset and rule discovery. 
Although for small data sets its performance advantage over the Apriori algorithm may be small, it is 
still applicable and sufficiently fast, since such small data sets require minimal computation. 

Available Functionality 

The Netezza implementation of association rules mining algorithm is available through the ARULE 
stored procedure and the PREDICT_ARULE stored procedure that provide the following functionality: 

► association rules mining (including frequent itemset generation) 

► multiple transaction groups analysis at a time

► a minimum support threshold specified via an absolute or relative value 

► a minimum confidence threshold

► a user-specified maximum itemset size (the maximum length of association rule)

► a user-specified data decomposition/parallelization level

► application of existing association rules for new data

Examples 

Consider creating significant and interesting association rules on exemplary RETAIL and RETAILG data 
sets. The RetailG table comes from retail table and is extended by one column grp which divides 
transactions into 3 groups. The support greater than 100 examples determines measure of 
significance and confidence greater than 0.5 measure of interestingness.

The following calls discover mentioned rules. 

CALL nza..ARULE('model=ASSOC_A1K_05,intable=nza..Retail, 
supporttype=absolute, support=100, maxsetsize=6, confidence=0.5');

CALL nza..ARULE('model=ASSOC_A1K_05_G,intable=nza..RetailG, 
supporttype=absolute, support=100, maxsetsize=6, confidence=0.5, by=grp');

The call runs the algorithm on the Retail data set, requesting that frequent item-sets and rules 
(generated based on frequent item-sets) with absolute support of 100 or more, rules confidence of 
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0.5 and more, and maximum number of rule's items (maxsetsize) of 6 and less, with instructions to 
store output model in the few tables described below. 

To inspect the built model, the PRINT_ARULE procedure could be used. For example: 

CALL nza..PRINT_ARULE('model=ASSOC_A1K_05, minsize=3, minconf=0.8, 
minlift=1.2, minconv=1.2');

CALL nza..PRINT_ARULE('model=ASSOC_A1K_05_G, minsize=3, minconf=0.8, 
minlift=1.2, minconv=1.2');

In the example above, the additional rule selection filter is used to limit the number of presented 
rules. The minimum number of a rule's items (minsize), confidence (minconf), lift (minlift), and 
conviction are applied. This allows you to decrease the number of presented rules from 100 to 12 for 
the most interesting ones for the ASSOC_A1K_05 model and from 51 to 5 for the ASSOC_A1K_05_G 
model.

The demonstrations above do not include advanced use of the lvl argument of the algorithm, which 
controls the level of data decomposition and computation parallelization within distinct groups. It is 
set to 1 by default. However, if out of memory problems are encountered, it can be adjusted 
appropriately to the data set size and machine architecture. Note that a value of 0 performs no 
decomposition, which may yield the best performance for small data sets or high number of distinct 
groups.

Note: The examples for the PRINT_ARULE stored procedure do not contain all available parameters. 
For example, to replace item names by meaningful product names, you can use the namemap 
parameter. To generate an output table in addition to textual output, you can use the outtable 
parameter. For a detailed description of all parameters, see the IBM Netezza In-Database Analytics  
Reference Guide.

Output Table Data Formats

As a result, when the ARULE algorithms run, the following tables are generated:

► NZA_META_<model_name>_GROUP Table

► NZA_META_<model_name>_RULE Table

► NZA_META_<model_name>_ITEM Table

► NZA_META_<model_name>_ITEMSET Table

NZA_META_<model_name>_GROUP Table
The NZA_META_<model_name>_GROUP table contains parameters used for rules generation for a 
group. The table contains the following columns.
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Table 35: Columns of the NZA_META_<model name>_GROUP table

Column Data Type Purpose

GID (primary key 
column)

BIGINT The group unique identifier.

GROUP_NAME <type from intable> Group name coming from intable.

NUMBEROFTRANSACTI
ONS

BIGINT Number of transactions (baskets of items) 
contained in the input data.

MAXNUMBEROFITEMS
PERTA

BIGINT Number of items contained in the largest 
transaction.

AVGNUMBEROFITEMSP
ERTA

DOUBLE Average number of items contained in a 
transaction.

NUMBEROFITEMS BIGINT Number of different items contained in the 
input data. 

NUMBEROFITEMSETS BIGINT Number of itemsets contained in the model.

NUMBEROFRULES BIGINT Number of rules contained in the model.

MINIMUMSUPPORT BIGINT Minimum relative support value (#supporting 
transactions / #total transactions) satisfied by 
all rules.

NZA_META_<model_name>_RULE Table
The NZA_META_<model_name>_RULE table contains discovered association rules as well as a set of 
“interestingness” measures. The table contains the following columns.

Table 36: Columns of the NZA_META_<model name>_RULE table

Column Data Type Purpose

GID (primary key 
column)

BIGINT The group unique identifier.

RHS_SID BIGINT Right-hand side itemset ID (refers to ITEMSETS table)

LHS_SID BIGINT Left-hand side itemset ID (refers to ITEMSETS table).

RHS_SIZE INTEGER Size of right-hand side itemset.

LHS_SIZE INTEGER Size of left-hand side itemset.
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Column Data Type Purpose

SUPPORT DOUBLE Support of the rule, that is, the relative frequency of 
transactions that contain A and C:

[support(A->C)= support(A+C)]

CONFIDENCE DOUBLE Confidence of the rule: 

[confidence(A->C) = support(A+C) / support(A) ]

LIFT DOUBLE Lift value of the rule. If the XML attribute is specified 
explicitly in the rule, the following equation must hold 
true: 

[lift(A->C) = confidence(A->C) / support(C)

CONVICTION DOUBLE Conviction value of the rule. The frequency that the 
rule makes an incorrect prediction:

[conviction(A->C) = (1-support(C))/(1-confidence(A-
>C))

AFFINITY DOUBLE Affinity of the rule, a measure of the transactions that 
contain both the antecedent and consequent, 
compared to those that contain the antecedent or the 
consequent (union).

[affinity(A->C) = support(A+C) / [ support(A) + 
support(C) - support(A+C)]

LEVERAGE DOUBLE Leverage value of the rule, a measure of the 
difference between the observed frequency of A+C 
and the frequency that would be expected if A and C 
were independent:

[leverage(A->C) = support(A->C) - 
support(A)*support(C)] 

NZA_META_<model_name>_ITEM Table
The NZA_META_<model_name>_ITEM table contains a dictionary of items. The table contains the 
following columns.

Table 37: Columns of the NZA_META_<model name>_ITEM table

Column Data Type Purpose

ITEM (primary key 
column)

BIGINT The item unique identifier.

ITEM_NAME <type from the 
intable>

Item name coming from original input table, defined by 
intable parameter.
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NZA_META_<model_name>_ITEMSET Table
The NZA_META_<model_name>_ITEMSET table contains frequent itemsets that are discovered by 
the FPGrowth algorithm and that are limited by the support and maxsetsize parameters. The number 
of item columns depends on the maxsetsize parameter. The default value of this parameter is 6, the 
maximum value is 64. The table contains the following columns.

Table 38: Columns of the NZA_META_<model name>_ITEM table

Column Data Type Purpose

SID (primary key 
column)

BIGINT An identifier to uniquely identify an itemset

GID BIGINT An identifier to uniquely identify a group

ITEM1 BIGINT First item identifier

ITEM2 to ITEM<n> BIGINT N item identifier, depending on the specified max rule 
size

SIZE INTEGER The number of items contained in this itemset

SUPPORT DOUBLE The relative support of the itemset

LIFT DOUBLE A positive number indicating the ratio between the 
actual support of the itemset and its expected or 
predicted support
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Time Series Forecasting

Background

Many types of business-relevant or scientific data have values that change over time. Some typical 
examples are: 

► Daily sales figures for a store 

► Energy consumption readings from household electric meters 

► Price per gallon at a local gas station 

It is often useful to analyze the behavior of such changes, both to describe the development over 
time, specifically for a particular trend and seasonality, as well as to predict unknown values of the 
series, usually for the future. A typical area of application is supply chain management, where future 
needs may be predicted based on past trends.

A time series is a sequence of numerical data values, measured at successive—but not necessarily 
equidistant—points in time. Examples are daily stock prices, monthly unemployment counts, or 
annual changes in global temperature. The two main goals of time series analysis are to understand 
the underlying patterns which are represented by the observed data and to make forecasts.

Time Series Types

There are two different types of time series:

► Distinct Time Series—Values belong to exact points in time, for example a time series of 
individual temperature readings 

► Aggregated Time Series—Values are aggregated across some interval in time, for example a 
time series of monthly average temperatures or daily sales figures 

Aggregated time series can be considered as distinct time series, where the aggregated values belong 
to a specified point within the time interval. The interval typically chosen is either the beginning, the 
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middle, or the end. In the following example, aggregated time series are arbitrarily considered as 
distinct time series with values at the beginning of the interval. The time series of monthly average 
temperatures might be, for example:

2011-11-30 0:00       52.7
2010-12-31 0:00       null
2011-01-31 0:00       45.0
2011-02-28 0:00       44.3
2011-03-31 0:00       51.2
2011-04-30 0:00       55.3
2011-05-31 0:00       69.7
2011-06-30 0:00       68.8

Time series can be in general decomposed into a trend, seasonality and random noise. 

► A trend is a linear or nonlinear function of time that does not repeat in time. An example of this 
is the increase of the annual average world temperature during the last 150 years. 

► The seasonality is a periodic function, that is, a function that regularly repeats itself in time. An 
example is the cyclic behavior in monthly recorded temperature data in Germany. 

► The random noise is attributed to unpredictable fluctuations in the data. 

Time Series Algorithms

NZ Analytics provides three independent time series modeling algorithms:

► Exponential Smoothing

► ARIMA

► Seasonal Trend Decomposition 

In addition to these modeling algorithms, Spectral Analysis determines seasonal behavior of time 
series. 

The implemented algorithms decompose a time series into a trend and a seasonal component and 
analyze them in order to build a descriptive model. This model is used for prediction.

Unlike other data mining algorithms, the time series algorithm does not include separate modeling 
and scoring phases. Typically, a time series is extrapolated into the future for some period of time, or 
up to some future point in time that is known at the time of model creation, referred to as the 
forecast horizon. Later, when forecasts are needed for other, unforeseen points in time, there are 
typically more historic time values available due to continued data collection. Therefore, a new, more 
accurate model should be created. Since a typical time series consist of relatively small numbers of 
time values, creating a new model should not take much time.

Data Requirements
All time series algorithms in IBM Netezza Analytics are based on equidistant input time series. If the 
data provided by the user is not equidistant it is preprocessed to establish a set of equidistant time 
values.
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A time series of length n is equidistant if it contains values at all of the following points in time and 
none other:

t i= t0 i∗s for i=0,… ,n−1  with a fixed step size s .

In general, s  does not need to be a fixed interval in real time, but any two subsequent values in the 
series must be “logically” equidistant, that is, they are equidistant in terms of the business semantics. 
A time series might, for example, capture monthly airline passengers arriving at an airport:

2010-11-30 12:00     3,500,000
2010-12-31 12:00     3,900,000
2011-01-31 12:00     3,700,000
2011-02-28 12:00     3,400,000
2011-03-31 12:00     4,500,000
2011-04-30 12:00     3,900,000
2011-05-31 12:00     5,800,000
2011-06-30 12:00     6,000,000

These time values can be considered equidistant, even if not all months have the same duration, 
since each one is measuring data for a calendar month, which is considered an equidistant 
measurement. If the times are converted to integers, for example counting the number of months 
since January 1970, the transformed time series now looks like this:

503          3,500,000
504          3,900,000
505          3,700,000
506          3,400,000
507          4,500,000
508          3,900,000
509          5,800,000
510          6,000,000

In a similar example, assume the daily price of the IBM stock is recorded. There is no data recorded 
on Saturdays, Sundays, or public holidays. Logically, the Monday value comes immediately after the 
Friday value and is the same distance as Monday is to Tuesday. Mapping real time to logical time is 
not supported, so for such scenarios, the user must perform a transformation before calling the 
TIMESERIES procedure. If the data is not transformed, it is interpolated as described in the 
Interpolation section.

Interpolation
If a time series is equidistant with the exception of some missing values, interpolation is used to 
estimate those values that are missing. 

Using the example of of airline passengers arriving in a given month, where the month value is an 
integer counted from January 1970:

503          3,500,000
504          3,900,000
505          3,700,000
506          3,400,000
507          4,500,000
508          3,900,000
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509          5,800,000
510          6,000,000

If, for instance, the value at time 505 were missing, it could be estimated as 3,650,000 using linear 
interpolation. In this case, interpolation results in the required equidistant time series.

Further, consider a time series consisting of time values at irregular points in time, for example the 
following series of temperature readings: 

2011-07-24   7:00     57
2011-07-24  14:00     75
2011-07-24  21:00     72
2011-07-25   7:15     59
2011-07-25  14:00     77
2011-07-25  20:55     74
2011-07-27   7:00     60
2011-07-27  14:00     78
2011-07-27  22:00     74

There are two possible ways of dealing with this situation. One is for the application to calculate 
aggregates, in this case probably daily aggregates according to a formula based on semantic 
knowledge of the data. This might result in 

2011-07-24     24:00     69
2011-07-25     24:00     71
2011-07-26     24:00     null
2011-07-27     24:00     72

Alternatively, the algorithm can treat the series as a distinct series and determine a suitable step size 
s . In this case, the step size determined by the algorithm might be 8 hours, so that the following 

points in time “belong” to the equidistant series.

2011-07-24   6:00     
2011-07-24  14:00     75
2011-07-24  22:00     
2011-07-25   6:00     
2011-07-25  14:00     77
2011-07-25  22:00     
2011-07-26   6:00     
2011-07-26  14:00     
2011-07-26  22:00     
2011-07-27   6:00     
2011-07-27  14:00     78
2011-07-27  22:00     74

Only a small number of values are known. However, by using other known values at off times the 
missing values can be generated using interpolation.

At the end of this process, the result is always an equidistant time series. Once the time series is 
created, exact values for points in time are no longer needed. They are internally replaced by index 
values starting at 1. Thus, for the Time Series algorithms, a time series is described as a sequence v i , 
where i=1,… ,n .
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Exponential Smoothing
Exponential Smoothing uses an approach whereby the influence of observations decreases over 
time, exponentially. Similarly, addition, trend and seasonality are taken into account.

The basic form of the formula, used for stationary series without seasonality, calculates a smoothed 
value si  for each element in the series as:

(ES-N;N) si= vi1− si−1  with smoothing constant 

If this is inserted recursively, the result is a formula that shows the exponential decay of historic 
influence:

si= [ v i1−v i−11−
2 vi−21−

3vi−31−
4v i−4... ]

If seasonality with period p  is taken into account, still assuming no trend, the formula becomes:

(ES-N;A)
si=v i−oi− p1− si−1  with ok  being the seasonal oscillations
oi=v i−si1− oi−p  with seasonal smoothing constant 

If seasonal oscillations change over time, the seasonal smoothing constant   ensures that older 
values are considered less than more recent ones. The time series model records the most recent 
“smoothed” oscillations.

Multiplicative seasonality is treated in the same way, dividing by rather than subtracting the 
oscillation:

(ES-N;M)

s
i
= v i

oi− p 1− si−1  

o
i
= vi

si 1−oi− p

The Multiplicative, or exponential, trend without seasonality is handled in the following way:

(ES-M;N)

si= vi1− si−1t i−1  with t i  being the smoothed trend 

t i= si

si−1 1− ti−1  with trend smoothing constant 

Analogous to seasonal treatment, if the trend changes over time, the trend smoothing constant   
ensures that older values are considered less than more recent ones. The time series model records 
the most recent “smoothed” trend.

When the damped trend is modeled, the algorithm tries to learn a systematic change of trend. In the 
case of damped additive trend, the formulas are:

(ES-DA;N) si= vi1− si−1 t i−1  with trend damping parameter   
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t i=si−si−11− t i−1

The other combinations of trend and seasonality are performed similarly. As an example, these are 
the formulas for the most frequently used damped additive model with multiplicative seasonality:

(ES-DA;M)

s
i
= v i

oi− p 1− si−1
 t

i−1


t i=si=si−11− t i−1

o
i
= vi

si 1−oi− p

Predictions are made by application of f
imax+H

=( s
imax

+∑
k=1

H

ϕk t
t max) o

imax− p+k .

The special case of additive trend is often referred to as Holt-Winters method.

ARIMA
AutoRegressive Integrated Moving Average (ARIMA) is a three-part model, with an autoregressive, 
and integrative and a moving average term.

The autoregressive portion of the model determines how v i  linearly depends on past observations 
v i−1 , vi−2 ,... , v p . AR(p) models, that is, autoregressive models of order p, are defined as:

(AR) v
i
=∑

j=1

p


j
v

i− j with weights  j  used to minimize the forecast error

The moving average portion of the model is the weighted sum of past errors. MA(q) models, that is, 
autoregressive models of order q are defined as:

(MA) v
i
=∑

j=1

q


j


i− j

where i  denotes the difference between the estimated and the observed values at time i . Again, 
the coefficients  j  are used to minimize the forecast error.

Combining AR(p) and MA(q) yields models known as ARMA models:

(ARMA) v
i
=∑

j=1

p


j
v

i− j
∑

j=1

q


j


i− j

To model seasonality with periodicity S , the seasonal AR-polynomial and the seasonal MA-
polynomial are included in the ARMA(p,q) model. The resulting model is referred to as ARMA(p,q)
(P,Q)S in the literature. However, for disambiguation and to avoid case sensitivity, this document uses 
ARMA(p,q)(SP,SQ)S.
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(SAR) A
SP
=1−∑

j=1

SP

a
j
v

i− j  with seasonal weights a j  

(SMA) B
SQ
=1−∑

j=1

SQ

b
j
v

i− j  with seasonal weights b j  

Since ARMA(p,q)(SP,SQ)S models can be applied only to stationary time series, it must be determined 
whether the time series is actually stationary. If it is not, it is differentiated d  times for the non-
seasonal part and SD  times for the seasonal part until it becomes stationary. The transformed time 
series does not contain a trend. The values for p , d , q , SP , SD  and SQ  are chosen based on 
statistical tests and the evaluation of BIC. Using the stationary derivatives, the ARMA(p,q)(SP,SQ)S 
model is estimated using the Levenberg-Marquardt-algorithm. This approach minimizes the sum of 
squares of the one-step-forecast errors (residuals).

Seasonal Trend Decomposition 
Seasonal Trend Decomposition removes periodic behavior and selects a basic shape for the trend, for 
example a quadratic function. Basic shapes have a number of parameters, or coefficients, whose 
values are determined so that the mean squared error of the residuals, that is, the differences 
between the fitted and the observed values of the time series, are minimized.

Consider the following models to capture seasonality using period p :

Additive Seasonality Y t=trend t  st mod p  

Multiplicative Seasonality Y t=trend t  st mod p

To model the trend, one of the following functions trend t   is fitted as shown in Table 39.

Table 39: Trend types and formulas

Trend Name Formula

Linear Trend trend t =coc1 t

Quadratic Trend trend t =coc1 tc2 t2

Cubic Trend trend t =coc1tc2 t2c3 t3

Logarithmic Trend trend (t )=co+c1 ln (t )

Exponential Trend trend t =coc1e
c
2

t

Hyperbolic Trend trend t =co
1

c1 t
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Optimization of the sum of squared errors is used to determine the best combination of seasonality 
model and trend function with its coefficients.

For the evaluation of time series models, two criteria are used.

The Akaike Information Criterion (AIC) is defined as:

(AIC) AIC=ln  u' u
n 2 p

n
 

The Schwartz Information Criterion (BIC)is defined as:

(BIC) BIC=ln u ' u
n ln n p

n

In both cases, u t   is the function giving the residuals, that is, the differences between fitted and 
observed values, and p  is the number of parameters of the model.

Spectral Analysis
Spectral analysis detects the frequencies of periodic behavior by performing a Fourier 
Transformation, which transforms the series from the time domain into a distribution of frequencies. 
This transformed series, called a periodogram, shows the contribution of the different frequency 
components: If there is a “peak” at some frequency f , that is, the periodogram has a local 
maximum at f , the series probably contains an f -frequency oscillation.

The periodogram is partitioned into sections with one significant peak each, disregarding very high 
and very low frequencies. The relative weight of each section is calculated as a sum of periodogram 
values in that section divided by the sum of all periodogram values. Consequently, all relative weights 
sum to 100% and each section is represented by one frequency value, the weighted average of 
frequencies in the section.

If there is a peak at frequency f , it is likely to reappear at frequencies 2f, 3f, and so on. The 
algorithm adds the weights of these multiples to the respective base frequency and deletes the 
higher frequencies.

Sections with less than 5% weight are removed to reduce noise.

Unless provided by the user, the frequency with the largest weight is taken into account as the 
seasonality of the time series. The highest frequency corresponds to a period of m  values in the 
time series.

Building a Time Series Model

You build a time series model by executing the TIMESERIES stored procedure. This stored procedure 
invokes the time series forecasting process and, based on the specified algorithm, performs the 
calculations and writes the data out to the appropriate tables. The stored procedure requires an 
input table with a specific format. During processing, the stored procedure creates a number of 
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algorithm-specific tables that store data resulting from the time series analysis. Finally, if specified, 
user-named output tables are created that contain forecast data or seasonally adjusted data.

TIMESERIES Procedure
The following examples illustrate use of the TIMESERIES stored procedure to build time series 
models. 

Examples
To illustrate the timeseries algorithm, build a timeseries model for the curves data set. The curves 
data set contains six different curves defined by their coordinates (x,y) and identified uniquely by a 
name in the column curve.

CALL nza..TIMESERIES('model=curves_es, intable=nza..curves,  by=curve, 
time=x, target=y' );

This call, by default, uses the Exponential Smoothing algorithm and automatically determines the 
best parameters for each curve. No output table is created; you can explore the model either by 
calling the PRINT_TIMESERIES or PRINT_MODEL stored procedures (see Printing a Time Series
Model), or by looking directly in the model tables.

The next call can be used when an experienced user wants to force the Exponential Smoothing 
algorithm to use a given parameter, in this case the damped additive trend. Additionally to the 
previous call, this call creates a user output table, curves_esda_adjusted, that contains the six curves 
of the curves data set after they have been seasonally adjusted. Seasonally adjusted data can be 
useful for graphically displaying the data trend after the seasonal influence has been removed.

CALL nza..TIMESERIES('model=curves_esda, intable=nza..curves,  by=curve, 
time=x, target=y, seasadjtable=curves_esda_adjusted, algorithm=esmoothing, 
trend=DA');

The next call indicates how an experienced user calls the ARIMA algorithm with given parameters, 
either as value (d=2) or as limit (p<=5). Additionally, the call creates a user output table, 
curves_arima_forecast, that contains the future predictions of the six curves of the curves data set.

CALL nza..TIMESERIES('model=curves_arima, intable=nza..curves, by=curve, 
time=x, target=y, outtable=curves_arima_forecast, algorithm=ARIMA, p<=5, d=2, 
q<=5');

Input Table Data Format

Most data mining algorithms require an input table containing one row per entity under 
investigation. When performing customer segmentation, one row for each customer is required as 
input to the clustering algorithm. In most cases such a format must be generated as a preprocessing 
step, for example by aggregation.

However, a time series is an object that cannot easily be stored in a single row. It consists of a 
number of time value pairs, numeric values belonging to particular points in time. Such time-value 
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pairs can be stored in a single row of a table.

In many instances, large numbers of related time series are analyzed. In order to capture many time 
series in a single input table, an additional column is used to contain a time series ID.

Therefore, the input table contains up to three columns; the <ts id> column may not exist if the table 
contains a single time series.

Column names are arbitrary and must be provided when the algorithm is called.

Table 40: Input table column summary

Column Data Type Purpose

<ts id> <ts id type> Time series ID

<time> <ts time type> Time value

<value> <ts value type> Value of time series <ts id> at time <time>

Detailed Column Descriptions
► <ts id>—A column containing time series ids; it can be of any type referenced as <ts id type> in 

this document. It is recommended that <ts id> is used as a distribution key, so that the complete 
data forming a time series is stored on the same SPU.

► <time>—A column containing time values. The datatype of the value must be either time-related 
or one of the accepted numeric types. Valid datatypes are TIME, TIME WITH TIME ZONE (alias 
TIMETZ), DATE, or TIMESTAMP, SMALLINT, INTEGER, BIGINT, FLOAT(p) with 1≤ p≤15 , or 
NUMERIC(p, s) with 1≤ p≤ 38  and 0≤ s≤ p . These datatypes are referred to as <ts time type> 
elsewhere in this document.

Note that values of type TIMETZ are processed internally in the order in which they occur in real 
time. If time exists as separate date and time columns, the user must create a view in which they 
are combined as timestamps.

► <value>—A column containing time series values at times <time>; The datatype of the value 
must be one of the following numeric types: SMALLINT, INTEGER, BIGINT, FLOAT(p) with 
1≤ p≤15 , or NUMERIC(p, s) with 1≤ p≤ 38  and 0≤ s≤ p  and is referred to as <ts value type> 

elsewhere in this document.

Since only a single value is allowed at any one time, the <ts id> and <time> columns together form a 
primary key. If <time> has type TIMETZ, no two values can indicate identical times, for example. 2:00 
PM GMT and 3:00 PM CET.

In addition, the user may provide a table describing the time series. This table consists of three 
columns with primary key <ts id>:

Table 41: User-defined time series table columns

Column Data Type Purpose

<ts id> <ts id type> The time series ID.
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Column Data Type Purpose

TSNAME NVARCHAR(100) The name of the time series.

DESCRIPTION NVARCHAR(10000) The description of the time series.

Output Table Data Formats

The following information is stored by the time series algorithm:

► Information pertaining to the entire time series model 

▲ Generic model information independent of the model type, such as the algorithm used or 
the creation date 

► Information pertaining to individual time series 

▲ Time series name and, optionally, a description

▲ First and last time value used to model the time series 

▲ Number of equidistant steps in the time series

▲ Global forecasting accuracy measures

▲ Seasonality, periods and their strengths

▲ Trend information

▲ For some algorithms, several algorithm-specific measures

► Information for particular points in time 

▲ Interpolated time series value

▲ Seasonally adjusted value 

▲ Forecast value and standard deviation of forecast error 

As a result, when the Time Series Algorithms run, one or more of the following tables are generated, 
depending on which algorithm is used and the parameter values.

This table holds information about the entire time series model, including all time series:

► NZA_META_<model_name>_MODEL Table 

These tables are independent of the algorithm used and hold information pertaining to entire time 
series:

► NZA_META_<model_name>_SERIES Table

► NZA_META_<model_name>_PERIODS Table

► NZA_META_<model_name>_SEASONALITYDETAILS Table

These tables contain algorithm-specific details pertaining to entire time series:

► NZA_META_<model_name>_EXPODETAILS Table

► NZA_META_<model_name>_ARIMADETAILS Table

► NZA_META_<model_name>_ARMADETAILS Table
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► NZA_META_<model_name>_STDDETAILS Table

These tables are independent of the algorithm used and hold information for individual points in 
time:

► NZA_META_<model_name>_INTERPOLATED Table

► NZA_META_<model_name>_FORECAST Table

NZA_META_<model_name>_SERIES Table
The NZA_META_<model_name>_SERIES contains information pertaining to the entire time series. 
The table contains one line for each time series in the input data with the following columns.

Table 42: Columns of the NZA_META_<model name>_SERIES table

Column Data Type Purpose

TSID (primary key column) <ts id type> The time series ID.

NAME NVARCHAR(100) The name of the time series.

DESCRIPTION NVARCHAR(10000) The description of the time series.

FROMTIME <ts time type> Time of the earliest time value used.

TOTIME <ts time type> Time of the latest time value used.

INTERPOLATIONMETHOD VARCHAR(32) The method of interpolation used, either 
'linear', 'cubicspline' or 'exponentialspline'. 
The value is NULL if no interpolation was 
performed.

STEPS INTEGER The number of equidistant time points used 
between from and to

SEASONS INTEGER The number of seasons in a period or NULL 
if no seasonality was used.

SEASONALITYTYPE VARCHAR(32) Either 'additive', 'multiplicative' or NULL if 
no seasonality was used.

STEPSIZE DOUBLE Difference between two steps or two 
seasons. The value is provided in the unit 
given in UNIT.

UNIT VARCHAR(32) The unit of the stepsize, either 
'MILLISECOND', 'SECOND', 'MINUTE', 'HOUR' 
(if <ts time type> is TIME), 'DAY', 'WEEK', 
'MONTH', 'QUARTER', 'YEAR' (if <ts time 
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Column Data Type Purpose

type> is DATE), or all of the above if <ts time 
type> is TIMESTAMP. For numeric types, it is 
NULL.

PHASE INTEGER The season index of the last point in history. 
This value may be interpolated. It is NULL if 
no seasonality was used.

STDERROR DOUBLE The global standard deviation of the forecast 
error.

RMSE DOUBLE The root mean squared error of the 
forecasts.

ERRORCODE CHAR(10) The error code for the series, with a prefix 
ANL- for analytics and a 5-digit number for 
the particular condition, null, if the time 
series was successfully processed. For a 
description of error codes, see the Events
and Error Conditions section.

NZA_META_<model_name>_PERIODS Table
The NZA_META_<model_name>_PERIODS table contains information pertaining to periodic behavior 
of the time series found by spectral analysis; the table contains one line for each time series and 
period with the following columns.

Table 43: Columns of the NZA_META_<model name>_PERIODS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

PERIOD (primary key 
column)

DOUBLE The detected period of seasonality.

SEASONS INTEGER The number of equidistant steps in a period in 
interpolated series.

FREQUENCY DOUBLE The detected frequency of seasonality.

UNIT VARCHAR(32) The unit of the PERIOD and FREQUENCY, either 
'MILLISECOND', 'SECOND', 'MINUTE', 'HOUR' (if 
<ts time type> is TIME), 'DAY', 'WEEK', 'MONTH', 
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Column Data Type Purpose

'QUARTER', 'YEAR' (if <ts time type> is DATE), or 
all of the above if <ts time type> is TIMESTAMP, 
for numeric types, NULL.

WEIGHT DOUBLE The weight of periodic behavior with frequency 
FREQUENCY. The value is between 0 and 1.

HARMONICWEIGHT DOUBLE The contribution of the harmonic peaks within 
WEIGHT, calculated as the area under the 
harmonic peaks divided by the total area under 
the Fourier spectrum; the part of WEIGHT 
contributed by the higher harmonics.

NZA_META_<model_name>_SEASONALITYDETAILS Table
The NZA_META_<model_name>_SEASONALITYDETAILS table contains details about the periodic 
behavior of the time series used by the exponential smoothing algorithm. The table contains one line 
for each time series and season with the following columns.

Table 44: Columns of the NZA_META_<model name>_SEASONALITYDETAILS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

SEASON (primary key 
column)

INTEGER The season index, from 1 to SEASONS as 
contained in table 
NZA_META_<model_name>_SERIES

OSCILLATION DOUBLE The oscillation at SEASON; depending on 
the type of seasonality, the oscillation can 
be either a value that is added, for 
example, an additive term, or a value that 
is multiplied, for example, a factor.

NZA_META_<model_name>_EXPODETAILS Table
The NZA_META_<model_name>_EXPODETAILS table contains information pertaining to exponential 
smoothing models. The table contains one line for each time series with the following columns.
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Table 45: Columns of the NZA_META_<model name>_EXPODETAILS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

SMOOTHEDVALUE DOUBLE The smoothed value of the time series at the last 
point in history. This value may be interpolated.

ALPHA DOUBLE The smoothing parameter for the level.

TRENDTYPE VARCHAR(32) The trend type. Valid values are 'none', 'additive', 
'dampedadditive', 'multiplicative', and 
'dampedmultiplicative'.

SMOOTHEDTREND DOUBLE The smoothed trend of the time series at the last 
point in history. This point may be interpolated. 
The value is NULL if TRENDTYPE is 'none'.

GAMMA DOUBLE The smoothing parameter for the trend. The 
value is NULL or 0 if TRENDTYPE is 'none'. 

PHI DOUBLE The damping parameter for the trend. The value 
is NULL or 0 if TRENDTYPE is not 'dampedadditive' 
or 'dampedmultiplicative'.

DELTA DOUBLE The smoothing parameter for the seasonality. The 
value is NULL or 1 if no seasonality was used.

NZA_META_<model_name>_ARIMADETAILS Table
The NZA_META_<model_name>_ARIMADETAILS table contains information pertaining to ARIMA 
models. The table contains one line for each time series with the following columns.

Table 46: Columns of the NZA_META_<model name>_ARIMADETAILS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

INTERCEPT DOUBLE The constant additive offset of the original time 
series.

P SMALLINT The AR(p) degree of the ARIMA model.

D SMALLINT The differentiation degree of the ARIMA(p,d,q) 
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Column Data Type Purpose

model.

Q SMALLINT The MA(Q) degree of the ARIMA model.

SP SMALLINT The seasonal AR degree of the ARIMA model.

SD SMALLINT The seasonal differentiation degree of the 
ARIMA model. The value is either 0 or 1.

SQ SMALLINT The seasonal MA degree of the ARIMA model.

AIC DOUBLE The value of the Akaike information criterion.

BIC DOUBLE The value of the Bayesian information criterion, 
which is also known as the Schwarz information 
criterion.

LJUNGBOX DOUBLE The Ljung-Box statistics value.

LJUNGBOXP DOUBLE The Ljung-Box statistics p-value.

NZA_META_<model_name>_ARMADETAILS Table
The NZA_META_<model_name>_ARMADETAILS table contains information about the ARMA portion 
of ARIMA models. The table contains one line for each time series and autoregressive, moving 
average or autocorrelation coefficient, with the following columns.

Table 47: Columns of the NZA_META_<model name>_ARMADETAILS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

TYPE (primary key 
column)

CHAR(4) The lag type. Valid values are 'AR', 'MA', 'SAR', 
'SMA', 'ACF' or 'PACF'.

INDEX (primary key 
column)

SMALLINT The positive integer value of lag
<=   P (if 'AR'),    <=   Q (if 'MA'),
<= SP (if 'SAR'), <= SQ (if 'SMA')

COEFFICIENT DOUBLE The numeric value of the correlation coefficient 
for type TYPE and INDEX. The range is [-1, 1].

CRITICALVALUE DOUBLE For models of type 'ACF' or 'PACF', the critical 
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Column Data Type Purpose

value of the correlation coefficient.

STANDARDERROR DOUBLE The incertitude for the value of the coefficient. 

NZA_META_<model_name>_STDDETAILS Table
The NZA_META_<model_name>_STDDETAILS table contains information pertaining to seasonal trend 
decomposition models. The table contains one line for each time series with the following columns.

Table 48: Columns of the NZA_META_<model name>_STDDETAILS table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID.

FITFUNCTION VARCHAR(32) The best-fitting fit function. Possible values 
are 'linear', 'quadratic', 'cubic', 
'logarithmic', 'exponential' and 
'hyperbolic'.

INTERCEPT DOUBLE The constant term in the fit function

COEFFICIENT1 DOUBLE The multiplicative coefficient of the first 
non-constant term of the fitting function

COEFFICIENT2 DOUBLE The multiplicative coefficient of the second 
non-constant term of the fitting function. 
This value is used only for quadratic and 
cubic functions.

COEFFICIENT3 DOUBLE The multiplicative coefficient of the third 
non-constant term of the fitting function. 
This value is used only for cubic functions.

EXPONENT DOUBLE The exponent constant of the first non-
constant term of the fitting function. This 
value is used only for exponential 
functions. 

NZA_META_<model_name>_INTERPOLATED Table
The NZA_META_<model_name>_INTERPOLATED table contains interpolated time series values. The 
table contains one row for each time series and interpolated point in time with the following 
columns.
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Table 49: Columns of the NZA_META_<model name>_INTERPOLATED table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID

INDEX (primary key 
column)

INTEGER The index value of a logically equidistant 
time series.

TIME <ts time type> The corresponding time value in the format 
of the input TIME column.

INTERPOLATED <ts value type> The interpolated value of the time series.

For the interpolation method, see the NZA_META_<model_name>_MODEL Table.

NZA_META_<model_name>_FORECAST Table
The NZA_META_<model_name>_FORECAST table holds forecast values. The table contains one line 
for each time series and point in time for which a forecast has been made, with the following 
columns.

Table 50: Columns of the NZA_META_<model name>_FORECAST table

Column Data Type Purpose

TSID (primary key 
column)

<ts id type> The time series ID

TIME (primary key 
column)

<ts time type> Time value at which forecast is made

FORECAST <ts value type> Expected value of time series

STANDARDERROR DOUBLE Standard deviation of forecast error

The table may include TIME values at times before the last time in history, that is the value of the to 
parameter, if these were contained in the parameter forecasttimes, but the corresponding FORECAST 
values are NULL. STANDARDERROR may be NULL if it is not possible to estimate the expected error. 
This is usually an indication of low confidence in the FORECAST value.

If <ts time type> is TIME, the maximum value of TIME is 23:59:59.999999, if it is TIMETZ, the 
maximum value is 23:59:59.999999-12:59+13:00.

<output> Table
If the user supplied a table name in the outtable parameter when the TIMESERIES stored procedure 
was executed, a copy of the NZA_META_<model_name>_FORECAST table is created in a table 
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bearing the specified name. The table contains forecast values, and contains one line for each time 
series and point in time for which a forecast has been made. Columns are as follows.

Table 51: Columns of the <output> table

Column Data Type Purpose

<ts id> (unique key 
column)

<ts id type> The time series ID.

<time> (unique key 
column)

<ts time type> The time value at which the forecast is 
made.

<value> <ts value type> The expected value of the time series.

STANDARDERROR DOUBLE The standard deviation of the forecast 
error.

Note that the first column is omitted if a value for the by parameter was not specified.

<seasadjtable> Table
If the user supplied a table name in the seasadjtable parameter when the TIMESERIES stored 
procedure was executed, an additional table is created bearing the specified name. The table 
contains seasonally adjusted time series values, and contains one line for each time series and point 
in time. Columns are as follows.

Table 52: Columns of the <seasadjtable> table

Column Data Type Purpose

<ts id> (unique key 
column)

<ts id type> The time series ID.

<time> (unique key 
column)

<ts time type> The time value in the format of the input 
TIME column.

ADJUSTEDVALUE <ts value type> The seasonally adjusted value of the time 
series.

Note that the first column is omitted if a value for the by parameter has not been supplied. Note 
further that time points may be different from the original time points. 

Printing a Time Series Model

Use the PRINT_TIMESERIES stored procedure to display a time series model.
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PRINT_TIMESERIES Procedure
The PRINT_TIMESERIES stored procedure displays a time series model.

Example
You created different time series models for the curves data set in the section Building a Time Series
Model. Use the following call to display those models as tables of the original data and the forecast 
values of the curve “linear”:

CALL nza..PRINT_TIMESERIES('model=curves_arima, history=true, 
series=linear');

Sample output could be:

| TSID   | TIME | HISTORY | FORECAST |
|--------+------+---------+----------|
| linear | 1    | 2       |          |
| linear | 2    | 4       |          |
| linear | 3    | 6       |          |
| linear | 4    | 8       |          |
| linear | 5    | 10      |          |
| linear | 6    | 12      |          |
| linear | 7    | 14      |          |
| linear | 8    | 16      |          |
| linear | 9    | 18      |          |
| linear | 10   | 20      |          |
| linear | 11   | 22      |          |
| linear | 12   | 24      |          |
| linear | 13   | 26      |          |
| linear | 14   | 28      |          |
| linear | 15   | 30      |          |
| linear | 16   | 32      |          |
| linear | 17   | 34      |          |
| linear | 18   | 36      |          |
| linear | 19   | 38      |          |
| linear | 20   | 40      |          |
| linear | 21   | 42      |          |
| linear | 22   | 44      |          |
| linear | 23   | 46      |          |
| linear | 24   | 48      |          |
| linear | 25   | 50      |          |
| linear | 26   | 52      |          |
| linear | 27   | 54      |          |
| linear | 28   | 56      |          |
| linear | 29   | 58      |          |
| linear | 30   | 60      |          |
| linear | 31   | 62      |          |
| linear | 32   | 64      |          |
| linear | 33   | 66      |          |
| linear | 34   | 68      |          |
| linear | 35   | 70      |          |
| linear | 36   | 72      |          |
| linear | 37   | 74      |          |
| linear | 38   | 76      |          |
| linear | 39   | 78      |          |
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| linear | 40   | 80      |          |
| linear | 41   | 82      |          |
| linear | 42   | 84      |          |
| linear | 43   | 86      |          |
| linear | 44   | 88      |          |
| linear | 45   | 90      |          |
| linear | 46   | 92      |          |
| linear | 47   | 94      |          |
| linear | 48   | 96      |          |
| linear | 49   | 98      |          |
| linear | 50   | 100     |          |
| linear | 51   |         | 102      |
| linear | 52   |         | 104      |
| linear | 53   |         | 106      |
| linear | 54   |         | 108      |
| linear | 55   |         | 110      |
| linear | 56   |         | 112      |
| linear | 57   |         | 114      |
| linear | 58   |         | 116      |
| linear | 59   |         | 118      |
| linear | 60   |         | 120      |
| linear | 61   |         | 122      |
| linear | 62   |         | 124      |
| linear | 63   |         | 126      |

The PRINT_TIMESERIES procedure also offers a basic plotter function to graphically display the 
original data and the forecast values. The time axis points to the bottom of the page, and the target 
axis points to the right. The following call displays the curve “sinus” as a plotted graph:

CALL nza..PRINT_TIMESERIES('model=curves_arima, history=true, series=sinus, 
plot=true');

Sample output could be:

================================================= 
sinus 
================================================= 
     |0                                      40.10^-1 
     |+---------+---------+---------+---------+|-> 
1    |                              + 
2    |                                     + 
3    |                                        + 
4    |                                     + 
5    |                              + 
6    |                    + 
7    |          + 
8    |  + 
9    |+ 
10   |  + 
11   |          + 
12   |                    + 
13   |                              + 
14   |                                     + 
15   |                                        + 
16   |                                     + 
17   |                              + 
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18   |                    + 
19   |          + 
20   |  + 
21   |+ 
22   |  + 
23   |          + 
24   |                    + 
25   |                              + 
26   |                                     + 
27   |                                        + 
28   |                                     + 
29   |                              + 
30   |                    + 
31   |          + 
32   |  + 
33   |+ 
34   |  + 
35   |          + 
36   |                    + 
37   |                              + 
38   |                                     + 
39   |                                        + 
40   |                                     + 
41   |                              + 
42   |                    + 
43   |          + 
44   |  + 
45   |+ 
46   |  + 
47   |          + 
48   |                    + 
49   |                              + 
50   |                                     + 
51   |                                        x 
52   |                                     x 
53   |                              x 
54   |                    x 
55   |          x 
56   |  x 
57   |x 
58   |  x 
59   |          x 
60   |                    x 
61   |                              x 
62   |                                     x 
     | 
     V  time 

(+) history data     (i) interpolated value     (x) forecast value 

Events and Error Conditions

The following errors might occur during time series analysis. Some errors pertain only to a subset of 
the time series, in which case the other time series are processed normally. The resulting model table 
NZA_META_<model_name>_SERIES may contain an error code for each individual time series.
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The following table shows the possible error codes.

Table 53: Time series error codes

Return Code Event or Error 
Condition / Description

Response

NZATS-0100 The time series contains duplicate time 
values. Times in a time series must be 
unique. 

The user must remove all 
duplicates.

NZATS-0101 The time series contains too many missing 
values. No more than 90% of the values of 
a time series may be missing.

The user should supply values 
for some of the missing data 
or remove some of the time 
points having missing values.

NZATS-0102 The time series is too short for analysis. A 
time series must contain at least 2 values.

The user should provide more 
values, for example by 
increasing the span between 
“from” and “to.”

NZATS-0103 The time series is too short to be 
differentiated. After the differentiation step 
of the ARIMA algorithm, a time series must 
still be longer than the number of seasons. 
The minimum required value is d + (SD+1)* 
(number of seasons).

The user should provide more 
values of the time series. 

NZATS-0104 The time series is too short to be 
differentiated. After the differentiation step 
of the ARIMA algorithm, a time series must 
still contain enough values. The minimum 
required value is d+2.

The user should provide more 
values of the time series.

NZATS-0105 The time series is too short to be 
differentiated. After the seasonal 
differentiation step of the ARIMA 
algorithm, a time series must still be longer 
than the number of seasons. The minimum 
required value is (SD+1)*(number of 
seasons).

The user should provide more 
values of the time series.

NZATS-0106 The time series is too short for seasonal 
analysis, that is, the time series is shorter 
than the number of seasons. The minimum 
required value is the number of seasons.

The user should provide more 
values of the time series. 

NZATS-0107 The time series is too short for exponential The user should provide more 
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Return Code Event or Error 
Condition / Description

Response

smoothing analysis with seasonality. That 
is, the time series is shorter than twice the 
number of seasons. The minimum required 
value is twice the number of seasons. 

values of the time series. 

NZATS-0108 The time series is too short for ARIMA 
analysis. The minimum required value is 8.

The user should provide more 
values of the time series. 

NZATS-0109 The time series contains too many time 
points that are close together.  The average 
distance between two time points is below 
the precision of a double and the calculated 
interpolation step is 0.

The user should provide time 
values that are further apart.

NZATS-0110 The time series is too short for spectral 
analysis. The minimum required value is 10.

The user should provide more 
values of the time series. 

NZATS-0112 The time series is too long for Seasonal 
Trend Decomposition analysis. There can be 
at most 2^32 / (number of seasons) values. 

The user should provide fewer 
values of the time series, for 
example by decreasing the 
span between “from” and 
“to.” 

NZATS-0113 A damped multiplicative trend cannot be 
used for these data. The data contain a 
negative trend and a damp factor less than 
1. This does not allow using a damped 
multiplicative trend.

The user should use a 
different value of the trend 
parameter or omit the 
parameter to have the system 
determine a suitable value.

NZATS-0114 A multiplicative trend is applied to 0 or 
negative data. The data contain 0 or 
negative values. A multiplicative trend can 
only be applied to positive time series.

The user should use a 
different value of the trend 
parameter or omit the 
parameter to have the system 
determine a suitable value.

NZATS-0115 Seasonality and period are inconsistent. 
Seasonality none can only be used with a 
period of 0. Seasonality additive or 
multiplicative can only be used when 
period is greater than one stepsize.

The user should use a 
consistent combination of the 
period and seasonality 
parameters.
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Generalized Linear Models

Background

Linear models have been found useful for modeling many real-world phenomena due to their 
simplicity for training and for model application. True linear models assume a Gaussian distribution 
of the response variable and a linear impact of the control variables on the response variable. 
However, in practice, these assumptions cannot always be met. 

An extension called Generalized Linear Models (GLM) has therefore been developed to handle these 
issues. The non-linear relationship is modeled via the link function, while a set of diverse 
distributions is allowed for the response variable. Of special interest here are the heavy-tailed and 
nominal (discrete-valued) distributions that are not covered by linear models. 

GLM has application in areas such as biology, biopharmaceuticals, engineering, actuarial science and 
quality assurance. 

Using Generalized Linear Models

Assume that the user has a set of records, each of them describing a separate event, independent of 
the other events. Within an event (a record) is a set of predictor variables and a response variable. 
The goal is to find a model that allows the user to predict the value of the response variable based on 
the known values of the predictor variables. 

The GLM framework assumes that the predictor variables influence the response variable in the 
following way: The predictor variables are transformed by a transformation principle to factors. 
These can be used directly as “factors” or they can be transformed to factors using a transformation 
matrix. 

The factors combined linearly, using the beta parameter vector, provide a value called theta ( θ ). This 
θ , transformed by the inverted link function, provides a mean value of the response variable under 

the given value of predictor variables. This means that it can be assumed that the response variable 
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is influenced both by the predictor variables and a non-observable noise process for which only the 
distribution type it follows is known. The distribution type is assumed to be parameterized by the 
mean value. So the actual value of the response variable is a value randomly selected under this 
distribution parameterized by the aforementioned mean, produced via the inverted link function.

To use the algorithm, the user must specify: 

► which variables are the predictor variables

► what are the principles of transformation from predictor variables to factors

► which is the response variable

► which is the link function (from the predefined set)

► which is the distribution type that the response variable follows

The algorithm iteratively seeks the best-fitting model that is the beta vector. Eventually, if the link 
function and/or distribution are generic, and the user did not specify the respective generic 
parameters, the link function parameters/distribution parameters may be also sought. The error is 
represented by the sum of squares of differences between the prediction and the real value of the 
response variable. Therefore, the maximum number of iterations should also be specified. 

The results are coefficients (beta) combining the predictors to the quantity θ . If necessary, the 
missing parameters of generic distribution/link function may also be returned. 

GLM Algorithms

IBM Netezza In-Database Analytics makes two independent GLM algorithms available:

► Iteratively Reweighted Least Square (IRLS)

► Parallel Stochastic Gradient Descent (PSGD)

Iteratively Reweighted Least Square Algorithm
The Iteratively Reweighted Least Square (IRLS) algorithm is currently considered a de facto industry 
standard. 

Initial values of the linear coefficients combining the factors to the θ  value are calculated by 
performing the traditional linear regression on the factors and the value of the link function applied 
to the response. Once the initial values are known, an iterative process is then run to compute the 
final values. 

First a working response is computed, which is equal to the θ  obtained from the current coefficients 
and the predictors. This value is increased or decreased proportional to the difference between the 
response value and its current expected value. The increased or decreased value is then multiplied by 
the derivative of the θ  on the mean. This accounts for the error in fitting the prediction to the 
response. Next, working weights of cases (records) are computed. The weights are lower for cases 
with higher absolute value of the derivative of the θ  on the mean (derivative of the link function) 
and for higher expected variance of the case. 

Once the working responses and working weights are obtained, weighted linear regression is 
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performed. 

A new iteration is then started unless stopping criteria are matched; stopping criteria are the number 
of iterations performed and the improvement achieved. 

Parallel Stochastic Gradient Descent Algorithm
The Parallel Stochastic Gradient Descent (PSGD) algorithm is a more recent development and it is 
subject to a number of restrictions. It works only for a few distribution types and link functions. The 
major difference as compared to IRLS is the reduced computational effort: no correlation matrices 
are computed and the decision to change linear coefficients is done as each record is parsed rather 
than by a complete initial pass by the means of records. For well-randomized and large data sets, the 
user can expect a speed advantage over IRLS. 

Distribution Types

The types of distributions governing the “error” of the response variable are the following: Bernoulli, 
Gaussian (normal), Poisson, binomial, negative binomial, wald (inversegaussian), and gamma.

The Bernoulli, binomial, Poisson, and negativebinomial distributions are nominal, that is, discrete-
valued, distributions. 

The Gaussian (normal), wald (inverse gaussian) and gamma distributions are continuous, that is, real-
valued, distributions. 

Bernoulli Distribution
The Bernoulli distribution implies that the response variable takes on values 0 and 1. It models a 
single toss of a manipulated coin that does not have the same chance of heads and tails. The inverted 
link function maps θ  to the chance of heads.

Binomial Distribution
Binomial distribution is a special case that needs to be treated separately. It implies that there are 
actually two discrete response variables taking non-negative integers. It models tossing a number of 
times a manipulated coin that does not have the same chance for heads and tails. The one of the 
variables counts the number of heads, the other of sum of heads and tails (named trials). The 
inverted link function maps in this case θ  to the “chance” (share) of heads.

Poisson Distribution
The Poisson distribution implies that the response variable takes on non-negative integer values. The 
inverted link function maps θ  to the mean of the variable distributed according to the Poisson 
distribution. The distribution is driven by the Poisson process. In this process the average rate of 
success over time is known. The probability of a single success within a time interval is proportional 
to the length of the interval and is independent of the probability outside of the interval. If the 
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interval gets shorter, the probability of more than 1 success goes toward zero. 

Negative Binomial Distribution
The Negative Binomial distribution means that the response variable take on non-negative integer 
values. It models the toss a manipulated coin that does not have the same chance for heads and tails 
until a predefined number of heads is reached. The response variable is the count of tails. The 
inverted link function maps θ  to the chance of heads. 

Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural 
processes. Specifically, in the case of a multitude of independent processes generating continuous 
numbers from a distribution, then their average tends to follow normal distribution. The inverted link 
function maps θ  to the mean value of the distribution of the response variable, while the standard 
deviation of the response variable is deemed to be the same for any value of θ . 

Wald Distribution
The Wald distribution, also called the Inverse Gaussian distribution, represents the first passage time 
for Brownian motion. The inverted link function maps θ  to the mean value of the distribution of the 
response variable, while the distribution parameter λ , which influences standard deviation but not 
the mean of the response variable is deemed to be the same for any value of θ .

Gamma Distribution
The Gamma distribution is the distribution of a sum of random variables that are exponentially 
distributed. Also exponentially distributed are time intervals between successes in the Poisson 
experiment. The inverted link function maps θ  to the mean value of the distribution of the response 
variable, while the distribution parameter scale of the response variable is deemed to be the same 
for any value of θ .

Link Functions

Link functions handle the non-linearity of the relationship between the θ  and the mean of response 
variable (meanresp). A number of link functions have been implemented: identity, inverse, logit, log, 
complementary log-log (cloglog), gaussit, cauchit, sqrt, invsquare, loglog, log-complement (logc), 
negbin, oddspower and power. 

Identity Link Function
The Identity link function is of the form θ=meanresp , that is, the mean of the response variable.
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Inverse Link Function

The Inverse link function is of the form θ=
1

meanresp
.

Log Link Function
The Log link function is of the form: θ=ln (meanresp) .

Logit Link Function

Logit link function is of the form: θ=ln (
μ

1−μ
) . 

Probit Link Function
The Probit link function family is understood as an inverse of any cumulative probability distribution 
function, It is mainly used when the distribution function of GLM is either Bernoulli or binomial. IBM 
Netezza In-Database Analytics implements cauchit and gaussit here. 

Gaussit Link Function
The Gaussit link function, sometimes called probit in a narrow sense, is the standard normal 
distribution inverse θ=qnorm(meanresp) . 

Cauchit Link Function
The Cauchit link function is the inverse of the Cauchy distribution θ=ln (mean) . 

Log-log Link Function
The log-log link function (loglog) is in the form θ=−log(−log(meanresp)) . This is a “non-canonical” 
link function and is not commonly used.

Complementary Log-log Link Function
The Complementary log-log link function (cloglog) is of the form θ=log (−log(1−meanresp)) . This is 
a “non-canonical” link function and is not commonly used.

Log-complement Link Function
The log-complement link function (logc) is of the form θ=ln(1−meanresp) . This is a “non-canonical” 
link function and is not commonly used.
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Odds Power Link Function

The odds power link function (oddspow) is of the form 
θ=

(
meanresp

(1−meanresp)α−1
)

α
 where the α  

parameter is somehow fixed. For example, α  may be set equal to 1. This is a “non-canonical” link 
function and is not commonly used.

Power Link Function
The power link function is of the form θ=meanrespλ , where λ  is somehow fixed. This is a “non-
canonical” link function and is not commonly used.

Negbin Link Function

The negbin link function is of the form θ=ln( k
meanresp+1

) , where parameter k is somehow fixed. 

This is a “non-canonical” link function and is not commonly used.

Input Data Format

The GLM algorithms require an input table containing one row per entity under investigation. Rows 
must have unique IDs and are deemed to represent independent observations and/or experiments.

A column must be identified that contains values to be used as the response variable. In the case of 
binomial distribution, two response variables must exist. For continuous distributions, the response 
variable must to be of type DOUBLE, or able to be converted to DOUBLE. For nominal distributions, 
INTEGER type should be used. 

If not specified explicitly by the user through “incolumn” (or globally by “coldeftype” and “coldefrole”  
parameters), numerical predictor variables are treated as continuous, while non-numeric predictor 
variables are treated as discrete. A user could also define the input table column type and role by the 
table named and passed by the colPropertiesTable parameter. The proper dictionary is automatically 
created. The user can change these defaults using the column_properties stored procedure. This 
procedure creates a table by setting the colPropertiesTable parameter.

Rules for removing predictor dimensions for nominal attributes in GLM
If there are k nominal attributes, such as  A_1 , ... , A_k, exactly one level predictor dimension is 
removed from the input table for any subset of the k-1 nominal attributes. Removed vectors are 
linearly dependent and can be constructed with remaining vectors. More precisely, if exactly one 
predictor dimension is removed  from nominals A_2 , ... , A_k, then the removed level predictor 
dimension of A_j is equal to the sum of all level vectors of the nominal attribute A_1 minus the 
remaining level vectors of nominal attribute A_j. The sum of all level vectors of attribute  A_1 is the 
vector of ones, that is, entries that are equal to 1, for example, [1, 1, 1]. 

This formula works because there must be exactly one cell equal to 1 in each row cast to any nominal 
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attribute. If the intercept column is included in the model,  exactly one level  predictor dimension is 
removed from all nominal attributes A_1 , ... , A_k. 

The removed level vector of A_j can be constructed in the following way:

The intercept vector, which is the level of ones, minus all remaining level vectors of nominal attribute 
A_j. Removed level vectors do not change the rank of the input matrix, which means that the quality 
of the solution is ensured.

Example:

The input table T consists of one nominal Class column. 

There are three levels of the Class column: C1, C2, and C3. 

If the build model includes intercept, there will be the following model coefficients: Class:C2, 
Class:C3, and intercept. 

One predictor, Class:C1, was removed. Note that any of the three predictors Class:C1, Class:C2, and 
Class:C3 can be removed.

Building a GLM Model

GLM Procedure
The GLM procedure builds the Generalized Linear Model. 

PRINT_GLM Procedure
The PRINT_GLM procedure prints the built Generalized Linear Model. 

PREDICT_GLM Procedure
The PREDICT_GLM procedure applies the built Generalized Linear Model to generate regression 
predictions.

Transformation Principles 

Transformation principles relate to the values that are supplied for the interaction parameters for the 
GLM Stored procedure.

The general principle is that the formula of the transformation principle consists of names of 
predictors, the one argument function name '^' and the ';' and '*' and '=' symbols;

The semi-colon ( ; ) separates factors in the incolumn and/or in the interaction parameter. Within 
each of group the symbol * separates constituents. A constituent is a predictor name or, in case of 
continuous only, a predictor name followed by ^ and a natural number. 
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If the constituent is a name of a continuous predictor, then it represents an expression identical with 
the name of this predictor, if followed by ^ and a number, the expression predictor raised to the 
respective power. 

If the constituent is a name of a nominal predictor then it represents a set of expressions: 

if <predictor name>=<level value_i> then 1 else 0 end if 

for all distinct values of <predictor name> . 

The operator * combines two sets of expressions {e1,e2..,en}, {g1,g2,..,gm} to a set of expressions 
{e1*g1, e2*g2,…,en*gm}.

After applying the * operator within a group of factors, a set of expressions is obtained which is the 
set of factors within the group. 

incolumn Parameter Values
These examples describe the transformation principle permitted in a incolumn parameter. For these 
examples, let x1,x2,x3… denote continuous predictor names; n1,n2, n3,… denote nominal predictors. 

Example 1 
incolumn= x1;x2;x3

The factors used in GLM are x1, x2, x3.

Example 2
incolumn= x1:cont;x2:cont;x3:cont

The continuous predictors that are used in GLM are x1, x2, 3.

Example 3
incolumn= n1:nom;

There are as many factors as there are values of n1 in the data; each factor takes the value of 1 or 0, 
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then 
n1=“va”, n1=“vb” and n1=“vc”. If n1=“vb” in a record, then the factors take the values: (n1=“va”)=0, 
(n1=“vb”)=1 and (n1=“vc”)=0.

Example 4
incolumn= n1;n2

There are as many factors as there are values of n1 and of n2 in the data. 

interaction Parameter Values
These examples describe the transformation principle permitted in the interaction parameter. For 
these examples, let x1, x2, x3… denote continuous predictor names; n1, n2, n3,… denote nominal 
predictors. 
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Example 1 
interaction=x1*x2

There is only one additional factor: the product of x1*x2. 

Example 2 
x1*x2;x2*x3

There are two additional factors: the product of x1*x2 and product of x2*x3.

Example 3 
n1*n2

This means that there will be as many factors as there are values in the dot product of the sets of 
values of n1 and of n2 in the data.

Example 4
n1*x1

There are as many factors as there are values in n1 and each factor takes the value of x1 or of zero, 
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then the 
factors are (n1=“va”)*x1, (n1=“vb”)*x1 and (n1=“vc”)*x1. If n1=“vb” in a record, and x1=133, then 
the factors take the values 0, 133, 0 respectively. 

Example 5 
n1*x1^2

There are as many factors as there are values in n1 and each factor takes the value of x1 or of zero, 
depending on the value of the predictor n1. For example, if n1 takes values va, vb and vc, then the 
factors are (n1=“va”)*(x1^2), (n1=“vb”)*(x1^2) and (n1=“vc”)*(x1^2). If n1=“vb” in a record, and 
x1=133, then the factors take the values 0,017689,0 respectively. 

Examples

The functionality of the Generalized Linear Model implementation is illustrated by the examples 
using the WineQuality data set. 

Consider creating a GLM model for predicting the quality attribute from the WineQuality data set:

CALL nza..glm('intable=nza..WineQuality_train, incolumn=
fixed_acidity ; volatile_acidity ; citric_acid ; residualsugar ; chlorides ; 
free_sulfur_dioxide ; total_sulfur_dioxide ; density ;  ph  ; sulphates ; 
alcohol ,
 intercept=TRUE, id=id, target=quality, model=glm_wq, maxit=2, 
coldefrole=ignore
, family=gaussian, link=identity');

We have assumed there that the error distribution is gaussian and the link function is identity. 
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The GLM model coefficients and the values of diagnostic measures can be inspected by calling the 
PRINT_GLM procedure: 

call nza..PRINT_GLM('model=glm_wq');

We notice here that the column citric_acid and total_sulfur_dioxide do not play any role for the 
model as their p-values are far beyond 0.05. 

The constructed GLM model can be applied to new data using following call: 

CALL nza..PREDICT_GLM('intable=nza..WineQuality_test, id=id, model=glm_wq, 
outtable=out_wq'); 

Consider now creating a GLM model for predicting the quality attribute from the WineQuality data 
set when we restrict to only quality levels 5 (which we encode 0) and 7 (which we encode 1). Note 
that we first drop the formerly created tables and models. 

call nza..drop_model('model=glm_wq'); 
drop table out_wq; 

create table wq57 as select *,case when quality=5 then 0 else 1 end qdiff 
from nza..WineQuality_train where quality=5 or quality=7; 

CALL nza..glm('intable=wq57, incolumn=fixed_acidity ; volatile_acidity ; 
residualsugar ; chlorides ; free_sulfur_dioxide ;  
density ;  ph  ; sulphates ; alcohol , intercept=TRUE, id=id, target=qdiff, 
model=glm_wq, maxit=2, coldefrole=ignore, family=bernoulli, link=logit');

The GLM model coefficients and the values of diagnostic measures can be inspected by calling the 
PRINT_GLM procedure: 

call nza..PRINT_GLM('model=glm_wq');

The constructed GLM model can be applied to new data using following call: 

create table wq57ts as select *,case when quality=5 then 0 else 1 end qdiff 
from nza..WineQuality_test where quality=5 or quality=7; 
CALL nza..PREDICT_GLM('intable=wq57ts, id=id, model=glm_wq, 
outtable=out_wq'); 

To see how well the prediction fits the true value, run: 

select count(*), qdiff, round(pred) as predicted from wq57ts t join out_wq p 
on t.id=p.id group by qdiff,round(pred) order by qdiff,round(pred);

The functionality of the model with interactions is illustrated in the examples below. First a 
multiplicative interaction:

CALL nza..glm('intable=wq57, incolumn=
fixed_acidity ; volatile_acidity ; residualsugar ; chlorides ; 
free_sulfur_dioxide ;  density ;  ph  ; sulphates ; alcohol, 
interaction=density *  sulphates ,  intercept=TRUE, id=id, target=qdiff, 
model=glm_wq_i1, maxit=2, coldefrole=ignore, family=bernoulli, link=logit');
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CALL nza..PREDICT_GLM('intable=wq57ts, id=id, model=glm_wq_i1, 
outtable=out_wq_i1'); 
select count(*), qdiff, round(pred) as predicted from wq57ts t join out_wq_i1 
p on t.id=p.id group by qdiff,round(pred) order by qdiff,round(pred);
select count(*), qdiff,pred from wq57ts t join out_wq p on t.id=p.id group by 
qdiff,round(pred) order by qdiff,round(pred); 

The following example with powers creates two new columns—cube of density and square of 
sulphates.

CALL nza..glm('intable=wq57, incolumn=
fixed_acidity ; volatile_acidity ; residualsugar ; chlorides ; 
free_sulfur_dioxide ;  density ;  ph  ; sulphates ; alcohol 
, interaction=density^3;  sulphates^2 , 
 intercept=TRUE, id=id, target=qdiff, model=glm_wq_i2, maxit=2, 
coldefrole=ignore
, family=bernoulli, link=logit');

Following is another example of power transformations:

CALL nza..glm('intable=wq57, incolumn=
  volatile_acidity ; residualsugar ;  free_sulfur_dioxide ;  
density  ;   alcohol; fixed_acidity ; residualsugar,
interaction=fixed_acidity^2 ; residualsugar^2
,
 intercept=TRUE, id=id, target=qdiff, model=glm_wq_i3, maxit=2, 
coldefrole=ignore
, family=bernoulli, link=logit');

Output Table Data Formats

As a result, when the GLM algorithms run, the following tables are generated:

► NZA_META_<model_name>_MODEL Table

► NZA_META_<model_name>_FADIC Table

► NZA_META_<model_name>_DICTIONARY Table

► NZA_META_<model_name>_GLMDIC Table

► NZA_META_<model_name>_PCOVMATRIX Table

► NZA_META_<model_name>_PPMATRIX Table

► NZA_META_<model_name>_RESIDUALS Table

► NZA_META_<model_name>_STATS Table

NZA_META_<model_name>_MODEL Table
The NZA_META_<model_name>_MODEL table contains details about the linearly combined factors 
of the GLM model. Following are the table columns.
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Table 54: Columns of the NZA_META_<model name>_MODEL table

Column Data Type Purpose

FAC_ID (primary key 
column)

INTEGER Identifier of the factor.

BETA DOUBLE The beta value of the linear part.

STD_ERROR DOUBLE The standard deviation of beta value.

TEST DOUBLE Test statistics for beta significance 
(difference from zero).

P_VALUE DOUBLE Significance of the above test statistics.

CLASS_ID INTEGER Class, if the parameter (predictor variable) 
is discrete.

DF BIGINT Degrees of freedom.

NZA_META_<model_name>_FADIC Table
The NZA_META_<model_name>_FACDIC table contains the list of all factors. Following are the table 
columns.

Table 55: Columns of the NZA_META_<model name>_FADIC table

Column Data Type Purpose

FAC_ID (primary key 
column)

INTEGER Identifier of the factor.

FAC_EXPRESSION NVARCHAR An expression representing the factor. The 
expression may be derived from the 
PPMATRIX table.

NZA_META_<model_name>_DICTIONARY Table
The NZA_META_<model_name>_DICTIONARY table contains information about the input variables. 
Following are the table columns.

Table 56: Columns of the NZA_META_<model name>_DICTIONARY table

Column Data Type Purpose

ATTNUM (primary key 
column)

SMALLINT Column ID of the input variable.
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Column Data Type Purpose

ATTNAME NVARCHAR Name of the variable/column.

DICNAME NVARCHAR Name of the table that contains the 
dictionary for the variables. Only used for 
of nominal variables.

LEVELS BIGINT Number of levels. Only used for nominal 
variables.

ATTAVG DOUBLE Average value. Only used for continuous 
variables.

ATTSTD DOUBLE Standard deviation. Only used for 
continuous variables.

NZA_META_<model_name>_GLMDIC Table
The NZA_META_<model_name>_GLMDIC table contains the list of all factors. Following are the table 
columns.

Table 57: Columns of the NZA_META_<model name>_GLMDIC table

Column Data Type Purpose

GLM_ID (primary key 
column)

INTEGER Column ID of the variable (GLM run 
specific).

NAME NVARCHAR Name of the variable/column.

COLROLE BOOLEAN True=predictor, FALSE=response variable.

NZA_META_<model_name>_PCOVMATRIX Table
The NZA_META_<model_name>_PCOVMATRIX table contains the covariance values. Following are 
the table columns.

Table 58: Columns of the NZA_META_<model name>_PCOVMATRIX table

Column Data Type Purpose

FAC_RAW (primary key 
column)

INTEGER Factor ID or a special number identifying 
the target variable.

FAC_COL (primary key 
column)

INTEGER Factor ID or a special number identifying 
the target variable
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Column Data Type Purpose

VALUE DOUBLE Covariance between factors indicated at 
row and column IDs. 

NZA_META_<model_name>_PPMATRIX Table
The NZA_META_<model_name>_PPMATRIX table defines the factors IDs. Following are the table 
columns.

Table 59: Columns of the NZA_META_<model name>_PPMATRIX table

Column Data Type Purpose

FAC_ID (primary key 
column)

INTEGER Identifier of the factor.

GLM_ID INTEGER GLM specific identifier – the “covariate” (only 
predictors used here).

POWER DOUBLE If the covariate is unrelated to factor or is not 
continuous, then the cell is set to NULL

Otherwise cell value is set to the exponent that the 
covariate is raised to in the dependency expression. 

Example: Let the GLM_ID identify the continuous 
work variable. 

Let FAC_ID identify a factor of the form if 
[jobcat=”professional”) then 1 else 0 endif * work 
^2 

Therefore, this factor is correlated to the work 
covariate, and the number that should be entered 
in the cell is 2 because work is present at second 
power in the expression.

LEVEL INTEGER If the covariate is unrelated to factor or is not 
nominal, then the cell is set to NULL.

Otherwise, the cell value is set to the level of the 
covariate used in the dependency expression. 

Example: Let the GLM_ID identify the nominal 
variable jobcat, with levels professional, clerical, 
skilled, unskilled, which got the level identifiers 
1,2,3,4 respectively in the dictionary _DIC. 

Let FAC_ID identify a factor of the form if 
[jobcat=”professional”) then 1 else 0 endif * work ^2 

Therefore, this factor is correlated to the covariate 
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Column Data Type Purpose

jobcat, and the number that should be entered in 
the cell is 1 because jobcat is professional in the 
dependency expression.

NZA_META_<model_name>_RESIDUALS Table
The NZA_META_<model_name>_RESIDUALS table contains the covariance values. Following are the 
table columns.

Table 60: Columns of the NZA_META_<model name>_RESIDUALS table

Column Data Type Purpose

RECORDID (primary key 
column)

INTEGER RESIDUALS Observation unique identifier.

RAW DOUBLE So-called response residual for each 
observation, that is, the difference 
between observed value and fitted 
(predicted by model) value.

PEARSON DOUBLE So-called Pearson residual for each 
observation, that is, the response residual 
normalized with the estimated standard 
deviation for the observation.

DEVIANCE DOUBLE So-called Deviance residual for each 
observation, that is, the sign([response 
residual]) * sqrt([observation weight] * 
deviance([real value],[fitted value]) )

NZA_META_<model_name>_STATS Table
The NZA_META_<model_name>_STATS table contains statistic information. Following are the table 
columns.

Table 61: Columns of the NZA_META_<model name>_STATS table

Column Data Type Purpose

STATISTIC NVARCHAR Name of the computed statistics.

VALUE DOUBLE Value of the computed statistics.
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C H A P T E R  2 4
Model Deployment

Model Deployment provides the ability to export analytics models from one Netezza database and 
import them into a database residing on a physically separate Netezza system. This functionality is 
crucial for projects such as rolling out one or more analytics models from a development or 
validation system to a production system. (While the systems need not be physically separate, there 
are simpler mechanisms for copying models between databases that reside on the same appliance.)

Background

The basis of the model deployment functionality is IBM Netezza Analytics model management, which 
gives users control over model administration. Any user who has the necessary privileges to read 
analytics models on the source system and to create analytics models on the target system can 
transfer models between the two Netezza systems. As a result, model deployment is not confined to 
database administrators; any user can have privileges to deploy, with the IBM Netezza Analytics 
security architecture controlling model access.

Netezza analytics also provides functionality to export analytic models into PMML files. PMML 
focuses on the exchange of data mining models between different products, however,   and therefore 
is not the best choice for model deployment, even if an import functionality were available. (See 
PMML Support, for more information on PMML in Netezza Analytics.) Model deployment requires an 
exact copy of all types of models (model content, model metadata, and model privileges). PMML 
may not work in conjunction with all types of Netezza analytics-supported algorithms, resulting in 
certain metadata conversion into PMML to require proprietary PMML extensions. Furthermore, 
converting models to and from PMML is time-consuming. For these reasons, Netezza analytics 
includes a model deployment solution based on a proprietary import/export format.

The model deployment functionality is available using stored procedures and a shell script. The shell 
script provides functionality above that which can be provided by stored procedures (for example, 
file operations). The procedures and command line utilities can:

► export one or more analytic models to file(s)

► inspect the contents of these file(s)
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► import one or more analytic models from these file(s) into the target database. 

The model import and export comprises the model contents as well as their metadata.

All types of analytic models, provided they have been registered in the metadata management 
system, can be imported and exported. The contents of all managed components of a model is 
included in the exported files. Note that the source (export) and target (import) Netezza systems 
must have the same system case, (that is,  both must be lowercase systems or both must be 
uppercase systems).

Permissions and Access
Because database security and file system security are two independent security systems, the 
security functions of the database cannot be reflected on the file system level. For example, while 
access to models is restricted to database users with the corresponding privileges, access to file 
contents is restricted to system users with the corresponding permissions. Therefore, once a model is 
exported to file(s), users other than the database users may have access to the model data. Any user 
who can read the exported file(s) can list the models in these files or import them into a target 
database.

Model privileges can also be exported and imported, but only by the database administrator.

Applications

Movement of one or more analytic models from a test system to a physically separated production 
system is a typical usage scenario for the model deployment functionality. In simpler cases, where 
both databases are within the same appliance, you would use the COPY_MODEL procedure. 
However, the COPY_MODEL procedure cannot be used to transfer models to a target database when 
the systems are physically separated. The following is a sample use case for model deployment.

Sample Deployment Scenario
A data mining analyst is using Netezza analytics to analyze customer data and is ready to deploy 
analytic models produced in a test environment into a production environment. The production 
environment is physically separated from the test environment. Simply, the analyst needs to export 
the models on the test system, move the exported file(s) to the production system, import the 
models on to the target, and finally to manage privileges.

The steps for this scenario are:

1. On the test system, the analyst exports all models to be deployed to a set of files.

2. Using the transport medium of choice (network, memory stick, etc.), the analyst moves the 
file(s) to the production system.

3. On the production system, the analyst imports all or selected models from the file(s) into the 
Netezza analytic-enabled production database. Optionally, models can be overwritten on 
model import.
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4. The analyst evaluates and rectifies model privileges. By default, the user who initiates the 
export and import is the new owner of the models. If that user is a database administrator, all 
model privileges can be transferred from the source to the target system. If alternate privileges 
are desired, the administrator can issue individual GRANT_MODEL or REVOKE_MODEL calls.

Available Functionality

The implementation of the model deployment function is provided by the EXPORT_MODEL, 
IMPORT_MODEL, and LIST_MODEL procedures, as well as an included shell script. Each is described 
below.

NZA..EXPORT_MODEL
The NZA..EXPORT_MODEL procedure allows you to specify one or more analytics models to be 
exported (using the model parameter). When specifying more than one model name, each model 
must be separated with a semicolon. Only models from the current database can be exported. Mixed 
case model names must be double-quoted; unquoted names are converted to system case. If 
model=all is specified, all models in the current database are exported. To export a model, the user 
must have the LIST and SELECT privileges on the model.

You can also use a where parameter to filter models to be exported from the current database. All 
columns available in the V_NZA_MODELS view can be used in the where  parameter .

When specifying the directory parameter (mandatory), an existing directory where the export files 
are stored, note that the directory must be writable by the database process (owned by user nz). The 
directory must be specified as absolute path name, relative path names are not allowed.

For each model, the export procedure writes a series of files (a file set), dependent on the number 
and kind of components of the model. Because it is possible that the directory will receives hundreds 
of files, it is best that you specify an empty directory. To simplify organization, all export files are 
prepended with a common prefix (based on the mandatory name parameter). By making this prefix 
different for each call of the EXPORT_MODEL procedure, you can reuse the directory for different 
calls of EXPORT_MODEL. 

Note: While the EXPORT_MODEL procedure does not produce a single archive, the shell script 
interface, described below, can combine all exported files into a single archive file.

The acl parameter is used to export model privileges also. This parameter can be used by the ADMIN 
user only.

The overwrite parameter determines if conflicting files in the specified directory are deleted before 
the new files are written. If the directory already contains a file set with the same name as the file set 
to be written, this existing file set is deleted if overwrite = true, or the export is aborted if overwrite = 
false. 

The EXPORT_MODEL procedure writes several files into a  user-specified directory by a process 
belonging to the database. This process is owned by user nz and, consequently, the files are owned 
by nz. For this reason, user nz must have the right to write into the specified target directory. In 
addition, by default the written files have open read access. If this is not desired, you must change 
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the file permissions manually when EXPORT_MODEL has finished.

The procedure returns the number of models that were exported successfully.

NZA..IMPORT_MODEL

The NZA..IMPORT_MODEL procedure allows you to specify one or more analytics models to be 
imported (model parameter). When specifying more than one model name, they must be separated 
with semicolons. Models are always imported into the current database. Mixed case model names 
must be double-quoted;unquoted names are converted to system case. (Note that the system case of 
the export machine must match the system case of the import machine.) If model=all is specified, all 
models in the file set are imported.

You can also use the where parameter to filter models to be imported into the current database . All 
columns available in the V_NZA_MODELS view can be used in the where parameter.

Use the directory parameter (mandatory) to specify the directory that contains the files that were 
previously exported. The directory must be specified as an absolute path name.

Use the name parameter to identify the desired set of files. Each file set written into a directory can 
be identified by its name (that is, the prefix prepended during export). If the specified directory 
contains only the result of one EXPORT_MODEL operation, the file set can be clearly detected and 
you need not specify the name parameter.

Use the acl parameter to import model privileges (provided they were exported before). This 
parameter can be used by the ADMIN user only. If a user or group whose privileges are to be 
imported does not exist, the privileges of this user or group are not imported. Note that users and 
groups are not created automatically.

By default, models in the current database are not overwritten on model import. If you do wish to 
overwrite models, set the overwrite parameter to true. Models with the same name as an imported 
model are deleted before the model is imported. Any user who can create a new analytics model in a 
database can also import models from the file set into that database. The current user becomes the 
owner of the imported models. To overwrite a model, a user needs the DROP privilege on the model.

If the ADMIN user calls the import procedure, the ADMIN can specify the owner parameter. This 
parameter sets an alternative owner for all imported models; the new owner must exist on the target 
system.

The procedure returns the number of models that were imported successfully.

NZA..LIST_MODELS
The LIST_MODELS procedure used for model deployment is the same as that for the rest of the 
Netezza analytics, with the additional ability to list also models from a file set. For model 
deployment, therefore, LIST_MODELS has two additional parameters. The directory parameter, 
when specified, activates the deployment view for the procedure. The directory must be specified as 
an absolute path name. The name parameter identifies the file set in this directory; if the specified 
directory contains only the result of one EXPORT_MODEL operation, the file set can be clearly 
detected and you need not specify the name parameter. The LIST_MODELS procedure lists the names 
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and some properties of the models in the file set. No special privileges are needed to list the models. 

LIST_MODELS cannot list the models in an archive file created by the shell script (described below). 
To list archived models, use the list mode of the shell script.

Shell Script
The model deployment functionality includes a command line utility, nzmodel, that can perform the 
export and import of models and display the contents of an export file set. In addition, it can create 
an archive file instead of file sets. It can perform the model export or model import from outside the 
database, and provides these two features not available with the stored procedure:

► Using the -f parameter, the result of the export process can be a single file, not a file set. This 
single archive file contains all files from the file set and can be imported directly without 
manually extracting the file set. This not only simplifies the transfer of the export result to 
another location, but also better preserves the integrity of the file set.

► Copy mode allows models to be copied directly from one Netezza host to another, without any 
intermediate files.

Restriction: Only the Linux user who started the NPS database may execute the nzmodel script. 
Typically, this user is the nz user.

The following is the syntax for the shell script:

nzmodel -e [-avo] [-z netezza-host] [-d database] [-u user] 
[-p password]
           [-w where-clause] [-f file/directory] [-n name] [model...]
nzmodel -i [-avo] [-z netezza-host] [-d database] [-u user] [-p password]
           [-w where-clause] [-O owner] [-f file/directory] [-n name] 
[model...]
nzmodel -l [-v] [-f file/directory] [-n name]
nzmodel -c [-avo] [-z source-netezza-host] [-d source-database] 
           [-u source-user] [-p source-password]
           [-Z target-netezza-host] [-D target-database] 
           [-U target-user] [-P target-password] 
           [-w where-clause] [-O owner] [model ...]
nzmodel -h

The following table defines the parameters of the shell script:

Table 62: Options for the model deployment shell script

Option /alt. name Explanation

-e / --export Export model(s) to an archive file or directory. See Export (option -e) 
for more detail.

-i / --import Import model(s) from an archive file or directory. See Import (option -i) 
for more detail.

-l / --list List file or directory contents (model names and properties).See List
(option -l) for more detail.
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Option /alt. name Explanation

-c / --copy Copy models from the local database/host to another database/host. 
See Copy (option -c) for more detail.

-h / --help Show help. 

-a / --acl Export/import model privileges with the model (ADMIN only).

-o / --overwrite Overwrite output files (export)  or models in the database (import).

-v / --verbose Display verbose mode.

-d / --db Name of the (source) database.

-D / --tdb Name of the target database.

-z / --host Host name or address of the (source) database.

-Z / --thost Host name or address of the target database.

-p / --password Password for the (source) database.

-P / --tpassword Password for the target database.

-u / --user User name for the (source) database.

-U / --tuser User name for the target database.

-w / --where A where-clause to filter models for export from the source database or 
models for import from the archive file or directory.

-O / --owner The owner for all imported models; by default the importing user is the 
model owner.

-f / --file The name of the archive file name used for export or import (tgz 
format). Alternatively an (existing) directory name can be specified.

-n / --name A name for the file set (only if a directory is specified).

Export, Import, List, and Copy Option Details
The following sections provide additional detail on the options.

Export (option -e)
In export mode, the script exports one or more models to a single file or to a file set in a directory. 
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(see the description of NZA..EXPORT_MODEL for more information). It is possible to export models 
from a database on another host (using -z). Note that in this case, all resulting files are written on 
that host, not on the local Netezza system. If one of the parameters (host, database, user, or 
password) is not specified, its value is taken from the corresponding environment variable.

The models to be exported can be specified using a where clause, or their names can be listed at the 
end of the command line (space-separated). If “all” is specified in the model name list, all models are 
exported. The final list of exported models is constructed by merging the model set specified by the 
where clause with the models specified by name. The where clause and the list of model names can 
select only models in the current database (option -d). The where clause can be constructed in the 
same way as the where parameter in the NZA..LIST_MODELS procedure. 

The result can be written to an archive file, or a set of single files. (The archive file is a zipped form of 
the file set.) If an existing directory is specified with the -f option, the result is written as a set of files 
into that directory. In that case, you must also specify the -n option to define a name for the file set. 
In all other cases, one archive file is written. If the specified file already exists, it is either overwritten 
without notice (if the -o option was specified) or the user is asked if the file should be overwritten. 

Import (option -i)
In import mode, the script imports one or more models from a single file or a file set into a database 
(see the description of NZA..IMPORT_MODEL for more information) .It is possible to import models 
into a database on another host (using -z). Note that in this case, all import files must exist on that 
host, not on the local Netezza system. If one of the parameters (host, database, user, or password) is 
not specified, its value is taken from the corresponding environment variable.

The models to be imported can be specified using a where clause, or their names can be listed at the 
end of the command line (space-separated). If “all” is specified in the model name list, all models are 
imported. The final list of imported models is constructed by merging the model set specified by the 
where clause with the models specified by name. Models can be imported only in the specified 
import database (option -d), regardless of the original export database. The where clause can be 
constructed in the same way as the where parameter in the NZA..LIST_MODELS stored procedure.

The file/directory parameter (option -f) can be any of the following:

► An archive file created by a model export operation.

► A directory that contains an exported file set. If the directory contains more than one exported 
file set, you must specify the -n parameter must to select the desired file set. If you do not know 
the name of the exported file set, you can derived it from the file names (because the name of a 
file set is part of each file name).

The import can fail if an imported model has the same name as an existing model. In this case it fails 
if the overwrite option is not specified or the user does not have privileges to drop the existing 
model. 

List (option -l)
In list mode, the script lists the names and some properties of the models in the archive file or the 
file set. You can specify the file/directory and the name parameter in the same way as you would 
with import mode.
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Copy (option -c)
In copy mode, the script copies one or more models from a database on the local host directly to a 
database on another host. The models can be specified in the same way as with the EXPORT_MODEL 
procedure, using the where clause and/or a list of model names. Although the copy mode allows you 
to specify a source host (option -z), currently the source host must always be the local host.

Examples

Stored Procedure Examples
To export the two models – DECTREE_MODEL and LinRegModel – into the existing directory 
/tmp/export, you execute:

call nza..export_model('model=dectree_model;"LinRegModel",   
                        directory=/tmp/export, name=production');

The names of all created files in /tmp/export start with production (as specified by the name 
parameter).

The export command above does not export model privileges. If you are logged in as user ADMIN, 
you can also export privileges. Using the overwrite option replaces the existing file set with a new 
one:

call nza..export_model('model=dectree_model;"LinRegModel",   
                        directory=/tmp/export, name=production, 
                        overwrite=true, acl=true, verbose=true');

Suppose you have several models whose names starts with DECTREE. If you want to export them and 
also the model LinRegModel, you could do so as follows:

call nza..export_model('model="LinRegModel", directory=/tmp/export,
                        where=MODELNAME LIKE ''DECTREE%'',  
                        name=production, overwrite=true');

The model sets defined by the model and the where parameter are unified.

To list the models exported to /tmp/export, use this command:

call nza..list_models('directory=/tmp/export');

To import the exported models into another database, log in to target database and call the 
IMPORT_MODEL procedure:

call nza..import_model('model=dectree_model;"LinRegModel",   
                        directory=/tmp/export');

Note that you do not need to specify the name parameter, because /tmp/export contains only one 
export file set (“production”).

The import command above does not import model privileges. If you are logged in as user ADMIN, 
you can also import privileges (provided you have exported them previously). Use the overwrite 
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option to overwrite models:

call nza..import_model('model=dectree_model;"LinRegModel",   
                        directory=/tmp/export, 
                        overwrite=true, acl=true, verbose=true');

If the target machine has a user PETER, you can make PETER the owner of all imported models (you 
must be logged in as ADMIN):

call nza..import_model('model=dectree_model;"LinRegModel",   
                        directory=/tmp/export, owner=peter,
                        overwrite=true, acl=true, verbose=true');

Shell Script Examples
To export the two models DECTREE_MODEL and LinRegModel, located in database TEST,  into the 
existing directory /tmp/export, you execute:

nzmodel -e -d test -f /tmp/export -n product
        dectree_model \"LinRegModel\"

The names of all created files in /tmp/export start with product. Note that default values for the 
host, the user, and the password are taken from environment variables NZ_HOST, NZ_USER, 
NZ_PASSWORD.

Since the Linux shell interprets double quotes itself, you must use the escape char (\) to prevent this, 
since the double quotes are needed in the database for mixed case names.

Instead of writing a file set, you can also create a single archive file:

nzmodel -e -d test -f /tmp/export/product.tgz
        dectree_model \"LinRegModel\"

Here, only the file product.tgz is created.

The following lists the models exported to /tmp/export:

nzmodel -l -f /tmp/export

The following lists the models exported to /tmp/export/product.tgz:

nzmodel -l -f /tmp/export/product.tgz

The following imports the models exported to /tmp/export into the database TESTIM:

nzmodel -i -d testim -f /tmp/export dectree_model \"LinRegModel\"

The following imports all models exported to /tmp/export/product.tgz into the database TESTIM:

nzmodel -i -o -d testim -f /tmp/export/product.tgz all

You can use the copy option to copy models directly from the local host/database to another 
host/database:

nzmodel -c -d test -H productionhost -D testim -U admin -P password
        dectree_model \"LinRegModel\"
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Here we specified the username and password of the target machine (productionhost)explicitly. This 
command will work only if you can use nzsql to connect to the target machine. 
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PMML Support

Overview

The Predictive Model Markup Language (PMML) is widely accepted as the standard for exchange of 
data mining models and is defined by the Data Mining Group (DMG).2  Netezza Analytics PMML 
supports export of k-means clustering models, and limited support for decision trees, association 
rules, and naïve Bayes algorithms

PMML uses XML to represent mining models. The structure of the models is described by an XML 
Schema. One or more mining models can be contained in a PMML document. Consumers typically 
apply imported models to their own data or analyze the models. An example could be to visualize 
model contents. 

PMML General Information
The following sections provide general information on Netezza Analytics PMML support.

PMML Header Element
Any PMML model requires a version attribute as well as a Header element and it may optionally have 
a MiningBuildTask element. Following is the PMML definition of Header:

<xs:element name="Header">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
      <xs:element minOccurs="0" ref="Application"/>
      <xs:element minOccurs="0" maxOccurs="unbounded"
                  ref="Annotation"/>
      <xs:element minOccurs="0" ref="Timestamp"/>
    </xs:sequence>
    <xs:attribute name="copyright" type="xs:string" use="required"/>

2 Details can be found at http://dmg.org/.
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    <xs:attribute name="description" type="xs:string"/>
  </xs:complexType>
</xs:element>

The header of Netezza PMML models contains the following values:

Table 63: Header values of Netezza PMML models

Field Value 

Extension None

Application <Application name="IBM Netezza Analytics" 
version="x.x" />
(where x.x is the version of Netezzza Analytics running 
on the system)

Annotation None

Timestamp <Timestamp>model creation time</Timestamp>, 
where model creation time is DATECREATED from 
NZA_METADATA_MODELS

Copyright "Copyright copyright statement All Rights Reserved", 
where copyright statement is COPYRIGHT from 
NZA_METADATA_MODELS

Description "description", 
where description is DESCRIPTION from 
NZA_METADATA_MODELS

MiningBuildTask Element
The PMML element MiningBuildTask consists only of Extensions and defines no semantics. It is 
meant to describe the configuration of the training run that produced the model. Netezza PMML 
models contain the following:

<MiningBuildTask>
  <Extension name=params>
    <X-Parameter … /> 
    … 
  </Extension>
  <Extension name=colparams>
    <X-ColumnProperty … /> 
    … 
  </Extension>
</MiningBuildTask>

X-Parameter and X-ColumnProperty Elements
The X-Parameter element is defined as follows:

<xs:element name="X-Parameter">
  <xs:complexType>
    <xs:attribute name="taskseq"  type="xs:integer" use="optional"/>
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    <xs:attribute name="name"     type="xs:string"  use="required"/>
    <xs:attribute name="type"     type="xs:string"  use="required"/>
    <xs:attribute name="value"    type="xs:string"  use="required"/>
  </xs:complexType>
</xs:element>

The X-ColumnProperty element is defined as follows:

<xs:element name="X-ColumnProperty">
  <xs:complexType>
    <xs:attribute name="colname"  type="xs:string"  use="required"/>
    <xs:attribute name="property" type="xs:string"  use="required"/>
    <xs:attribute name="type"     type="xs:string"  use="required"/>
    <xs:attribute name="value"    type="xs:string"  use="required"/>
  </xs:complexType>
</xs:element>

The data are those contained in NZA_META_PARAMS and NZA_META_COLPROPS. If colname is *, the 
properties pertain to all columns for which an X-Column-Property is not in the PMML document.

Data Dictionary
Any PMML must have a data dictionary describing all available input columns. Netezza PMML models 
simply contain a list of DataField elements. Each of them contains the following attributes:

<xs:attribute name="name" type="FIELD-NAME" use="required"/>
<xs:attribute name="optype" type="OPTYPE" use="required"/>
<xs:attribute name="dataType" type="DATATYPE" use="required"/>

The following type definitions apply:

<xs:simpleType name="OPTYPE">
  <xs:restriction base="xs:string">
    <xs:enumeration value="categorical"/>
    <xs:enumeration value="ordinal"/>
    <xs:enumeration value="continuous"/>
  </xs:restriction>
</xs:simpleType>

Of the DATATYPE values defined in PMML, only the ones described below are used:

<xs:simpleType name="DATATYPE">
  <xs:restriction base="xs:string">
    <xs:enumeration value="string"/>
    <xs:enumeration value="integer"/>
    <xs:enumeration value="float"/>
    <xs:enumeration value="double"/>
    <xs:enumeration value="boolean"/>
    <xs:enumeration value="date"/>
    <xs:enumeration value="time"/>
    <xs:enumeration value="dateTime"/>
  </xs:restriction>
</xs:simpleType>
If column statistics are contained in the model, continuous fields also contain Interval elements, 
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categorical fields contain Value elements listing all valid values.

Of the possible subelements and attributes of Interval defined in PMML, only the ones described 
below are used:

<xs:element name="Interval">
  <xs:complexType>
    <xs:attribute name="closure" use="required">
      <xs:simpleType>
        <xs:restriction base="xs:string">
          <xs:enumeration value="openClosed"/>
          <xs:enumeration value="openOpen"/>
          <xs:enumeration value="closedOpen"/>
          <xs:enumeration value="closedClosed"/>
        </xs:restriction>
      </xs:simpleType>
    </xs:attribute>
    <xs:attribute name="leftMargin" type="NUMBER"/>
    <xs:attribute name="rightMargin" type="NUMBER"/>
  </xs:complexType>
</xs:element>

Of the possible subelements and attributes of Value, only the ones described below are used:

<xs:element name="Value">  <xs:complexType>
    <xs:attribute name="value" type="xs:string" use="required"/>
  </xs:complexType>
</xs:element>

Note: The order of intervals and values that is defined in the data dictionary defines also the order of 
statistics values in succeeding statistics elements.

Transformation Dictionary and Local Transformations
Netezza PMML models do not contain transformation dictionaries. Netezza PMML models may 
contain local transformations. The details pertaining to k-means local transformation are described in 
the k-means section, Local Transformations.

Mining Models
The main section in a PMML model consists of one or more models of particular types. The XML 
element for each of the model types starts with an optional Extension elements, designed to hold 
proprietary (non-standard) information that must not be relevant for scoring. Netezza Analytics uses 
the models' Extension elements to hold model metainformation. The extension looks as follows:

<Extension extender='metadata' name='<item>' value='<val>'/>
where <item> can be any one of the column names in V_NZA_MODELS of which the 
information is not otherwise contained in the PMML document, such as 
USERCATEGORY. <val> is the corresponding value.
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Clustering Model
Netezza clustering models have the following form:

<xs:element name="ClusteringModel">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Extension" minOccurs="0" maxOccurs="unbounded"/>
      <xs:element ref="MiningSchema"/>
      <xs:element ref="Output" minOccurs="0" />
      <xs:element ref="ModelStats" minOccurs="0"/>
      <xs:element ref="ModelExplanation" minOccurs="0"/>
      <xs:element ref="LocalTransformations" minOccurs="0" />
      <xs:element ref="ComparisonMeasure"/>
      <xs:element ref="ClusteringField"
 minOccurs="0" maxOccurs="unbounded"/>
      <xs:element ref="Cluster" maxOccurs="unbounded"/>
      <xs:element ref="ModelVerification" minOccurs="0"/>
      </xs:sequence>
      <xs:attribute name="modelName" type="xs:string"
   use="optional"/>
      <xs:attribute name="functionName" type="MINING-FUNCTION"
   use="required"/>
      <xs:attribute name="algorithmName" type="xs:string"

      use="optional"/>
      <xs:attribute name="modelClass" use="required">
        <xs:simpleType>
          <xs:restriction base="xs:string">
            <xs:enumeration value="centerBased"/>
            <xs:enumeration value="distributionBased"/>
          </xs:restriction>
        </xs:simpleType>
      </xs:attribute>
      <xs:attribute name="numberOfClusters" type="INT-NUMBER"

      use="required"/>
    </xs:complexType>
  </xs:element>

The generic elements are described in the following subsections. Netezza generates k-means models 
for clustering. For details of the k-means models, see K-means Clustering.

Mining Schema and Mining Field
Most data mining models contain a mandatory MiningSchema element describing the subset of the 
data dictionary actually used by the model as well as further column properties.

The mining schema consists of a set of MiningField elements defined in the following way by PMML:

<xs:element name="MiningField">
  <xs:complexType>
    <xs:attribute name="name" type="FIELD-NAME" use="required" />
    <xs:attribute name="usageType" type="FIELD-USAGE-TYPE"

 default="active" />
    <xs:attribute name="optype" type="OPTYPE" />
    <xs:attribute name="importance" type="PROB-NUMBER" />
    <xs:attribute name="outliers" type="OUTLIER-TREATMENT-METHOD"
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 default="asIs" />
    <xs:attribute name="lowValue" type="NUMBER" />
    <xs:attribute name="highValue" type="NUMBER" />
    <xs:attribute name="missingValueReplacement" type="xs:string" />
    <xs:attribute name="missingValueTreatment"
  type="MISSING-VALUE-TREATMENT-METHOD" />
    <xs:attribute name="invalidValueTreatment"
  type="INVALID-VALUE-TREATMENT-METHOD"
  default="returnInvalid" />
  </xs:complexType>
</xs:element>

Besides all required attributes, Netezza PMML provides optype, importance, and 
missingValueTreatment. The description of the importance attribute and the missingValueTreatment 
attribute is provided independently for each of the algorithms.

Output Fields
The output fields describe a set of result values that can be computed when the model is applied to 
new data. In particular, the output fields specify names, types and rules for selecting specific result 
features. This information can be used by a scoring engine to determine the results that can be 
calculated from the model.

The Output element consists of a set of OutputField elements. See Output Fields in the k-means 
section for more information.

Model Statistics
PMML models may contain statistical information about some of the input fields in an element. The 
model statistics consists of a set of UnivariateStatistics elements. The description of which univariate 
statistics are contained in a k-means model is described in Model Statistics. 

Model Explanation
Netezza may generate ModelExplanation elements. See the k-means Model Explanation for more 
details.

Model Verification
Model verification is intended to allow scoring engines to verify that their scores are correct, or 
rather identical to those intended by the model producer. Model verification is optional.

K-means Clustering

The PMML functionality supported by IBM Netezza In-Database Analytics allows users to export the 
data for K-Means models.
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Clustering Model
The ClusteringModel element describes the clustering model as a set of clusters. This includes 
information needed for scoring; k-means needs, in particular, the center vectors of each cluster. 
Details of the sub-elements contained in ClusteringModel are described in the subsequent sections 
of this chapter.

ClusteringModel may have the following attributes:

<xs:attribute name="modelName" type="xs:string" use="optional"/>
<xs:attribute name="functionName" type="MINING-FUNCTION" 
use="required" />
<xs:attribute name="algorithmName" type="xs:string" use="optional"/>
<xs:attribute name="modelClass" use="required">
  <xs:simpleType>
    <xs:restriction base="xs:string">
      <xs:enumeration value="centerBased"/>
      <xs:enumeration value="distributionBased"/>
    </xs:restriction>
  </xs:simpleType>
</xs:attribute>
<xs:attribute name="numberOfClusters" type="INT-NUMBER" use="required"/>
 

Table 64: ClusteringModel attributes

Attribute Description

modelName the name string provided by the user for the 
model, when calling the k-means function

functionName is "clustering"

algorithmName is "Kmeans"

modelClass is "centerBased" 

numberOfClusters the number of clusters contained in the model 

Mining Schema and Mining Field
K-means Clustering supports the following usage types:

<xs:simpleType name="FIELD-USAGE-TYPE">
  <xs:restriction base="xs:string">
    <xs:enumeration value="active" />
    <xs:enumeration value="supplementary" />
  </xs:restriction>
</xs:simpleType>
 

The mining fields of k-means models contain the attributes importance and missingValueTreatment.

Importance is the value contained in column IMPORTANCE of 
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NZA_META_<model_name>_COLUMNS. 

MissingValueTreatment is always by imputation of mean or mode. Therefore, asMean or asMode is 
used as values.

Output Fields
For k-means clustering, the output section looks as follows:

<xs:element name="Output">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="OutputField" minOccurs="1"
                  maxOccurs="unbounded" />
    </xs:sequence>
  </xs:complexType>
</xs:element>
 

Only the following attributes of OutputField entries are contained:

<xs:element name="OutputField">
    <xs:complexType>
      <xs:attribute name="name" type="FIELD-NAME" use="required" />
      <xs:attribute name="optype" type="OPTYPE" />
      <xs:attribute name="dataType" type="DATATYPE"/>
      <xs:attribute name="feature" type="RESULT-FEATURE" />
   </xs:complexType>
  </xs:element>
 

K-means models contain output fields having result features clusterID and clusterAffinity. Cluster 
affinity is defined such that it contains the distance of a row from its cluster center. Here is the 
Output section:

<Output>
  <OutputField name="cluster_id" optype="categorical"
               datatype="integer" feature="clusterId" />
  <OutputField name="distance" optype="continuous"
               datatype="double"  feature="clusterAffinity" />
</Output> 

Model Statistics
K-means PMML models may contain statistical information about active and supplementary input 
fields.

Depending on the value of the statistics parameter provided when the model was built, the 
UnivariateStatistics elements contain some or all of the following information:

<xs:element name="UnivariateStats">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Counts" minOccurs="0"/>
      <xs:element ref="NumericInfo" minOccurs="0"/>
      <xs:element ref="DiscrStats" minOccurs="0"/>
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      <xs:element ref="ContStats" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="field" type="FIELD-NAME"/>
  </xs:complexType>
</xs:element>
 

Counts looks as follows:

<xs:element name="Counts">
  <xs:complexType>
    <xs:attribute name="totalFreq" type="NUMBER" use="required"/>
    <xs:attribute name="missingFreq" type="NUMBER"/>
    <xs:attribute name="invalidFreq" type="NUMBER"/>
    <xs:attribute name="cardinality" type="xs:nonNegativeInteger"/>
  </xs:complexType>
</xs:element>
 

NumericInfo, which may be provided for continuous fields, looks as follows:

<xs:element name="NumericInfo"> 
  <xs:complexType>
    <xs:attribute name="minimum" type="NUMBER"/>
    <xs:attribute name="maximum" type="NUMBER"/>
    <xs:attribute name="mean" type="NUMBER"/>
    <xs:attribute name="standardDeviation" type="NUMBER"/>
  </xs:complexType>
</xs:element>
 

Note that the optional attributes median and interquartile range are not available, neither are 
quantiles. DiscrStats looks as follows:

<xs:element name="DiscrStats">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="INT_ARRAY"    minOccurs="1" maxOccurs="1"/>
    </xs:sequence>
    <xs:attribute name="modalValue" type="xs:string"/>
  </xs:complexType>
</xs:element>
 

The array contains the frequencies for each of the values in the corresponding field. They are 
provided in the order in which the field values are listed in the Data Dictionary. ContStats looks as 
follows:

<xs:element name="ContStats">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Interval" minOccurs="0" maxOccurs="unbounded"/>
      <xs:group ref="FrequenciesType" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="totalValuesSum" type="NUMBER"/>
    <xs:attribute name="totalSquaresSum" type="NUMBER"/>
  </xs:complexType>
</xs:element>
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with:

<xs:group name="FrequenciesType">
  <xs:sequence>
    <xs:group ref="NUM-ARRAY" minOccurs="3" maxOccurs="3"/>
  </xs:sequence>
</xs:group>
 

where the three arrays hold the frequencies, sum of values, and sum of squared values for each 
interval. For a definition of interval, see the Data Dictionary section.

Model Explanation
For k-means models, Netezza Analytics does not generate a ModelExplanation element. Note that 
cluster statistics are contained in Partition elements in the clusters.

Local Transformations
Whenever categorical columns are present, k-means models contain an element, 
LocalTransformations, which contains one DerivedField for each categorical mining field.

The derived fields map the categories v1, v2, …, vn (in the order in which they appear in the data 
dictionary) to integers 1, 2, …, n. This is necessary, because center vectors in a clustering model can 
only have numeric entries, while Netezza Analytics k-means models use modes to characterize 
cluster centers.

Each DerivedField element has the following form:

<DerivedField name="DF" displayname="OF"
              optype="continuous" dataType="integer"
  <MapValues outputColumn="DF" defaultValue="0”>
    <FieldColumnPair field="int
 column="cat"/>
    <InlineTable>
      <row><cat>v1</cat><int>1</int></row>
      <row><cat>v2</cat><int>2</int></row>
      ...
      <row><cat>vn</cat><int>n</int></row>
    </InlineTable>
  </MapValues>
</DerivedField>

where OF is the original field name and DF is a uniquely generated name such as OF_INT.

More entries in Local Transformations may become necessary to capture automatic data 
normalization or standardization once it is available.

Comparison Measure
Netezza k-means models generate a ComparisonMeasure element. The comparison measure 
describes how to aggregate the values obtained by comparing the column value of a record with the 
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corresponding component of a center vector.

Netezza k-means models use distance-based comparison measures (kind='distance'). Depending 
on user input to the algorithm for the distance function, the following elements are contained in the 
comparison measure:

euclidean             <euclidean/>
manhattan             <cityBlock/>
canberra              <cityBlock/> 
                        <Extension name="compareFunction" value="canberra"/>
                        </cityBlock>
maximum                <chebychev/>

For other functions (user-defined via UDFs), PMML generation is not supported, because the scoring 
engine is unlikely to have access to the UDF. Even in the special case, where the UDF implements one 
of the other distance measures supported by PMML, for example the Minkowski distance, a further 
UDF would be needed to tell the algorithm about the nature of the user-defined distance function.

Note that canberra cannot truly be modeled in PMML 4.0. Canberra uses a sum (chebychev) as 
comparison measure, however it requires a compare function that is not available in PMML. The 
function is a normalized absolute difference, where the absolute difference of values is divided by 
the sum of the individual field values.

The attributes compareFunction specifying the default for the mining fields, as well as minimum and 
maximum in ComparisonMeasure are not used by Netezza Analytics PMML. Instead, the compare 
function is explicitly set in ClusteringField whenever it is not the absolute difference, for example for 
categorical fields.

Clustering Field
Clustering fields refer to mining fields or derived fields. There is a clustering field for each continuous 
mining field, as well as for each field derived from a categorical mining field.

The ClusteringField element describes specific features for columns in a clustering model. Netezza 
PMML only uses the following attributes:

<xs:attribute name="field" type="FIELD-NAME" use="required"/>
<xs:attribute name="compareFunction" type="COMPARE-FUNCTION"
              use="optional"/>

For comparison measures euclidean, manhattan, and maximum, the compare function is absdiff for 
originally continuous fields, and delta for the fields derived from categorical fields. The compare 
function for originally continuous fields may be omitted, as it's the default value.

Cluster
For each cluster contained in the k-means model, there is an element Cluster: 

<xs:element name="Cluster">
  <xs:complexType>
    <xs:sequence>
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      <xs:group ref="NUM-ARRAY" minOccurs="0"/>
      <xs:element ref="Partition" minOccurs="0">
      <xs:element ref="Covariances" minOccurs="0"/>
    </xs:sequence>
    <xs:attribute name="name" type="xs:string" use="optional"/>
    <xs:attribute name="size" type="xs:nonNegativeInteger"
                                     use="optional"/>
  </xs:complexType>
</xs:element>

Each cluster starts with an array of center coordinates; the order of the values is the order in which 
the fields occur in ClusteringFields. This is straightforward in the case of continuous fields, but does 
not naively work for categorical fields, as the Netezza Analytics k-means model stores the modes, 
which may be non-numeric.

For non-numeric clustering fields, derived fields are necessary in order to generate numeric field 
values from the categories. The definition of these derived fields is done as described in the Local
Transformations section, above.

With F the number of clustering fields and ci the ith center coordinate, the arrays have the 
following form: 

<Array n="F" type="real">c
1
, c

2
, …, c

F
</Array>

 

The Partition element contains statistics describing the cluster members. It describes the distribution 
of each mining field, i.e. it uses the original rather than the derived fields. 

If needed, covariances are also contained in the Cluster element. 

<xs:element name="Covariances">
  <xs:complexType>
    <xs:sequence>
      <xs:element ref="Matrix"/>
    </xs:sequence>
  </xs:complexType>
</xs:element>

The sequence of rows/columns corresponds to the sequence in MiningSchema. Note that 
Covariances does not contain information about fields from the Transformation Dictionary. 
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C H A P T E R  2 6
Utility Functions – Probability Distributions 

Introduction

A cumulative probability distribution in a single, real valued variable F(x) formally assigns each x a 
value in a range [0,1] so that if (x1<x2) then F(x1)<=F(x2_). 

Informally F(x) means the probability that a random variable takes the value x or less. 

As already described in Generalized Linear Models, there exist a number of probability distribution 
types, like the already mentioned nominal (or discrete) ones: the Bernoulli, binomial, Poisson, and 
negativebinomial distributions, or the continuous ones like the Gaussian (normal) , wald (inverse 
gaussian) and gamma distributions. 

They are characterized by specific parameters and we can be interested in the cumulative 
distribution F(x), distribution density f(x) or distribution mass m(x) or the inverted cumulative 
distribution IF(x).

The relationship between these functions is as follows: If F(x)=y and F(x) is strictly increasing at x, 
then IF(y)=x. If F(x) is continuous then almost everywhere f(x)=F’(x). In case of a discrete distribution 
with mass assigned to integers, m(x)=F(x)-F(x-1). 

Using Probability Distribution Functions

We are frequently interested in finding out what kind of distribution is followed by a particular 
attribute. In majority of data analysis applications we would prefer normal distribution, but if a 
distribution differs from it, the attribute may be transformed to become a normal one. 

For example if attribute a follows the distribution z, but we want it to follow the normal distribution 
n, then we would perform a transformation:

a’(x)=IF_n(F_z(a(x)))
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Note that if attribute a follows the distribution z, then:

SELECT count(*) from atable where a < IF_z(0.1) ;

Should return a number being 10% of all the records. Same checks may be done at deciles 
(0.10.2,0.3…,0.9) or percentiles (0.01, 0.02,…, 0.98,0.99). If the results roughly agree, we have some 
confidence that we know what distribution is followed in the data. 

But the most prominent usage of the probability distribution functions is hypothesis testing. Within 
nzAnalytics procedures like ANOVA, Spearman’s correlation, Chi-square tests and t-tests, Wilcoxon 
and other tests, Generalized Linear Models and other incorporate usage of various probability 
distribution functions like normal, chi square, t-Student, F-Fisher and other. 

And of course they are used to generate samples from distributions other than uniform.

Functions Related with each Distribution

The general form of a call to a probability function is:

<type><name><tail>(<argument>[,<parameters>])
 

The type can be either P (meaning cumulative), D (meaning density or mass function) , Q (meaning 
inverse cumulative).

The name can be BERN, BETA, BINOM, CAUCHY, CHISQ, EXP, F, FISK, GAMMA, GEOM, HYPER, LNORM, 
LOGIS, NWW, NBINOM, NORM, NORM3P, POIS, T, UNIF, WALD, WEIBULL, or WILCOX.

The tail can be either an empty string (meaning low taikl) or _H (meaning high tail). 

For example:

► PNORM(x) means F(x) for a standard normal distribution

► PNORM_H(x) means 1- PNORM(x)

► DNORM(x) means the density function of standard normal distribution

► QNORM(p) means the inverse cumulative standard normal distribution function

► QNORM_H(p) means 1-QNORM(p)

Distributions and their Parameters

The following sections briefly describe the available distributions.

BERN - Bernoulli Distribution (discrete)
The Bernoulli distribution implies that the response variable takes on values 0 and 1. It models a 
single toss of a manipulated coin that does not have the same chance of heads and tails. This is a one 
parameter distribution (the percentage of heads).
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BETA - Beta Distribution
The Beta distribution is generic distribution, closely related to other distributions like th Fisher 
distribution via closed-form mathematical relations. As the beta distribution has a bounded range 
with positive density (from 0 to 1), processes with implicit lower and upper limits are modelled using 
it. It has two shape parameters. 

BINOM - Binomial Distribution (discrete)
Binomial distribution models tossing a number of times a manipulated coin that does not have the 
same chance for heads and tails. 

It is driven by two parameters: the percentage of heads and the number of trials. 

CAUCHY - Cauchy Distribution
The Cauchy distribution describes the cross-section of resonant nuclear scattering, derived from the 
probability of a resonant state with a known lifetime.

It has two parameters: location and scale. 

CHISQ - Chi-square Distribution
If you have variables X1,...,Xn each of them following standard normal distribution, the variable 
X=X1^2+X2^2+...+Xn^2 follows the chi-square distribution with n degrees of freedom.

It has one parameter: the number of degrees of freedom. 

EXP - Exponential Distribution
The exponential distribution may be encountered in behavior of technical systems for example in 
case of time between failures, provided that the probability of failure is very low and does not 
change over time.

It has one parameter: the scale. 

F - Fisher Distribution
► The Fisher distribution, also called Fisher-Snedecor distribution or Fisher F-Distribution, describes 

the distribution of a quotient of two variables following a Chi-square distribution, both scaled by 
their number of degrees of freedom.

It has two parameters, the two degrees of freedom. 

FISK - Fisk Distribution
The Fisk distribution may be used in hydrology in models of precipitation or stream flow rates.
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It has two parameters: median and shape. 

GAMMA - Gamma Distribution
The Gamma distribution is the distribution of a sum of random variables that are exponentially 
distributed. Also exponentially distributed are time intervals between successes in the Poisson 
experiment. 

It has two parameters: shape and inverted scale. 

GEOM - Geometric Distribution (discrete)
The cumulative Geometric distribution returns the probability that in a series of Bernoulli trials you 
will have x or less failures before the first success.

It has one parameter: the probability of success. 

HYPER - Hypergeometric Distribution (discrete)
In an urn containing wu white balls and bu black balls, we draw N balls without replacement. 
Drawing a white ball is a success (1), a black ball is a failure (0). The cumulative Hypergeometric 
distribution calculates the probability that we get x or less successes in the N trials. 

Wu, bu and N are the parameters of the distribution. 

LNORM - Log-Normal or Galton Distribution
The properties of living tissues, like weight or skin area, tend to follow the Galton distribution.

It has two parameters: the median on logarithmic scale and the shape on logarithmic scale. 

LOGIS - Logistic Distribution
The logistic distribution is used in describing the spread of epidemics

It ha two parameters: mean and scale. 

MWW - Mann-Whitney-Wilcoxon Distribution (discrete)
We have a set of observations of variable x split into two sets. We assume that the values of the 
variable x are distributed in both sets in the same way, and are independent.

We assume that x is ordinal, so that we can rank all values of x. The statistics uStat is calculated as the 
sum of ranks of objects belonging to the first set or to the second set, whichever is lower.

The MWW distribution describes the distribution of uStat 

It has two parameters: the number of items in the first set and the total number of items. 
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NBINOM - Negative Binomial Distribution (discrete)
The Negative Binomial distribution means that the response variable take on non-negative integer 
values. It models the toss a manipulated coin that does not have the same chance for heads and tails 
until a predefined number of heads is reached. The response variable is the count of tails. 

It has two parameters: the number of successes needed to stop the series of Bernoulli trials and the 
success probability.

NORM - Standardized Normal or Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural 
processes. Specifically, in the case of a multitude of independent processes generating continuous 
numbers from a distribution, then their average tends to follow normal distribution. 

Its standardized version assumes that it has a mean of 0 and standard deviation of 1.

It has no parameters. 

NORM3P - Normal or Gaussian Distribution
The Gaussian distribution, also called the “normal” distribution, is claimed to occur in many natural 
processes. Specifically, in the case of a multitude of independent processes generating continuous 
numbers from a distribution, then their average tends to follow normal distribution. 

It has two parameters: the mean and the standard deviation.

POIS - Poisson Distribution (discrete)
The Poisson distribution implies that the response variable takes on non-negative integer values . The 
distribution is driven by the Poisson process. In this process the average rate of success over time is 
known. The probability of a single success within a time interval is proportional to the length of the 
interval and is independent of the probability outside of the interval. If the interval gets shorter, the 
probability of more than 1 success goes toward zero.

It has one parameter: the mean. 

T- t-Student Distribution
Considering n independent random variables Z1,...,Zn distributed according to the normal 
distribution with mean mu and a fixed variance, we create a new variable Z as their average. If s is 
the standard deviation from the sample, then the variable X = (Z-mu)/(s/sqrt(n)) follows the t-Student 
distribution with n-1 degrees of freedom.

It has one parameter: the number of degrees of freedom.
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UNIF - Uniform Distribution
Uniform distribution has two parameters: the lower bound and the upper bound. Its density is a 
constant between these bounds. 

WALD - Wald Distribution
The Wald distribution, also called the Inverse Gaussian distribution, represents the first passage time 
for Brownian motion. 

It has two parameters: location and shape. 

WEIBULL - Weibull Distribution
The Weibull distribution gives a distribution of time between failures x, for which the failure rate is 
proportional to a power of time. The shape parameter kshape may be understood as follows:

► If it is lower than 1, then the failure rate decreases over time,

► If it is equal to 1, then the failure rate is constant over time,

► If it is greater than 1, then the failure rate increases over time ("aging process").

The Exponential distribution is a special case of the Weibull distribution:

Weibull distribution has two parameters: scale and shape. 

WILCOX - Wilcoxon Distribution (discrete)
Given two variables x and y measured for the same objects (items), we split the objects into two sets: 
the first set contains objects where x>y and the second set objects where x<=y.

For each object we compute the rank of |x-y|. The statistics sStat is calculated as the sum of ranks of 
objects belonging to the first set or to the second set, whichever is lower.

This statistics follows the Wilcoxon distribution.

The Wilcoxon distribution has one parameter: number of items. 

Usage Examples

You may be interested in having a look at how well the petallength of setosa in the iris database fits 
the normal distribution. Run: 

select avg(petallength), stddev(petallength)
from nza..iris where class = 'setosa'; 

The result will show that mean and standard deviation of petallength are 1.464 and 
0.17351115943645 respectively. 

Then run: 
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select rank() over (order by petallength asc) as r, r/50. as pp, 
nza..pnorm3p(petallength, 1.464 , 0.17351115943645) ppnorm
from nza..iris where class = 'setosa';

to see that the correspondence is only rough (in the ideal case, the pp and ppnorm columns would 
be equal). 

 r  |    pp    |       ppnorm
----+----------+--------------------
  1 | 0.020000 | 0.0037456162171375
  2 | 0.040000 |   0.01795929726821
  3 | 0.060000 |  0.064065203430695
  3 | 0.060000 |  0.064065203430695
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
  5 | 0.100000 |    0.1722824316448
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 12 | 0.240000 |   0.35611888863086
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 24 | 0.480000 |   0.58218228015053
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 38 | 0.760000 |   0.78342456624959
 45 | 0.900000 |   0.91310767209118
 45 | 0.900000 |   0.91310767209118
 45 | 0.900000 |   0.91310767209118
 45 | 0.900000 |   0.91310767209118
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 49 | 0.980000 |   0.99401125247379
 49 | 0.980000 |   0.99401125247379
(50 rows)

A different way to inspect how well the data follows a distribution is to compute the mean and 
variance of petallength:

select avg(petallength), variance(petallength) from nza..iris ; 

The SELECT results in a mean that is approximately 3.75 and true variance of 3.11. 

Now create a table, iripetall, describing the probability for a given plant to have its actual petallength, 
given that the true mean is 3.75 and true variance is 3.11. 

Use the call:

CALL nza..CUMULATIVE('intable=nza..iris, id=id, type="n", 
incolumn=petallength, outtable=iripetall, mean=3.75, variance=3.11');

It will look like this: 

 id  |       pnorm       | petallength | mean | variance
-----+-------------------+-------------+------+----------
   4 |  0.10100286923082 |         1.5 | 3.75 |     3.11
   8 |  0.10100286923082 |         1.5 | 3.75 |     3.11
  12 |  0.11139303484419 |         1.6 | 3.75 |     3.11
  16 |  0.10100286923082 |         1.5 | 3.75 |     3.11
  20 |  0.10100286923082 |         1.5 | 3.75 |     3.11
  24 |  0.12252669600944 |         1.7 | 3.75 |     3.11
  28 |  0.10100286923082 |         1.5 | 3.75 |     3.11
  32 |  0.10100286923082 |         1.5 | 3.75 |     3.11
  36 | 0.074092479803748 |         1.2 | 3.75 |     3.11

If you are interested in outliers, use the following call to see them:

select * from iripetall where pnorm<0.001 or pnorm> 0.999;

The output contains zero rows because the data fit quite well (there is not even a record with pnorm 
below 0.025 or above 0.975).

With the following call, you can determine the frequencey of plants in the population with a 
petallength close to a given plant from the sample in our table. (This assumes the probability 
distribution is the same, inthis case, normal.)

CALL nza..density('intable=nza..iris, id=id, type="n", incolumn=petallength, 
outtable=iripetalld, mean=3.75, variance=3.11');

Here is a fragment of the output table iripetalld:

 id |      dnorm       | petallength | mean | variance
----+------------------+-------------+------+----------
  4 | 0.17678070212437 |         1.5 | 3.75 |     3.11
  8 | 0.17678070212437 |         1.5 | 3.75 |     3.11
 12 | 0.18973901890261 |         1.6 | 3.75 |     3.11
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The density for plant number (id) 8 is 0.17678. Therefore, the probability of having a plant with 
petallength in the range 1.5-0.01 to 1.5+0.01 would be approximately 0.02*0.17678=0.0035356.

To generate a sample of 32 random numbers following the sample Fisk distribution, with median = 5 
and shape = 2, do the following:

Create table randfisk (idf integer);
Insert into randfisk values(1);
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Insert into randfisk select * from randfisk;
Select nza..qfisk(random(),5,2) from randfisk;

The last line is essential. The function “random()” generates random numbers ranging from 0 to 1. 
Qfisk considers this as the percentage at which to compute a value. The output looks as follows:

  qfisk
------------------
  6.4816069851943
  11.109999638123
   73.47798676712
 0.44251277274839
  4.3609914099502
  3.9652110974754
  8.9253326501444
  5.3863011022385
  18.889358419282
    1.91102815974
   18.88928575491
  12.092956478697
  2.9398120974769
  3.8557807477485
  5.4003170922859
  3.9099985788724
  2.2127362446343
  1.7368954145846
  8.5545143301408
  11.250158024616
  8.6580376466144
  9.8508742789332
  5.0378666446805
  5.1411129557278
  4.6351839618808
  1.9331837885486
   3.894388650915
   4.887109365305
  4.8174315751124
  5.0469902608837
  3.6759954053399
  1.7428535568487
(32 rows)
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Bulk Algorithms

By using bulk algorithms, you can process data sets in parallel. The data set is split into a partition of 
data sets that are based on a group.

A typical example is a table that contains the energy consumption over time for all customers of a 
utility company. With bulk algorithms, you can compute one model for each group, which is one 
model for each customer in the example. These models are built in parallel and independently from 
each other on each data slice. Creating the models in this way is much faster than building them 
sequentially on the host or outside the database.

You can even further improve the performance of the model creation by distributing the data into 
data slices according to the group field, for example, the customer ID. Thus, the data of one group is 
stored on one data slice.

Bulk algorithms are bulk matrix operations, bulk linear regression, and bulk principal component 
analysis.

Bulk Matrix Operations

Background
By using bulk matrix operations, you can work on many small matrixes in parallel. For example, bulk 
matrix operations can help you find the optimum linear regression model when you have many 
independent variables to choose from. Instead of using step-by-step linear regressions, you compute 
many regression tasks for different subsets of independent variables. From the created bulk of linear 
regression models, you can then select the model with the best results. To increase the processing 
speed, bulk matrix operations are based on user-defined table functions (UDTFs) with user-defined 
aggregates. This way, you can combine the matrix operations in bulks without having to store the 
intermediate results. 
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Applications
Bulk matrix operations can be applied to scenarios for which you want to shortly do a set of matrix 
operations on one matrix or on many small matrices.

Available Functionality
The following bulk matrix operations are available:

► Matrix operations for one matrix:

▲ Inversion

▲ Transposition

▲ Scaling by a numeric factor

▲ Singular value decomposition (SVD) 

▲ Eigenvalue decomposition

▲ Matrix determinant

► Matrix operations for two matrices:

▲ Sum of two matrices

▲ Matrix multiplication of two matrices

▲ Element-wise multiplication of two matrices

▲ Kronecker product to solve linear equations Ax = b

Notes:

► For a single matrix operation:

▲ Matrices of sizes up to 10,000 x 10,000 are supported.

▲ The size of the matrix must be less than 100,000,000 cells.

► For multiple matrix operations:

▲ Matrices of sizes up to 7,000 x 7,000 are supported.

▲ The size of the matrix must be less than 50,000,000 cells.

► Matrices can be created from tables and vice versa.

► If the data set that you use for a bulk matrix operation is incomplete, an empty data set is 
returned. For example, the data set might be incomplete if the cell from the first row in the first 
column of the first matrix is missing.

Examples
The following examples are available for bulk matrix operations:

► Example    Matrix representation for bulk operations̶

► Example    Introductory example for bulk matrix operations̶

► Example    Input data reordering and redistribution̶
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► Examples    UDTF for single-matrix operations̶

▲ Example    Transposition̶

▲ Example    Scaling̶

▲ Example    Inversion̶

▲ Example    Pseudo-Inversion̶

▲ Example    XtX transformation̶

▲ Example    SVD decomposition̶

▲ Example    Eigenvalue decomposition̶

▲ Example    Matrix determinant̶

► Examples    UDTFs for operations on multiple matrices̶

▲ Example    Sum̶

▲ Example    Product̶

▲ Example    Kronecker product̶

▲ Example    Solve̶

► Examples    User scenarios̶

▲ Example    Calculate the bulk of sums for a few matrices̶

▲ Example    Calculate the bulk of chain for a few matrix operations̶

▲ Example    Calculate bulk matrix operations by using a shared matrix̶

Example    ̶ Matrix representation for bulk operations
The matrix operations supports dense matrices that are stored in the database in row-column-value 
(RCV) format:

► row (INT4) – row identifier 1..N

► col (INT4) – column identifier 1..M

► val (DOUBLE) – cell value

For input matrices, a special form of sparse matrix is supported. The first cell and the last cell of such 
a matrix is presented even if the value is zero. For the first cell, row and col is equal to 1. For the last 
cell, row is equal to the maximum row index, and col is equal to the maximum column index.

To do bulk matrices operations, you must extend the RCV format by additional fields.

The input table must be extended by id_task and id_matrix fields:

► id_task (INT4) 
Identifies the input group of matrices.
The sequence is from 1 up to 2147483647. 

► id_matrix (INT2)
Defines the order of matrices  within the group of matrices.
The sequence is from 1 up to 32767.

► row (INT4)
Is the row index, where the sequence starts from 1.
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► col (INT4)
Is the column index, where the sequence starts from 1.

► val (DOUBLE) 
Is the cell value.

The id_task field defines the identifier of the group of matrices that are used in a separate 
computational process. If the id_matrix value is set to 1, the operations are done on single matrices.

To convert the matrix to RCV format, you can use the MATRIX2RCV(NVARCHAR(ANY)) procedure. The 
input of the procedure is a comma-separated list of parameters in the form of <parameter>=<value>.

Input parameters that are passed to the UDTF are:

► inmatrix
The name of the input matrix in block-cyclic format

► outtable
The name of the output table that contains the matrix in RCV format

► id_task

► Optional: id_task value

► id_matrix

► Optional: id_matrix value

Example:

call nzm..shape('2,3,5,7',3,3,'A');
call nzm..print('A');
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV"');
select * from "A_RCV";
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV",id_task=2');
select * from "A_RCV";
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV",id_task=2,id_matrix=2');
select * from "A_RCV";
drop table "A_RCV";
call nzm..delete_matrix('A');

Note: In the second and third call of matrix2rcv, the input matrix A is added to the existing A_RCV 
table.

To convert an RCV table into an nzmatrix object, you can use the RCV2MATRIX(NVARCHAR(ANY)) 
procedure. The output matrix is specified by id_task and id_matrix. The input of the procedure is a 
comma-separated list of parameters in the form of <parameter>=<value>.

Input parameters that are passed to the UDTF are:

► intable
The name of the input table that contains the matrix in RCV format

► outmatrix
The name of output matrix in block-cyclic format

► id_task

► Optional: id_task value
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► id_matrix

► Optional: id_matrix value

Example:

call nzm..shape('2,3,5,7',3,3,'A');
call nzm..print('A');
call nzm..matrix2rcv('inmatrix=A,outtable="A_RCV"');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=B');
call nzm..print('B');
call nzm..matrix2rcv('inmatrix=B,outtable="A_RCV",id_task=2');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=C,id_task=2');
call nzm..print('C');
call nzm..matrix2rcv('inmatrix=C,outtable="A_RCV",id_task=2,id_matrix=2');
call nzm..rcv2matrix('intable="A_RCV",outmatrix=D,id_task=2,id_matrix=2');
call nzm..print('D');
drop table "A_RCV";
call nzm..delete_matrix('A');
call nzm..delete_matrix('B');
call nzm..delete_matrix('C');
call nzm..delete_matrix('D');

Example    ̶ Introductory example for bulk matrix operations
It is assumed that you have two matrices, A and B, and that you want to add them by yielding a 
matrix C.

Matrix A is as follows:

11 12 
13 14
15 16

Matrix B is as follows:

29 27
25 23
21 20

To hold them, you must create database tables in the following format:

Create table A (row int4, col int4, val double); 
Create table B (row int4, col int4, val double); 

Then,  you insert the data into these tables.

Insert into A values(1,1,11);
Insert into A values(1,2,12);
Insert into A values(2,1,13);
Insert into A values(2,2,14);
Insert into A values(3,1,15);
Insert into A values(3,2,16);

Insert into B values(1,1,29);
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Insert into B values(1,2,27);
Insert into B values(2,1,25);
Insert into B values(2,2,23);
Insert into B values(3,1,21);
Insert into B values(3,2,20);

To perform a bulk matrix operation, that is one task on two matrices in the example, you usually 
create a view or table by pulling together all tables that are part of the operation. 

Create view AB_VIEW as 
(select 1::int4 as id_task, 1::int2 as id_matrix,row,col,val from A) 
union
(select 1::int4 as id_task, 2::int2 as id_matrix,row,col,val from B);

where:

► A and B are to be processed in task 1

► Matrix A plays the role of the first argument, that is matrix 1

► Matrix B plays the role of the second  argument that is matrix 2

Now, you can apply the sum_tf operation:  

Create table C as
select o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder 
from AB_VIEW) i,
TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

The structure and interpretation of table C is identical to table A and table B. 

If you have many similar tasks to do, that is you have matrices A1, A2, B1, B2, and you want to find 
the matrix C1=A1+B1 and C2=A2+B2, you prepare A1, A2, B1, B2 in the same way as matrix A and 
matrix B in the example.

Then, you create a view like the following view:

Create view MULTITASK_VIEW as 
(select 1::int4 as id_task, 1::int2 as id_matrix,row,col,val from A1) 
union
(select 1::int4 as id_task, 2::int2 as id_matrix,row,col,val from B1) 
union
(select 2::int4 as id_task, 1::int2 as id_matrix,row,col,val from A2) 
union
(select 2::int4 as id_task, 2::int2 as id_matrix,row,col,val from B2);

Now, you can apply the sum_tf operation:  

create table C as
select i.id_task, o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder 
from MULTITASK_VIEW) i,
TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);
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Table C contains both matrices C1 and C2 that are stored in a single table. To identify rows and 
columns that belong to each of the table, use the id_task column of table C. You can also create 
appropriate views like the following view:

create view C1 as select row,col,val from C where id_task=1;
create view C2 as select row,col,val from C where id_task=2;

By using the same method, you can add operators to many matrices, for example,  C1=A1+B1, 
C2=A2+B2,C3=A3+B3,...,Cn=An+Bn. 

The following examples show similar matrix operations are similar in form, as you will see in the 
subsequent subsections. 

The example about matrix representation and the example about input data reordering and 
redistribution show the structure of the tables that represent the matrices.

The other examples show how to apply different matrix operations.

Example    ̶ Input data reordering and redistribution
All matrix operations require correct data distribution and ordering to do correct matrix operations. 
To achieve this goal, you can use the special user-defined aggregate (UDA). The reorder_matrix(INT4) 
UDA is an analytic type aggregate that works in the incremental windows aggregate mode.

Call the reorder_matrix(INT4) UDA function before you do a matrix operation in the matrix 
operations execution chain. 

You can use the following call for single matrix operations:

select id_task, row, col, val, nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL, <SINGLE_MATRIX_OPERATION >;

For operations on multiple matrices, add the id_matrix field to the call as shown in the following 
example:

select id_task, id_matrix, row, col, val, nzm..reorder_matrix(id_task) over
(partition by id_task order by id_matrix desc, row desc, col desc) as 
id_task_reorder 
from INP_TBL, <MULTIPLE_MATRIX_OPERATION>;

Note: Use the same data order for the SQL query that is shown in the example. If you change the 
matrix operation, an error might occur.

Examples    ̶ UDTF for single-matrix operations
All single operations are registered in the NZM database.

Example    ̶ Transposition
You can use an SQL query to do a matrix transposition operation. A specific UDTF is not required.

The following example shows such an SQL with row identifiers and column identifiers.

00X6331-01 Rev. 2 303



In-Database Analytics Developer's Guide

create table OUT_TBL as
select i.id_task, i.id_matrix, i.col as row, i.row as col, i.val from INP_TBL 
i
distribute on (id_task);

The following examples refer to Example    Introductory example for bulk matrix operations̶ . 

It is assumed that you want to transpose matrix A by using the following call:

create table AT as
select  i.col as row, i.row as col, i.val from A i;

It is also assumed that you want to transpose all the matrices, for example, the matrices in the 
AB_VIEW, by using the following call:

create table AB_VIEW_T as
select i.id_task, i.id_matrix, i.col as row, i.row as col, i.val from AB_VIEW i
distribute on (id_task);

Example    ̶ Scaling
Matrix scaling multiplies all the elements by a scalar value. 

You can use an SQL query to do a matrix scaling operation. A specific UDTF is not required.

The following example shows such an SQL where the value is multiplied by the scalar value.

create table OUT_TBL as
select i.id_task, i.row, i.col, i.val * scalar_value as val from INP_TBL i
distribute on (id_task);
where:

► Scalar_value is a real number

► Instead of the multiplication, you can process any arithmetical operation

► The matrices that are to be scaled by the same scalar are contained in the INP_TBL table

Example    ̶ Inversion
Description: Calculates matrix inversion. 
The matrix that is to be inverted must be a square matrix. It must also be invertible, that is the 
determinant must be non-zero.  If M1 is the inversion of matrix M, then the matrix product 
M*M1=M1*M=I where I is a matrix with 1 on the diagonal and 0 elsewhere. 

UDX name: inversion_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA 

► row (INT4)

► col (INT4)

► val (DOUBLE)
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Output: 

► id_task (INT4)
 The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table. 

create table OUT_TBL as
select i.id_task, o.row, o.col, o.val from
(select *,nzm..reorder_matrix(id_task) over 
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example    ̶ Pseudo-Inversion
Description: Calculates matrix pseudo-inversion.
The Moore-Penrose pseudo-inversion is computed by using the SVD method. The properties of the 
pseudo-inverted matrix are similar to the properties of the inverted matrix. The pseudo-inverted 
matrix is used when an inversion is not possible. For pseudo-inversion, operation parameters control 
the tolerance of the numerical precision of the inversion. Each input matrix must be a squared 
matrix.

UDX name: pseudo-inversion_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)
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Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from (select 
*,nzm..reorder_matrix(id_task) over (partition by id_task order by row desc, 
col desc) as id_task_reorder 
from INP_TBL) i
,TABLE(nzm..pseudo_inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Note: Because of rounding errors or other inaccuracies, you must determine when a numerical value 
should be equal to zero, especially at singular points. To determine this condition, you can set or 
change the tolerance parameter of the UDTF.
By default, this parameter is set to 1.5e-8. After you do an SVD decomposition of the matrix M into 
U*S*V, a value in the S matrix is equal to zero, if its absolute value is lower than the maximum 
absolute value in the S matrix, multiplied by the tolerance value. The following example shows the 
setting of the tolerance value. In the example, the tolerance value is increased to 1.5e-6.

begin transaction;
select nzm..init_parameters(1) from _v_dual_dslice;
select nzm..set_parameter('tolerance','1.5e-6') from _v_dual_dslice;

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *,nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder 
from INP_TBL) i
,TABLE(nzm..pseudo_inversion_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

select nzm..clear_parameters() from _v_dual_dslice;
commit;

Example    X̶ tX transformation
Description: Calculates the multiplication of a matrix X transposed and X for an input matrix X. For 
example, matrix X transposed * X. For each id_task, a single square matrix is returned. This operation 
is often called SSCP (sum of squares and cross products), and the name is used, for example, in linear 
regression.

UDX name: xtx_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

306 00X6331-01 Rev. 2



Bulk Matrix Operations

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table  OUT_TBL as
select i.id_task,o.row,o.col,o.val from (select *
,nzm..reorder_matrix(task_id) over (partition by id_task 
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..xtx_tf(i.id_task_reorder, i.row, i.col, i.val)) o
distribute on (id_task);

Example    ̶ SVD decomposition
Description: Calculates the SVD decomposition matrix. For each id_task, the UDTF returns three 
matrices that are identified by the id_matrix field.

► id_matrix=1: U matrix 

► id_matrix=2: S matrix (column vector)

► id_matrix=3: Vt matrix

UDX name: svd_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► id_matrix (INT2)
Identified type of vector
(1-U matrix, 2-S matrix, 3-Vt matrix)
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► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table  OUT_TBL as
select i.id_task,o.id_matrix,o.row,o.col,o.val from
(select *,nzm..reorder_matrix(id_task) over (partition by id_task 
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..svd_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example    ̶ Eigenvalue decomposition
Description: Calculates the eigenvalue decomposition matrix for symmetric matrices. For non-
symmetric matrices, an error occurs. For each id_task, the UDTF returns two matrices that are 
identified by id_matrix.

► id_matrix=1: eigenvalue matrix

► id_matrix=2: eigenvector matrix

UDX name: eigenvalue_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► id_matrix (INT2) 
Identifies the type of the returned matrix according to eigenvalues or eigenvectors

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.
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► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.id_matrix,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over
(partition by id_task order by row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..eigenvalue_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Example    ̶ Matrix determinant
Description: Calculates the determinant of a matrix. The matrix must be a square matrix. For each 
id_task,the UDTF returns a 1x1 matrix.  

UDX name: determinant_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table  OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task 
order by row desc, col desc) as id_task_reorder from INP_TBL) i
,TABLE(nzm..determinant_tf(i.id_task_reorder,i.row,i.col,i.val)) o
distribute on (id_task);

Examples    ̶ UDTFs for operations on multiple matrices
All N-ary operations are registered in the NZM database.

Example    ̶ Sum
Description: Calculates the sum of two or more matrices. 
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UDX name: sum_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be added. The id_matrix values must be consecutive; 
integers must start with 1. In different tasks, the number of matrices that are to be added can 
differ.

► row (INT4)
Within the same task, the maximum row number of each input matrix must be identical

► col (INT4)
Within the same task, the maximum col number of each input matrix must be identical

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table  OUT_TBL as select i.id_task, o.row, o.col, o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

The example calculates the sum of all matrices with the same id_task and different id_matrix. 
Therefore, the number of resulting matrices will be identical to the number of different  values of the 
id_task in the INP_TBL table, that is, you get one matrix for each id_task.

Example    ̶ Product
Description: Calculates the product of two or more matrices.

UDX name: product_tf

UDX type: UDTF
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Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be multiplied. The id_matrix values must be 
consecutive; integers must start with 1. In different tasks, the number of matrices that are to be 
multiplied can differ.

► row (INT4)
Within the same task, the maximum row number of each input matrix must be identical with the 
maximum col number of the preceding input matrix  

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder 
from INP_TBL) i,
TABLE(nzm..product_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Example    ̶ Kronecker product
Description: Calculates the Kronecker product of two or more matrices. 

UDX name: kronecker_tf

UDX type: UDTF

Input:

► id_task_reorder (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier of a matrix that is to be multiplied. The id_matrix values must be 
consecutive; integers must start with 1. In different tasks, the number of matrices that are to be 
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multiplied can differ.

► row (INT4)

► col (INT4)

► val (DOUBLE)

Output:

► id_task (INT4)

► row (INT4)

► col (INT4)

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..kronecker_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Example    ̶ Solve
Description:  Solves a linear equation Ax = B. For each id_task, the UDTF returns an x matrix (vector). 
To ensure a correct calculation, use two matrices for each id_task.

► id_matrix=1: A matrix

► id_matrix=2: B matrix (column vector)

UDX name: solve_tf

UDX type: UDTF

Input:

► id_task (INT4)
The id_task that is returned by the reorder_matrix UDA

► id_matrix (INT2)
The matrix identifier. 1 identifies matrix A;  2 identifies matrix B

► row (INT4)

► col (INT4)
Equal 1 is valid for everywhere for matrix B

► val (DOUBLE)

Output:
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► id_task (INT4)

► row (INT4)

► col (INT4)
Equal 1 is valid everywhere

► val (DOUBLE)

Calling method:

► Input matrices that have this convention are stored in the INP_TBL table.

► Output matrices are stored in the OUT_TBL table.

► You must not change the names of the columns, functions, and so on that are used in the 
example. You can, however, change the names of the input table and the output table.

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task
order by id_matrix desc, row desc, col desc) as id_task_reorder
from INP_TBL) i
,TABLE(nzm..solve_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task)

Examples    ̶ User scenarios

Example    ̶ Calculate the bulk of sums for a few matrices
It is assumed that you have defined ten tasks for each of which you want to calculate the sum of five 
matrices in the INP_TBL table.

For each of the ten tasks, that is id_task=1 to ID_task=10, you have five matrices that are numbered 
from 1 to 5 by using id_matrix.

To calculate the sum of these matrices for each task, you can run the following query:

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task 
order by id_matrix desc, row desc, col desc) as id_task_reorder 
from INP_TBL) i
,TABLE(nzm..sum_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);

The query writes the results of the bulk summing into OUT_TBL table. The results have ten different 
id_task numbers. For each task, only one matrix is stored.

Example    ̶ Calculate the bulk of chain for a few matrix operations
It is assumed that you have saved ten tasks, each of which has one matrix, in the INP_TBL table. For 
each of the ten tasks, that is id_task=1 to ID_task=10, one matrix is stored. Now, you want to 
calculate the bulk of INV(2.02*XtX+7.98) expressions.

To calculate these expressions separately for each id_task, you can run the following query:

create table OUT_TBL as
select i.id_task,y.row,y.col,y.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task 
order by id_task asc, row desc, col desc) as id_task_reorder
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from INP_TBL) i
,TABLE(nzm..xtx_tf(i.id_task_reorder, i.row, i.col, i.val)) xtx
,TABLE(nzm..inversion_tf(i.id_task_reorder, xtx.row, xtx.col, 
2.02*xtx.val+7.98)) y
distribute on (id_task);

The results of the query are stored in the OUT_TBL table. 

The processing order of the computation is as follows:

1. xtx(SSCP)

2. 2.02*xtx.val+7.98

3. Inversion

If the number of parallel processors is sufficient, you can do each task in parallel.

Example    ̶ Calculate bulk matrix operations by using a shared matrix
It is assumed that you want to calculate a product of two matrices. The first matrix M1 is stored in 
INP_TBL1 table. Matrix M1 is unique for each id_task. The second matrix M2 is shared for each M1 
matrix. Matrix M2 is stored in the INP_TBL2 table. To ensure that the computation is done efficiently, 
the M2 matrix in the INP_TBL2 table must be broadcasted to all data slices.

To calculate a product under these conditions, you can run the following query:

create table OUT_TBL as
select i.id_task,o.row,o.col,o.val from
(select *, nzm..reorder_matrix(id_task) over (partition by id_task 
order by row desc, col desc) as id_task_reorder
from (

select id_task,1 as id_matrix, row, col, val
from INP_TBL1
union all
select ds.id_task, 2 as id_matrix, sh.row, sh.col, sh.val
from INP_TBL2 sh cross join

(select distinct id_task as id_task from INP_TBL1) ds
) i

,TABLE(nzm..product_tf(i.id_task_reorder,i.id_matrix,i.row,i.col,i.val)) o
distribute on (id_task);

The following query returns the instance of the M2 matrix for each id_task from the INP_TBL1 table:

select ds.id_task, 2 as id_matrix, sh.row, sh.col, sh.val
from INP_TBL2 sh cross join

(select distinct id_task as id_task from INP_TBL1) ds

The value of id_matrix, id_matrix=2, means that the shared matrix is taken as the second argument 
of the product operation.
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Bulk Linear Regression

Background
Linear regression models are useful to model many real-world phenomena because these models are 
easy to train and to apply. You can use these models in areas of biology, biopharmaceuticals, 
engineering, actuarial science, and quality assurance.

The bulk linear regression function implements the linear regression algorithm for bulk matrices. For 
bulk linear regression, multiple linear regression models for different data groups are created in 
parallel. For each input matrix, one linear regression model with different predictors is created. From 
the created bulk of linear regression models, you can optionally select the best model. By using a set 
of quality indicators, you can identify the model that suits your purpose best.

Applications
Bulk linear regression can be applied to the following main scenarios.

► The data set can be split into logical subgroups, for example, one subgroup for each customer. In 
this case, a single model is created for each customer. The single model is independent from the 
models that are created for other customers.
A typical example is forecasting the energy consumption of individual households by creating an 
individual linear model, separately for each household.

► Several models are created in parallel. From the created model, you can subsequently choose the 
best model. You can build these models on variants of the same data set, for example, you can 
include additional columns.

Available Functionality
The Netezza Analytics implementation of bulk linear regression extends the linear regression model 
that is provided by the LINEAR_REGRESSION, PREDICT_LINEAR_REGRESSION stored procedures. You 
can use the bulk linear regression to build many linear regression models for different data sets at 
the same time by using parallel machine architecture.

Bulk linear regression has the following functionality that is provided by user-defined table functions 
(UDTFs):

► Fitting the bulk linear model with or without the intercept term

► Multiple regressions 

► Fitting the model that is based on colinear attributes or nearly colinear attributes

► Standard Least Square Estimation (LSE) procedure by using QR decomposition

► Model diagnostics

► Support for discrete and continuous attributes

The following procedures are available for data conversion:
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► Procedures that convert input data that is saved in table format to RCV format and vice versa

► Procedures that convert each nominal attribute to a set of dummy single attributes and vice 
versa

Examples
Input parameters that are passed to the UDTF are:

► id_task
The numbering of 'row' within each 'id_task' group must start with 1.

► id_matrix

► row

► column

► val

The following example shows how to create a model.

begin transaction;
select nzm..init_parameters(2) from _v_dual_dslice;
select nzm..set_parameter('residuals','1') from _v_dual_dslice;
select nzm..set_parameter('intercept','1') from _v_dual_dslice;

create table M_MAT_TABLE as 
select i.id_task, o.id_matrix, o.row, o.col, o.val 
from 
(select *, 

nzm..reorder_matrix(id_task) over (partition by id_task 
order by id_matrix desc, row desc, col desc) as id_task_ro
from 
(select 1 as id_matrix, id_task, row, col, val 

from Y_MAT_TABLE 
union all 

select 2 as id_matrix, id_task, row, col, val 
from X_MAT_TABLE

) a
) i, 
TABLE(nzm..lm_tf(i.id_task_ro,i.id_matrix,i.row,i.col,i.val)) o;

commit;

Note: You must set the non-default parameters before you call the nzm..lm_tf UDTF by using the set 
_parameter parameter as shown in the example.

The following table shows the parameters for the nzm..lm_tf UDTF. These parameters control the 
model structure and the output:

Table 65: Parameters for the  nzm..lm_tf UDTF

Parameter Description Values

residuals Returns the residuals as 
additional output matrix.

0 - Default. Residuals are not returned.

1 - Residuals are returned.
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Parameter Description Values

intercept Automatically include 
intercepts in the model.

0 - Intercepts are not included.

1 - Default. Intercepts are included.

The nzm..lm_tf call requires two input matrices, Y and X, where Y represents response vectors and X 
represents predictors. These matrices are identified by the id_matrix value, where id_matrix = 1 is set 
for the Y matrix, and id_matrix = 2 is set for the X matrix.

By default, the nzm..lm_tf UDTF returns two matrices. If the residuals parameter is set to 1, a third 
matrix is returned.

The following list shows the returned matrices:

► ci-by-4 matrix with coefficients and characteristics, where:

▲ ci is the number of input attributes including intercepts

▲ Subsequent columns show the estimated coefficient, standard error, t-statistic, and the 
corresponding two-sided p-value

► 7-by-1 matrix with statistics of the fitted model, where:
Subsequent rows show the residual standard error, degrees of freedom, R2 and adjusted R2, F-
statistic, the t-statistic, p-value, and the residual sum of squares

► Optional: n-by-1 matrix with residuals, where n is the number of rows of the input matrix.

The following example shows how to apply the created model. After the models are built, you can 
apply them to new data, for example, to a bulk of matrices that are stored in the table. The model 
that is identified by id_task, is applied to the matrix that is also identified by id_task.

create table R_MAT_TABLE as 
select r.id_task, r.row, r.res+ m.val as val 
from 
(select z.id_task, z.row, sum(z.val*m.val) as res

            from Z_MAT_TABLE z right join M_MAT_TABLE m on (z.col=m.row-1) 
where z.id_task=m.id_task and m.id_matrix=1 and m.col=1
group by z.id_task, z.row

       ) r, M_MAT_TABLE m
       where m.row=1 and m.col=1 and m.id_matrix=1 and m.id_task = r.id_task;

If the model that is stored in the M_MAT_TABLE table was built without intercepts, the application 
query looks as follows:

create table R_MAT_TABLE as
select z.id_task, z.row, sum(z.val*m.val) as res

from M_MAT_TABLE_A m join Z_MAT_TABLE z on (m.row=z.col)
where z.id_task=m.id_task and m.id_matrix=1 and m.col=1
group by z.id_task, z.row;

As a result of the model application, the R_MAT_TABLE table is created. The table contains the 
prediction separately for each task field and for each row. The task field is identified by id_task, and 
the row is identified by row_field.

The following example shows how to choose and apply the best model from a bulk of linear 
regression models. In the example, several linear models are built for each split. The best model is 
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applied, for which then a residual sum of squares (RSS) is done. RSS measures the difference 
between the data and the model. If the RSS is small, the model and the data fit tightly together.

-- split data into train/test subset
create table winequality_train as select * from nza..winequality where id < 
2467; 
create table winequality_test as select * from nza..winequality where id > 
2466;

-- conversion to RCV format
call nzm..simple2rcv_adv('outtable=winequality_train_x_rcv, 
outmeta=winequality_train_x_rcv_meta, intable=winequality_train, 
incolumnlist=.;-QUALITY,id=ID'); 
call nzm..simple2rcv_adv('outtable=winequality_train_y_rcv, 
outmeta=winequality_train_y_rcv_meta, intable=winequality_train, 
incolumnlist=QUALITY,id=ID'); 
call nzm..simple2rcv_adv('outtable=winequality_test_x_rcv, 
outmeta=winequality_test_x_rcv_meta, intable=winequality_test, 
incolumnlist=.;-QUALITY,id=ID'); 
call nzm..simple2rcv_adv('outtable=winequality_test_y_rcv, 
outmeta=winequality_test_y_rcv_meta, intable=winequality_test, 
incolumnlist=QUALITY,id=ID');

-- create a split in data, split is auxiliary just for example
create table WINEQUALITY_TRAIN_X_RCV_4SPLIT as select 
    (row/617 + 1)::integer as id_task, 
    CASE WHEN row >= 617 THEN row - (row/617)::integer * 617 + 1 ELSE row END 
as row,
    col, value as val 
    from WINEQUALITY_TRAIN_X_RCV;

create table WINEQUALITY_TRAIN_Y_RCV_4SPLIT as select 
    (row/617 + 1)::integer as id_task, 
    CASE WHEN row >= 617 THEN row - (row/617)::integer * 617 + 1 ELSE row END 
as row,
    col, value as val 
    from WINEQUALITY_TRAIN_Y_RCV;

-- create a linear model for each split
begin transaction;
select nzm..init_parameters(2) from _v_dual_dslice;
select nzm..set_parameter('residuals','1') from _v_dual_dslice;
select nzm..set_parameter('intercept','0') from _v_dual_dslice; -- without 
intercept, easier model apply

create table WINEQUALITY_M_MAT_TABLE as select 
    i.id_task, o.id_matrix, o.row, o.col, o.val 
    from 
    (select *, nzm..reorder_matrix(id_task) over (partition by id_task order 
by id_matrix desc, row desc, col desc) as id_task_ro 
        from 
        (select 1 as id_matrix, id_task, row, col, val from 
WINEQUALITY_TRAIN_Y_RCV_4SPLIT 
        union all 
        select 2 as id_matrix, id_task, row, col, val from 
WINEQUALITY_TRAIN_X_RCV_4SPLIT) a ) i, 
    TABLE(nzm..lm_tf(i.id_task_ro,i.id_matrix,i.row,i.col,i.val)) o;
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commit;

–- apply the best model
drop table WINEQUALITY_R_MAT_TABLE1;
create table WINEQUALITY_R_MAT_TABLE1 as select 
    z.row, sum(z.value*m1.val) as res 
    from
    WINEQUALITY_TEST_x_RCV z 
    right join 
    WINEQUALITY_M_MAT_TABLE m1 on (z.col=m1.row) 
    where m1.id_task= (select id_task as best_id from winequality_m_mat_table 
where id_matrix=2 and row=3 order by val desc limit 1) 
     and m1.id_matrix=1 and m1.col=1 group by m1.id_task, z.row;
-- RSS of the best model on test subset
select sum((y.value-r.res)*(y.value-r.res)) as resi from 
WINEQUALITY_test_y_rcv y right join WINEQUALITY_R_MAT_TABLE1 r on (y.row = 
r.row);

-- apply the worst model
drop table WINEQUALITY_R_MAT_TABLE2;
create table WINEQUALITY_R_MAT_TABLE2 as select 
    z.row, sum(z.value*m1.val) as res 
    from
    WINEQUALITY_TEST_x_RCV z 
    right join 
    WINEQUALITY_M_MAT_TABLE m1 on (z.col=m1.row) 
    where m1.id_task= (select id_task as best_id from winequality_m_mat_table 
where id_matrix=2 and row=3 order by val asc limit 1) 
     and m1.id_matrix=1 and m1.col=1 group by m1.id_task, z.row;
-- RSS of the worst model on test subset
select sum((y.value-r.res)*(y.value-r.res)) as resi from 
WINEQUALITY_test_y_rcv y right join WINEQUALITY_R_MAT_TABLE2 r on (y.row = 
r.row);

Bulk Principal Component Analysis (PCA)

Background
The bulk PCA function implements the PCA algorithm for bulk matrices. For bulk PCA, multiple PCA 
models for different data groups are created in parallel. For each input matrix, one PCA model with 
different predictors is created. From the created bulk of PCA models, you can optionally select the 
best model. By using a set of quality indicators, you can identify the model that suits your purpose 
best.

Applications
Similar to bulk linear regression, bulk PCA can be applied when the input data can be split into logical 
chunks. Such input data can be data for individual customers, or when several models are evaluated 
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in parallel.

Available Functionality
Bulk PCA has the following functionality:

► For each input matrix, the rotation matrix is returned.

► For each model, the standard deviation that is associated with each feature is returned.

► For each model that is applied to new data, the projected matrix is returned.

► The creation of the PCA models for different data groups is done in parallel.

► The following attributes and matrices are supported:

▲ Continuous attributes

▲ Matrices with up to 1000 attributes

▲ Matrices with up to 10000 rows

Examples
The examples show the following operations:

► Initializing parameters by using the udf_init_parameters UDTF and setting parameters by using 
the udf_set_parameter UDTF

► Calculating a PCA rotation matrix and the distribution in percent of explained variables by using 
the nzm..pca_tf UDTF

► Standardizing a matrix by using the nzm..standardize UDTF

The following example shows how to initialize the creation of a model by using the 
udf_init_parameters UDTF and the  udf_set_parameter UDTF:

begin transaction;
select nzm..init_parameters(1) from _v_dual_dslice;
select nzm..set_parameter('k','5') from _v_dual_dslice;
--and/or
--select nzm..set_parameter('p','95') from _v_dual_dslice;

The following example shows how to create a PCA rotation matrix by using the nzm..pca_tf UDTF 

create table PCA_RES as 
select i.id_task, o.id_matrix, o.row, o.col, o.val 
from 
(select *, 

nzm..reorder_matrix(id_task) over (partition by id_task 
order by row desc, col desc) as id_task_ro from INP_TBL

) i, 
TABLE(nzm..pca_tf(i.id_task_ro,i.row,i.col,i.val)) o;

The following table shows the parameters for the nzm..pca_tf UDTF. These parameters control the 
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size of the output matrices.

You can specify the maximum number of components in the PCA model in one of the following ways:

► Directly by using a parameter k

► By defining a minimum percentage of the accumulative variance that is explained by the 
components

Table 66: Parameters for the  nzm..pca_tf UDTF

Parameter Description Values

k Determines the number of 
components with the highest 
percentage of explained 
variation

p Determines the maximum 
percentage of explained 
variance that amounts to 
returning the first k

i 
components (sorted by 
descending explained 
variance) with a cumulative 
percentage of explained 
variance not exceeding p

[0,100]

Default: 100

Notes:

► If you set both parameters, k and p, the minimum of k and k
i
 (associated with p) is returned.

► If you use the default values (k = c
i
 or p = 100), loadings and standard deviations that are 

associated with all features are returned.

The nzm..pca_tf UDTF returns the following matrices:

► c
i
-by-k

i
 matrix with id_matrix = 1 with variable loadings, where c

i
  that is the number of 

attributes, and k
i
 that is the number of features

► k
i
-by-1 matrix with the standard deviations with id_matrix = 2

You can apply all models to different associated data groups, or you can apply a single model to all 
data groups.

The following example shows how to apply all models by using the nzm..product_tf UDTF:

create table PCA_APP as
select i.id_task, o.row, o.col, o.val 
from
(select *, 
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nzm..reorder_matrix(id_task) over (partition by id_task 
order by id_matrix desc, 
row desc, col desc) as id_task_ro

from (select id_task, 2 as id_matrix, row, col, val
from PCA_RES pr where pr.id_matrix = 1
union all
select id_task,1 as id_matrix, row, col, val
from NEW_DATA) a

       ) i
,TABLE(nzm..product_tf(i.id_task_ro,i.id_matrix,i.row,i.col,

i.val)) o;

The following example shows how to apply a single model by using the nzm..product_tf UDTF. The 
dimensions of each task from the NEW_DATA table must conform to the size of the selected model.

create table PCA_APP as
select i.id_task, o.row, o.col, o.val 
from
(select *, 

nzm..reorder_matrix(id_task) over (partition by id_task 
order by id_matrix desc, row desc, 
col desc) as id_task_ro

from (select b.id_task, 2 as id_matrix, row, col, val
from PCA_RES a 
CROSS JOIN 
(select distinct id_task from PCA_RES) b
where a.id_task = 1 and a.id_matrix = 1 
union all
select id_task,1 as id_matrix, row, col, val
from NEW_DATA) c

       ) i
,TABLE(nzm..product_tf(i.id_task_ro,i.id_matrix,i.row,i.col,

i.val)) o;

The following example shows how to standardize a matrix by using the nzm..standardize UDTF.

create table MAT_STAND as 
select i.id_task, o.id_matrix, o.row, o.col, o.val 
from 
(select *, 

nzm..reorder_matrix(id_task) over (partition by id_task 
order by row desc, col desc) as id_task_ro from INP_TBL

) i, 
TABLE(nzm..standardize(i.id_task_ro,i.row,i.col,i.val)) o;

The following table shows the parameters for the nzm..standardize UDTF. These parameters control 
the schema of the standardization.

Table 67: Parameters for the  nzm..standardize_tf UDTF

Parameter Description Values

center Determines whether column 
centering is done

0 - Column centering is not done.
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Parameter Description Values

1 - Default. Column centering is done.

scale Determines whether column 
scaling is done 

0 - Column scaling is not done.

1 - Default. Column scaling is done.

The nzm..standardize UDTF returns the following matrices:

► c
i
-by-r

i
 matrix with standardized values of the input matrix with id_matrix = 1, where:

▲ c
i
 is the number of input attributes, for example, columns

▲ r
i
 is the number of input rows

► c
i
-by-2 matrix with standardization coefficients with id_matrix = 2, where:

▲ The first row contains means of columns or 0 if centering was not done

▲ The second row has one of the following contents:

► Root mean square if centering is not specified

► Standard deviation of the column if centering is specified

► 1 if scaling is not specified
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A P P E N D I X   A
Notices and Trademarks

Notices
This information was developed for products and services offered in the U.S.A. IBM may not offer the 
products, services, or features discussed in this document in other countries. Consult your local IBM 
representative for information on the products and services currently available in your area. Any 
reference to an IBM product, program, or service is not intended to state or imply that only that IBM 
product, program, or service may be used. Any functionally equivalent product, program, or service 
that does not infringe any IBM intellectual property right may be used instead. However, it is the 
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or 
service.

IBM may have patents or pending patent applications covering subject matter described in this 
document. The furnishing of this document does not grant you any license to these patents. You can 
send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM 
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such 
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION 
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR 

00X6331-01 Rev. 2 325



In-Database Analytics Developer's Guide

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of 
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are 
periodically made to the information herein; these changes will be incorporated in new editions of 
the publication. IBM may make improvements and/or changes in the product(s) and/or the 
program(s) described in this publication at any time without notice. 

Any references in this information to non-IBM Web sites are provided for convenience only and do 
not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are 
not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate 
without incurring any obligation to you. 

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the 
exchange of information between independently created programs and other programs (including 
this one) and (ii) the mutual use of the information which has been exchanged, should contact: 
IBM Corporation
26 Forest Street
Marlborough, MA 01752 U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some 
cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are 
provided by IBM under terms of the IBM Customer Agreement, IBM International Program License 
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the 
results obtained in other operating environments may vary significantly. Some measurements may 
have been made on development-level systems and there is no guarantee that these measurements 
will be the same on generally available systems. Furthermore, some measurements may have been 
estimated through extrapolation. Actual results may vary. Users of this document should verify the 
applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their 
published announcements or other publicly available sources. IBM has not tested those products and 
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM 
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of 
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without 
notice, and represent goals and objectives only. This information is for planning purposes only. The 
information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To 
illustrate them as completely as possible, the examples include the names of individuals, companies, 
brands, and products. All of these names are fictitious and any similarity to the names and addresses 
used by an actual business enterprise is entirely coincidental.
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COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate 
programming techniques on various operating platforms. You may copy, modify, and distribute these 
sample programs in any form without payment to IBM, for the purposes of developing, using, 
marketing or distributing application programs conforming to the application programming interface 
for the operating platform for which the sample programs are written. These examples have not 
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, 
serviceability, or function of these programs. The sample programs are provided "AS IS", without 
warranty of any kind. IBM shall not be liable for any damages arising out of your use of the sample 
programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright 
notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs. 
© Copyright IBM Corp. (enter the year or years). All rights reserved.

Trademarks
IBM, the IBM logo, ibm.com and Netezza are trademarks or registered trademarks of International 
Business Machines Corporation in the United States, other countries, or both. If these and other IBM 
trademarked terms are marked on their first occurrence in this information with a trademark symbol 
(® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the 
time this information was published. Such trademarks may also be registered or common law 
trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright 
and trademark information” at ibm.com/legal/copytrade.shtml. 

The following terms are trademarks or registered trademarks of other companies:

Adobe is a registered trademark of Adobe Systems Incorporated in the United States, and/or other 
countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in 
the United States, other countries, or both.

NEC is a registered trademark of NEC Corporation.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both.

Red Hat is a trademark or registered trademark of Red Hat, Inc. in the United States 
and/or other countries.

D-CC, D-C++, Diab+, FastJ, pSOS+, SingleStep, Tornado, VxWorks, Wind River, and 
the Wind River logo are trademarks, registered trademarks, or service marks of Wind River Systems, 
Inc. Tornado patent pending.

APC and the APC logo are trademarks or registered trademarks of American Power Conversion 
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Corporation.

Other company, product or service names may be trademarks or service marks of others.

Regulatory and Compliance

Regulatory Notices
Install the NPS system in a restricted-access location. Ensure that only those trained to operate or 
service the equipment have physical access to it. Install each AC power outlet near the NPS rack that 
plugs into it, and keep it freely accessible. Provide approved circuit breakers on all power sources.

Product may be powered by redundant power sources. Disconnect ALL power sources before 
servicing. High leakage current. Earth connection essential before connecting supply. Courant de fuite 
élevé. Raccordement à la terre indispensable avant le raccordement au réseau.

Homologation Statement
Attention: This product is not intended to be connected directly or indirectly by any means 
whatsoever to interfaces of public telecommunications networks, neither to be used in a Public 
Services Network.

FCC - Industry Canada Statement
This equipment has been tested and found to comply with the limits for a Class A digital device, 
pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection 
against harmful interference when the equipment is operated in a commercial environment. This 
equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in 
accordance with the instruction manual, may cause harmful interference to radio communications. 
Operation of this equipment in a residential area is likely to cause harmful interference, in which case 
users will be required to correct the interference at their own expense.

This Class A digital apparatus meets all requirements of the Canadian Interference-Causing 
Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel 
brouilleur du Canada.

WEEE
Netezza Corporation is committed to meeting the requirements of the European Union (EU) Waste 
Electrical and Electronic Equipment (WEEE) Directive. This Directive requires producers of electrical 
and electronic equipment to finance the takeback, for reuse or recycling, of their products placed on 
the EU market after August 13, 2005.

CE Statement (Europe)
This product complies with the European Low Voltage Directive 73/23/EEC and EMC Directive 
89/336/EEC as amended by European Directive 93/68/EEC.
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Warning: This is a class A product. In a domestic environment this product may cause radio 
interference in which case the user may be required to take adequate measures.

VCCI Statement
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